首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为研究沙尘沉降和营养盐输入对中国陆架海域浮游植物群落结构的影响,于2017年3—4月在中国黄、东海进行沙尘和不同营养盐(NO-3、PO-4、尿素)添加的船基围隔培养实验。结果表明,与对照组相比,沙尘(2 mg/L)和尿素添加实验组的浮游植物群落细胞密度及群落结构变化不显著,叶绿素a含量差异不显著,优势种均为海链藻属 (Thalassiosira)。不同比值的氮、磷无机营养盐添加对水体中叶绿素a含量和细胞密度的影响不同,其中氮磷比为64∶1的实验组叶绿素a含量和细胞密度最高,分别为18.20 μg/L和7.86×105cells/L。沙尘和营养盐添加对浮游植物群落的影响主要表现为叶绿素a含量、细胞密度峰值及不同优势种所占比例的差异,而各个实验组的种类组成及优势种具有一定的相似性。  相似文献   

2.
本文依托2008年夏季中国第三次北极科学考察航次,对西北冰洋海盆区和楚科奇海陆架营养盐及光合色素进行了测定和分析。根据海水理化性质将研究海区分为5个区,并使用CHEMTAX软件(Mackery et al.,1996)讨论了西北冰洋不同海区浮游植物群落组成结构及其与环境因子之间的关系。结果显示在楚科奇海陆架区,太平洋入流显著影响浮游植物生物量和群落结构。高营养盐Anadyr水团以及白令陆架水控制海域,表现出高Chl a且浮游植物以硅藻为主,相反,低营养盐如阿拉斯加沿岸流控制海域,Chl a生物量低且以微型,微微型浮游植物为主。在外陆架海区,海冰覆盖情况影响着水团的物理特征及营养盐浓度水平,相应地显著影响浮游植物群落结构。在海冰覆盖区域,硅藻生物量站到总Chl a生物量的75%以上;在靠近门捷列夫深海平原海区,受相对高盐的冰融水影响(MW-HS),营养盐浓度和Chl a浓度相对海冰覆盖区略高,浮游植物结构中微型、微微型藻类比重增加,硅藻比例则降至33%;南加拿大海盆无冰海区(IfB),表层水盐度最淡,营养盐浓度最低,相应地显示出低Chl a生物量,表明海冰消退,开阔大洋持续时间延长,将导致低生物量及激发更小型浮游植物的生长,并不有利于有机碳向深海的有效输出。  相似文献   

3.
In the upper Schelde estuary in 2002, phytoplankton biomass and community composition were studied using microscopic and pigment analyses. Chlorophyll a concentration was a good predictor of phytoplankton biomass estimated from cell counts and biovolume measurements. The phytoplankton carbon to chlorophyll a ratio, however, was often unrealistically low (<10). CHEMTAX was used to estimate the contribution of the major algal groups to total chlorophyll a. The dominant algal groups were diatoms and chlorophytes. While diatom equivalents in chlorophyll a predicted diatom biomass relatively well, chlorophyte equivalents in chlorophyll a were only weakly related to chlorophyte biomass. The pigment-based approach to study phytoplankton overestimated phytoplankton biomass in general and chlorophyte biomass in particular in late autumn and winter, when phytoplankton biomass was low. A possible explanation for this overestimation may be the presence of large amounts of vascular plant detritus in the upper Schelde estuary. Residual chlorophyll a, chlorophyll b and lutein in this detritus may result in an overestimation of total phytoplankton and chlorophyte biomass when the contribution of phytoplankton to total particulate organic matter is low.  相似文献   

4.
广东南澳岛近海是我国龙须菜养殖的重要基地。为了探究龙须菜养殖对藻华防治的贡献,分别于2016年3月、5月和6月在广东南澳岛北部海域不同养殖功能海区进行采样,研究龙须菜养殖前后海水中营养盐含量和结构的变化,分析不同粒径的浮游生物对有机营养盐的水解利用,探讨龙须菜养殖对浮游植物竞争利用营养盐和生长产生的影响。结果表明,研究海区水质较清洁,无机氮磷含量较低,春季至夏季,随着龙须菜和浮游植物生物量增加,溶解无机磷(dissolved inorganic phosphorus,DIP)浓度不断下降,至6月南澳海区成为磷限制海域。在5月龙须菜生长高峰期,龙须菜养殖区和龙须菜鲍鱼混养区的DIP浓度显著低于鲍鱼区和非养殖区,龙须菜养殖区的叶绿素a浓度明显低于其他区域,亮氨酸氨肽酶(leucine amino peptide,LAP)和碱性磷酸酶(alkaline phosphatase,AP)活性显著升高,表明龙须菜养殖区浮游植物受到较为明显的营养胁迫。而龙须菜收割后,该养殖区的叶绿素a含量则显著上升,甚至高于其他区域。该结果表明在南澳岛海域,龙须菜养殖通过营养竞争关系(尤其是磷)抑制浮游植物的生长,大规模龙须菜养殖可能有助于抑制有害藻华的发生。  相似文献   

