首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spawning densities, spawning indices, egg densities, size distributions, and movement patterns of horseshoe crabs (Limulus polyphemus) were quantified for four coastal embayments (Monomoy National Wildlife Refuge, Pleasant Bay, Nauset Estuary, and Cape Cod Bay) on Cape Cod, Massachusetts from 2000 to 2002. Spawning activity was highest from mid May through mid June, but densities varied throughout the Cape Cod region. Average spawning densities (male and female crabs combined), measured using 25-m2 quadrats, were lower than 1 crab 25 m?2, although certain locations had consistently higher densities averaging 2 to 3 crabs 25 m?2 with individual survey densities recorded as high as 17 crabs 25 m?2. Spawning densities during night surveys were either similar or slightly higher than day surveys, except at a few sites within Pleasant Bay. Spawning indices were considerably lower ranging from 0 to 1.3 females 25 m?2 throughout the Cape Cod region. Spawning sex ratios varied from 1∶1.6 to 1∶3.1 (females:males) throughout the region, except within Pleasant Bay where highly male skewed ratios were observed (e.g., 1∶5.8, 3-yr average). Egg densities were low overall (<1 egg cm?2) throughout Cape Cod and egg densities tended to be higher in deeper sediments (5–20 cm deep) compared to shallow sediments (0–5 cm deep) at most locations. Over 7,800 horseshoe crabs were tagged on Cape Cod from 2000 to 2002. Average size and size frequency distributions of tagged crabs varied among regions. Larger individuals were observed at Monomoy National Wildlife Refuge while the smallest individuals were from Cape Cod Bay. We documented an overall recapture rate of 6.7% and our tag-recapture data indicated that 62% of crabs were recaptured at the original tagging location and 70% of recaptures traveled less than 2 km from the original tagging location, providing evidence for localized populations on Cape Cod. We have observed that horseshoe crabs differ among embayments within a regional area, suggesting the potential need for management plans specific to embayments or subregions depending on the characteristics of a population.  相似文献   

2.
The Great Bay Estuary, New Hampshire, USA is near the northern distribution limit of the American horseshoe crab (Limulus polyphemus). This estuary has few ideal beaches for spawning, yet it supports a modest population of horseshoe crabs. There is no organized monitoring program in the Great Bay Estuary, so it is unclear when and where spawning occurs. In this 2-year study (May through June, 2012 and 2013), >5,000 adult horseshoe crabs were counted at four sites in the estuary. The greatest densities of horseshoe crabs were observed at Great Bay sites in the upper, warmer reaches of the estuary. Peaks of spawning activity were not strongly correlated with the times of the new or full moons, and similar numbers of horseshoe crabs were observed mating during daytime and nighttime high tides. While many environmental factors are likely to influence the temporal and spatial patterns of spawning in this estuary, temperature appears to have the most profound impact.  相似文献   

3.
The distribution, abundance, and dispersal patterns of horseshoe crab (Limulus polyphemus) trilobite larvae were determined from 671 plankton tows taken near a spawning beach in lower Delaware Bay, New Jersey, in 1998 and 1999. In both years, peaks in larval abundance occurred during periods of rough surf (>30 cm wave heights). Planktonic larvae were significantly more abundant nocturnally than during the day, but there was no evidence of a lunar component to larval abundance. Larvae were strongly concentrated inshore; trilobites were 10–100 times more abundant in the immediate vicinity of the shoreline than they were 100–200 m offshore. The strong tendency ofLimulus larvae to remain close to the beach suggests that their capability for long-range dispersal between estuaries is extremely limited. We suggest that limited larval dispersal potential may help explain previously observed patterns of genetic variation among the Mid-Atlantic horseshoe crab populations.  相似文献   

4.
Concern for the status of horseshoe crab (Limulus polyphemus) has increased as harvest for conch and eel bait has increased and spawning habitat has decreased. In early 1999 a workshop was held at the behest of the Atlantic States Marine Fisheries Commission to design a statistically valid survey of horseshoe crab spawning in Delaware Bay. The survey that resulted was a redesign of a volunteer-based spawning survey that began in 1990, and its network of volunteers was relied on to implement the three-stage sampling design in 1999. During May and June of 1999, 163 participants surveyed during the highest of the daily high tides on 16 beaches (8 on each site of Delaware Bay). During the first half of the spawning season, spawning was associated with lunar phases, but moderated by wave height. Disproportionately more spawning occurred within 3 d of the first new and full moons, and spawning activity (measured by an index of female density) was correlated inversely to the percent of beaches with waves ≥0.3 m. Spawning was heaviest on the Delaware shore around the full moon in May in spite of low waves in New Jersey during the new and full moons in May. Number of beaches sampled was the most important factor in determining the precision of the spawning index and power to detect a decline. Explicit consideration of statistical power has been absent from the current debate on horseshoe crab status and harvest. Those who argue against harvest restrictions because of a lack of statistically significant declines take on a burden to show that the surveys they cite have high statistical power. We show the Delaware Bay spawning survey will achieve high statistical power with sufficient sampling intensity and duration. We recommend that future Delaware Bay spawning surveys sample on 3 d around each new and full moon in May and June and increase the number of beaches to ensure high statistical power to detect trends in baywide spawning activity.  相似文献   

5.
We assessed the suitability of intertidal habitats for spawning by horseshoe crabs (Limulus polyphemus) at 12 proposed restoration sites identified by the United States Army Corps of Engineers along the shore of Jamaica Bay, a highly developed estuary in New York City. Based on beach geomorphology, we chose to quantify horseshoe crab activity at five of the sites during the May–July 2000 breeding season. Horseshoe crabs spawned intensively on small patches of suitable sand within larger areas of eroding shoreline with bulkheads and rubble fill. Small areas of sand behind grounded barges at Brant Point and Dubos Point had densities of over 100,000 eggs m−2, which was equal to or greater than the egg densities on longer, more natural appearing beaches at Spring Creek and Dead Horse Bay, or at a sand spit at Bayswater State Park. There were no significant differences in the percentage of Jamaica Bay horseshoe crab eggs that completed development when cultured using water from Jamaica Bay or lower Delaware Bay, a less polluted location. Only 1% of the embryos from Jamaica Bay exhibited developmental anomalies, a frequency comparable to a previously studied population from Delaware Bay. We suggest that the distribution and abundance of horseshoe crabs at our study areas in Jamaica Bay is presently limited by the availability of suitable shoreline for breeding, rather than by water quality. Restoration efforts that increase the amount of sandy beach in this urban estuary have a good likelihood of benefiting horseshoe crabs and providing additional value to migrating shorebirds that use horseshoe crab eggs as food.  相似文献   

6.
Populations of the American horseshoe crab (Limulus polyphemus) differ in broad areas of their biology. We observed a non-harvested, marked Florida Gulf coast population during their spring spawning (March–May) in 11 years across a 17-year period (1992–2009). Long-term changes occurred in the number of spawning pairs: the population was stable from 1992 to 2000 but increased markedly after 2000. Short-term variation in numbers of spawning pairs, unpaired females, unpaired males, and operational sex ratios was explained by changes over the season and during each week of spring tides and by differences in actual (not predicted) maximum high tide height. Wind direction strongly affected tidal inundation and the number of spawning horseshoe crabs. Tagging individuals revealed that females returned to the nesting beach less often than males and most females were re-sighted only within 1 week of spring tides. No animals were seen across more than 6 years. Implications for management are discussed.  相似文献   

7.
Restoration of horseshoe crab spawning habitats through beach nourishment may be considered as a potential strategy to enhance reproductive success in areas where estuarine beaches have been lost to coastal erosion and development. The US Army Corps of Engineers performed a beach nourishment project at Plumb Beach (Jamaica Bay, Brooklyn, NY) in 2012 to stabilize the shoreline. While the addition of sand was done to protect infrastructure, it created an opportunity to examine the responses of American horseshoe crabs (Limulus polyphemus) to beach nourishment using a BACI (before-after control impact) design. During Spring 2012, before beach nourishment, horseshoe crabs made minimal use of the highly degraded western section of Plumb Beach in comparison to a nearby reference site, as quantified by numbers of spawning adults at high tide and densities of horseshoe crab eggs in core samples. In the first post-nourishment field season (Spring 2013), there was no detectable increase in horseshoe crab spawning activity on the newly restored beach. In 2014 and 2015, the density of spawning females began to increase at the nourished beach, although their numbers and especially the density of horseshoe crab eggs remained much lower than at the reference site. Three years after beach nourishment, differences in sediments texture (mean grain diameter, percent gravel, sorting, skewness, and hardness) were still evident between the nourishment and reference sites. Our results suggest that (1) at this site, beach nourishment appeared to bring about only slow increases in horseshoe crab spawning density after several seasons and (2) subtle differences in beach geomorphology over relatively short distances can be detected by horseshoe crabs and may underlie their selection of specific nesting sites.  相似文献   