5.
研究了热带西太平洋雅浦Y3海山冬季和马里亚纳M2海山春季网采浮游植物群落结构,对调查区浮游植物的物种组成、优势种类、细胞丰度以及多样性指数进行了分析。结果表明,两个海山区共鉴定浮游植物4门50属219种,其中硅藻门30属106种,甲藻门17属112种,蓝藻门1属2种,金藻门2属3种。两个航次研究区浮游植物优势种均以链状硅藻如根管藻(Rhizosolenia)、半管藻(Hemiaulus)和角毛藻(Chaetoceros)等属的种类为主,此外太阳漂流藻(Planktoniella sol)、铁氏束毛藻(Trichodesmium thiebautii)以及部分角藻(Ceratium)物种优势度也比较明显。Y3海山区浮游植物细胞丰度介于1.60~16.61 cells/L,平均值为5.02 cells/L; M2海山区浮游植物细胞丰度介于1.36~10.20 cells/L,平均值为4.12cells/L。两个海山区浮游植物细胞丰度的分布趋势均受硅藻影响较大,甲藻细胞丰度相对较低。在属的水平上,角毛藻、根管藻、角藻和半管藻等属的细胞丰度对两个海山区浮游植物总细胞丰度的贡献较大。多样性指数方面, Y3海山区浮游植物群落香农-威纳指数H′(shannon-wiener index)介于3.95~4.69,平均值为4.30; M2海山区浮游植物群落香农-威纳指数介于3.23~4.46,平均值为3.83。两个海山区浮游植物群落多样性指数均处于较高水平,但站位间的变化不明显。目前,关于热带西太平洋海山区浮游植物群落结构的研究还非常缺乏,亟需后续研究的补充。  相似文献   

6.
The species composition, cell concentration (N), and biomass (B) of the phytoplankton, as well as the chlorophyll a (Chl a) concentration, primary production (PP), and the concentrations of the dissolved inorganic micronutrients (phosphorus, silica, nitrogen as nitrite), were estimated for Kandalaksha Bay (KB), Dvina Bay (DB), and the basin (Bas) of the White Sea in August of 2004. The micronutrient concentrations were lower compared to the average long-term values for the summer period. The Chl a concentration varies from 0.9 to 2.0 mg/m3 for most of the studied areas, reaching up to 7.5 mg/m3 in the Northern Dvina River estuary. The surface water layer of the DB was the most productive area, where the PP reached up to 270–375 mg C/(m3 day). The phytoplankton biomass varied from 11 to 205 mg C/m3 with the highest values observed in the Bas and DB. Three groups of stations were defined during the analysis of the phytoplankton’s species composition similarity. The dinoflagellates Dinophysis norvegica and Ceratium fusus were particular to the phytoplankton assemblages in the KB; the diatom Ditylum brightwellii was particular to the upper and central parts of the DB. These three phytoplankton species were less abundant in the Bas.  相似文献   