8.
The seasonal abundance and spatial distribution of eggs and early larvae of the bay anchovy,Anchoa mitchilli, and the weakfish,Cynoscion regalis, were determined from plankton collections taken during 1971–1976 in the lower Chesapeake Bay. Eggs and larvae of the bay anchovy,Anchoa mitchilli, dominated the ichthyoplankton, making up 96% of the total eggs and 88% of all larvae taken. A comparison of egg and larval densities from the lower Chesapeake Bay to existing data from other East Coast estuaries suggested that Chesapeake Bay is a major center of spawning activity for this species.Anchoa mitchilli spawning commenced in May when mean water column temperatures approached 17°C and abruptly ceased after August. Eggs and early larvae presented a continuous distribution throughout the study area during these months. Eggs and larvae of several sciaenid species, especiallyC. regalis, ranked second in numerical abundance. Larval weakfish were consistently taken in late summer of each sampling year but peak abundance and distribution was observed in August 1971. Sciaenid eggs exhibited a distinct polyhaline distribution with greatest concentrations observed at the Chesapeake Bay entrance or along the Bay eastern margin. Analysis of sciaenid egg morphometry and larval occurrence suggested spawning activity of at least four species. Additional important species represented by eggs and/or larvae in the lower Chesapeake Bay wereHypsoblennius hentzi, Gobiosoma ginsburgi, Trinectes maculatus, Symphurus plagiusa andParalichthys dentatus with the remaining species occurring infrequently.  相似文献   

9.
The effects of wave action and horseshoe crab spawning on the topography and grain-size characteristics on the foreshore of an estuarine sand beach in Delaware Bay, New Jersey, USA were evaluated using data collected over six consecutive high tides. Data were gathered inside and outside a 25 m long exclosure constructed to create a control area free of disturbance by crabs. The density of crabs in the swash zone outside the exclosure was 8·1 organisms m−2. The maximum depth of sediment activation on the upper foreshore where spawning occurred was 0·103 m during periods characterized by low significant wave heights: < 0·08 m. This depth is greater than the depth of activation by waves alone during moderate significant wave heights of 0·16–0·18 m but less than the maximum depth (0·127 m) recorded when spawning occurred during periods of moderate wave heights. Spawning, combined with moderate wave heights, creates a concave upper foreshore that is similar to the type of profile change that occurs during storms, thus lowering the wave-energy threshold for morphological response. Spawning during low wave heights increases the mean grain size and sorting of surface sediments caused by the addition of gravel to the swash. Sedimentological differences are most pronounced on the upper foreshore, and data from this location may be most useful when using grain-size characteristics to interpret the effect of spawning in the sedimentary record. Depths of sediment reworking by horseshoe crabs can be greater than those by subsequent storm waves, so evidence of spawning can be preserved on non-eroding beaches. Greater depth of activation by horseshoe crab spawning than by waves alone, even during moderate-energy conditions, reveals the importance of crab burrowing in releasing eggs to the water column and making them available for shore birds.  相似文献   

10.
Because the Delaware Bay horseshoe crab (Limulus polyphemus) population is managed to provide for dependent species, such as migratory shorebirds, there is a need to understand the process of egg exhumation and to predict eggs available to foraging shorebirds. A simple spatial model was used to simulate horseshoe crab spawning that would occur on a typical Delaware Bay beach during spring tide cycles to quantify density-dependent nest disturbance. At least 20% of nests and eggs were disturbed for levels of spawning greater than one third of the average density in Delaware Bay during 2004. Nest disturbance increased approximately linearly as spawning density increased from one half to twice the 2004 level. As spawning density increased further, the percentage of eggs that were disturbed reached an asymptote of 70% for densities up to 10 times the density in 2004. Nest disturbance was heaviest in the mid beach zone. Nest disturbance precedes entrainment and begins the process of exhumation of eggs to surface sediments. Model predictions were combined with observations from egg surveys to estimate a snap-shot exhumation rate of 5–9% of disturbed eggs. Because an unknown quantity of eggs were exhumed and removed from the beach prior to the survey, cumulative exhumation rate was likely to have been higher than the snap-shot estimate. Because egg exhumation is density-dependent, in addition to managing for a high population size, identification and conservation of beaches where spawning horseshoe crabs concentrate in high densities (i.e., hot spots) are important steps toward providing a reliable food supply for migratory shorebirds.  相似文献   

11.
Breeding activity of the horseshoe crab,Limulus polyphemus, was quantitatively monitored in Apalachee Bay, Florida, throughout one breeding season. Breeding peaked at times of full and new moon at the hour of high tide. Breeding activity was heavier on night tides than on corresponding day tides of the same date. Males routinely outnumbered females and indications of sperm competition were present. Many horseshoe crabs buried in the intertidal zone throughout the subsequent low tide and returned to the beach to breed again on the following high tide. A tagging study of the horseshoe crab indicated that male animals return to breeding beaches more frequently than females. Most animals tagged at breeding beaches did not move away from the tagging site during a breeding season and were recovered at the point of release. No long-range movements were noted. The sex ratio of animals tagged near breeding beaches was predominately male while it was predominately female for animals collected and tagged 3–6 miles offshore. A nine percent recovery rate was achieved. Existing localized populations are potentially subject to depletion due to heavy collecting pressure on breeding beaches.  相似文献   

12.
Two winter flounder, Pseudopleuronectes americanus, spawning sites in a 630 hectare Rhode Island lagoon were located by collecting eggs with a modified epibenthic sled towed by boat. A two-dimensional vertically-averaged hydrodynamic model predicted that larvae hatched at these spawning sites would be minimally displaced by tidal movement. Ichthyoplankton samples taken hourly during the day at six locations on March 27 and April 27, 1981 reflected the larval distribution predicted by the model. Larval retention within this lagoon appeared to be strongly influenced by the hydrodynamics of this system. It is suggested that the hydrodynamic features of lagoons are exploited in the reproductive strategies of estuarine species and that the relationship between hydrodynamics and the quality of nursery habitat must be considered before making hydraulic modifications to these systems.  相似文献   

13.
The objective of this simulation study was to create an age-structured population model for horseshoe crabs (Limulus polyphemus) in the Delaware Bay region using best available estimates of age-specific mortality and recent harvest levels. Density dependence was incorporated using a spatial model relating egg mortality with abundance of spawning females. Combinations of annual female harvest (0, 50, 100, and 200 thousand), timing of female harvest (before or after spawning), and three levels of density-dependent egg mortality were simulated. The probability of the population increasing was high (>80%) with low and medium egg mortality and harvest less than 200 thousand females per year. Under the high egg mortality case, the probability of the population increasing was <50% regardless of harvest. Harvest occurring after spawning increased the probability of population growth. The number of eggs available to shorebirds was highest when egg mortality was lowest and female abundance was at its highest levels. Although harvest and egg mortality influenced population growth and food availability to shorebirds, sensitivity and elasticity analyses showed that early-life stage mortality, age 0 mortality in particular, was the most important parameter for population growth. Our modeling results indicate areas where further research is needed and suggest effective management will involve a combination of harvest management and actions to increase early juvenile survival.  相似文献   

14.
The invasion ofSpartina marshes by the common reed,Phragmites australis, along the east coast of the United States over the last several decades has been well documented, although we know little about the impact of this invasion on the fish fauna and the few published papers seem contradictory. During 1999–2000 (May–September) we evaluated the fish response to vegetation type (Phragmites australis veersusSpartina alterniflora) by monitoring several aspects of fish early life history (egg deposition, embryonic development, hatching success, and larval and juvenile abundance) in low salinity marshes in the Mullica River in southern New Jersey. The dominant fish species using the marsh surface,Fundulus heteroclitus (93% of total catch, n=996 individuals), reproduced in both vegetation types with eggs deposited in leaf axils near the base of the plant inSpartina and in broken stems ofPhragmites during both years. These eggs also undergo successful embryonic development to hatching in both vegetation types. Larval and juvenile (5–75 mm total length, but 95% < 34 mm TL) abundance of this species is much reduced onPhragmites-dominated (mean CUPE=0.02, n=7 ind) marsh surface relative toSpartina (mean CPUE=2.31). These findings, and similar results for fish abundance in 1997 and 1998, indicate that theSpartima marsh surface is likely essential fish habitat for this species because it provides habitat for larvae and small juveniles, whilePhragmites does not. ThePhragmites invasion in brackish marshes may be having deleterious effects on fish populations and possibly on predators that prey uponF. heteroclitus, and as a result, marsh secondary production.  相似文献   

15.
The Delaware Bay region is the epicenter of horseshoe crab, Limulus polyphemus, activity, and despite the ecological and commercial importance of this species, few studies have examined the long-term movements of horseshoe crabs in this area and the amount of mixing that takes place between smaller coastal embayments within the region and the Delaware Bay proper, factors that are critical to effective management. To better understand these factors, 5568 crabs were tagged in the Delaware Inland Bays as part of the U.S. Fish and Wildlife Service’s (USFWS) Cooperative Horseshoe Crab Tagging Program in 2002–2016. A high re-sight rate of 20.1% (1123 crabs) was reported to the USFWS. Re-sights suggest that the Delaware Bay population is distributed between coastal New Jersey (south of Barnegat Bay) and coastal Virginia (north of Chincoteague Inlet). There were 90 re-sights in the Inland Bays and 148 re-sights in Delaware Bay, with 320 days or more between tagging and re-sight, showing that substantial interchange between successive spawning seasons occurs. Distance analyses demonstrated that crabs can move between the Inland Bays and other Delaware Bay region waterbodies within a single year. The findings of this study support the current management strategy of splitting the harvest of Delaware Bay crabs between New Jersey, Delaware, Maryland, and Virginia and also demonstrate that the waterbodies within the Delaware Bay region are highly connected. This connectivity supports protecting spawning habitat within the smaller embayments of the Delaware Bay region and including spawning surveys from these systems in future stock assessments.  相似文献   

16.
Atlantic horseshoe crabs,Limulus polyphemus, are currently harvested for biomedical, scientific, and bait purposes. In recent years, changes in population abundance and magnitude of harvesting have raised concerns about the status of this resource. We found horseshoe crab harvest in Pleasant Bay, Massachusetts, was selective by sex and size. Biomedical harvest preferred larger individuals and females, the scientific harvest preferred smaller individuals and males, and the bait harvest preferred females. Total 2001 harvest for all purposes accounted for the mortality of ∼1–2% the adult population. Biomedical harvest accounted for the greatest loss of horseshoe crabs from Pleasant Bay, ∼1–1.6% of the total population. Although biomedical harvest had the lowest associated mortality rate (∼10–15%), many more crabs were harvested from Pleasant Bay for biomedical purposes than for other uses. The scientific harvest accounted for the mortality of ∼0.4% of the population, and bait harvest accounted for the smallest mortality at ∼0.06% of the population. Harvest mortality rate was estimated to be lower in Pleasant Bay than in other Cape Cod areas and may be lower than natural mortality in the population. This study is the first qualitative investigation of commercial harvest on horseshoe crab populations and emphasizes that harvest pressures on different populations need to be individually evaluated.  相似文献   

17.
Synoptic ichthyoplankton sampling was conducted on two transects, one on either side of Beaufort Inlet, North Carolina, during the winter immigration season of seven ocean-spawned, estuarine-dependent fishes;Brevoortia tyrannus (Atlantic menhaden),Leiostomus xanthurus (spot),Micropogonias undulatus (Atlantic croaker),Lagodon rhomboides (pinfish),Paralichthys albigutta (Gulf flounder),P. dentatus (summer flounder), andP. lethostigma (southern flounder). Densities and lengths of larvae were significantly different among sampling dates, with distance offshore, and between sides of the inlet. Flood-tide stage had minimal effect on larval densities and lengths except forP. albigutta andP. lethostigma. Changes in larval densities with distance offshore were not coherent among species; densities ofB. tyrammus increased offshore whereas densities of the other species decreased offshore. Average larval densities on a sampling date were coherent among species. Patterns in larval lengths were also coherent among the four non-flounder species. Larval densities outside of Beaufort Inlet were correlated with larval densities inside of Beaufort Inlet. Larval densities outside of Beaufort Inlet were also correlated with the north component of the wind, nearshore water temperature, and distance to the mid-shelf front. Differences in larval density across the inlet were significantly correlated with the east component of the wind. The patterns in larval densities outside of Beaufort Inlet were complex and apparently influenced by both the physical processes that supply larvae to the nearshore region and nearshore physical dynamics.  相似文献   

18.
Knowledge of resource-use and movement patterns is a missing component in the development of horseshoe crab (Limulus polyphemus) management strategies. Available evidence indicates the potential for a variety of possible migratory behaviors, but the lack of high-resolution, spatial-temporal data has hindered development of a year-round profile of ranging behavior. This need was addressed in the present study by using acoustic telemetry to track the movements of adult horseshoe crabs in two subembayments (Egypt and Hog Bays) of the Taunton Bay Estuary, Maine, from June 2003 to June 2005. Estimated mean total home range sizes were 64.1 and 61.4 ha for breeding crabs tagged in Egypt and Hog Bays, respectively. We observed no horseshoe crab dispersal to areas outside of the subembayments where they were tagged, so no mixing was observed between Egypt and Hog Bay individuals despite a < 4-km separation. Observed shifts in movement patterns, resource use (subtidal versus intertidal), and vagility facilitated a profile of seasonally partitioned horseshoe crab activity, which included late April to early May post-wintering, June–July breeding, August–September pre-wintering, and October–April wintering, where space usage represented about 10% of the mean total home range size. The apparent isolation of these resident populations implies a heightened vulnerability to overexploitation and large-scale habitat alteration that might be more easily sustained by larger, more vagile populations. This work underscores the need to apply horseshoe crab conservation, research, and management efforts at scales that are appropriate to the ranging patterns of crabs, which first requires application of high-resolution methods to identify those patterns.  相似文献   

19.
The 1977 peak population of spawning horsehoe crabs,Limulus polyphemus, in Delaware Bay, was comprised of about 222,000 males and 51,000 females. This estimate, based upon a shoreline survey of spawning intensity along Delaware and New Jersey beaches at the time of full moon tides in June, was corroborated by a quantification of egg clusters in a beach. Fecundity of gravid females was used, in conjunction with the egg cluster estimate, to approximate the number of females responsible for the observed quantity of eggs. The present spawning population of Delaware Bay is several fold larger than that which existed during the 1960’s. From a longer historical perspective, however, the population is far from approaching the numbers and spawning intensity reported a century ago.  相似文献   

20.
The relationships between egg production (spawning behavior), larval growth and survival, and environmental conditions that larvae encounter were investigated in the Patuxent River tributary of Chesapeake Bay in 1991. Striped, bass (Morone saxatilis) eggs and larvae occurred predominantly above the salt front where conductivity was ≤800 μmhos cm?1. There were three prominent peaks in egg production, each coinciding with increasing temperatures. Estimated growth rates of 6-d, otolith-aged cohorts, which ranged from 0.15 mm d?1 to 0.22 mm d?1 (mean=0.17 mm d?1), were not demonstrated to differ significantly from each other. Observed zooplankton densities and temperature did not significantly affect growth rates. Stage-specific cumulative mortalities of combined cohorts were calculated for eggs (Zstage=0.20=18.1%), yolk-sac larvae (Zstage=5.80=99.7%), and first-feeding larvae (Zstage=2.95=94.8%). The very high mortality of yolk-sac larvae suggests that dynamic during this stage may have had a major impact on subsquent recruitment. Cohort-specific mortality rates of larvae were variable, ranging from Z=0.045 d?1 to 0.719 d?1, and were strongly temperature-dependent. Cohorts that experiented average temperature <15°C or >20°C during the first 25 d after hatching had significantly higher mortality rates than those which experienced intermediate temperatures. Estimated hatch-date frequencies of larvae ≥8 mm SL indicated goo, very good, and very low potential recruitments for cohorst spawned during early-season (April 2–11), mid-season (April 12–24) and late-season (April 25–May 5), respectively. Because seasonal temperature trends and fluctuations are unpredictable, striped bass females cannot select a spawning time that guarantees their offspring will be exposed to optimum temperatures. Consequently, selection may have occured for spawning over a broad range of temperatures and dates, a behavior insuring that some larval cohorts will encounter favorable temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号