7.
The euphausiid community structure and grazing dynamics were investigated in the West Indian sector of the Polar Frontal Zone during the austral autumn 2004. Subsurface (200m) temperature profiles indicated that an intense frontal feature, formed by the convergence of the Subantarctic Front and the Antarctic Polar Front bisected the survey area into two distinct zones, the Subantarctic Zone (SAZ) and the Antarctic Zone (AAZ). Total integrated chlorophyll a (Chl a) biomass was typical for the region (<25mg Chl a m?2), and was dominated by picophytoplankton. Total euphausiid abundance and biomass ranged from 0.1 m?3 to 3.1 m?3 and from 0.1mg dry weight m?3 to 8.1mg dry weight m?3 respectively, and did not differ significantly between the stations occupied in the SAZ and AAZ (p > 0.05). A multivariate analysis identified two interacting mechanisms controlling the distribution patterns, abundance and biomass of the various euphausiid species, namely (1) diel changes in abundance and biomass, and (2) restricted distribution patterns associated with the different water masses. Ingestion rates were determined for five euphausiid species. Euphausia triacantha had the highest daily ingestion rate, ranging from 1 226.1ng pigment (pigm) ind?1 day?1 to 6 029.1ng pigm ind?1 day?1, whereas the lowest daily ingestion rates were observed in the juvenile Thysanoessa species (6.4–943.0ng pigm ind?1 day?1). The total grazing impact of selected euphausiids ranged from <0.1μg pigm m?2 day?1 to 20.1μg pigm m?2 day?1, corresponding to <0.15% of the areal Chl a biomass. The daily ration estimates of autotrophic carbon for the euphausiids suggest that phytoplankton represent a minor component in their diets, with only the sub-adult E. vallentini consuming sufficient phytoplankton to meet their daily carbon requirements.  相似文献   

8.
To understand the variations of ecosystem components in response to changing environment, especially relating to a shift in the climate regime during mid 1970s, we analyzed the physical and biological time-series data collected from the eastern part of the Korean Peninsula during 1960–1990. The Northeast Pacific Pressure Index (NEPPI) in winter seasons showed a negative correlation (r=−0.384, p<0.05) with SOI in summer. The standardized chronologies of tree ring-width showed high correlations with precipitation of Ulleung Island and Kangrung city (r=0.408, p<0.05; r=0.410, p<0.05) and seawater temperatures (r=0.407, p<0.05). Sharp increases in tree growth appeared in 1969, 1973, 1979, 1983, and 1987. Among these years, all except 1979 seem to have a close connection with the El Niño which had persisted more than five seasons. Air temperatures in spring at Ulleung Island and Kangrung area appeared comparatively higher during the intense Aleutian low period after 1976. The Mixed Layer Depth (MLD) was shallower (18.2 m) and less variable during 1961–1975 compared to that (26.1 m) of 1976–1990. The shallower MLD in spring during the earlier period resulted in the higher chl a concentration than in the later years. Consequently, estimated zooplankton biomass in spring tended to decrease from the 1960s to the late 1980s in accordance with the phytoplankton decreases. In the East Sea, composition changes in fish species as well as fish catches were observed. Catches of pollock, sardine, and saury had good correlations with annual NEPPI.  相似文献   

9.
黑潮入侵对南海东北部浮游植物群落结构的影响   总被引:1,自引:0,他引:1  
To further understand the effect of Kuroshio intrusion on phytoplankton community structure in the northeastern South China Sea(NSCS, 14°–23°N, 114°–124°E), one targeted cruise was carried out from July to August, 2017. A total of 79 genera and 287 species were identified, mainly including Bacillariophyta(129 species), Pyrrophyta(150 species), Cyanophyta(4 species), Chrysophyta(3 species) and Haptophyta(1 species). The average abundance of phytoplankton was 2.14×10~3 cells/L, and Cyanobacterium was dominant species accounting for 86.84% of total phytoplankton abundance. The abundance and distribution of dominant Cyanobacterium were obviously various along the flow of the Kuroshio, indicating the Cyanobacterium was profoundly influenced by the physical process of the Kuroshio. Therefore, Cyanobacterium could be used to indicate the influence of Kuroshio intrusion. In addition, the key controlling factors of the phytoplankton community were nitrogen, silicate, phosphate and temperature, according to Canonical Correspondence Analysis. However, the variability of these chemical parameters in the study water was similarly induced by the physical process of circulations. Based on the cluster analysis, the similarity of phytoplankton community is surprisingly divided by the regional influence of the Kuroshio intrusion, which indicated Kuroshio intrusion regulates phytoplankton community in the NSCS.  相似文献   

10.
The distribution of chlorophyll a derivatives was examined in samples collected from the subarctic North Pacific during July to September 1997. Pheophorbide a, pheophytin a and pyropheophorbide a as determined by high performance liquid chromatography (HPLC) were the major derivatives recorded. The distribution patterns of chlorophyll a and its derivatives showed a strong vertical and horizontal heterogeneity. Patches with high concentration of derivatives seemed to be associated with high concentration of chlorophyll a. A clear east-west gradient was observed in both chlorophyll a and pheophorbide a integrated from the surface to 100 m depth with significantly higher amounts of both the pigments in the Western Subarctic Gyre and in the Bering Sea than in the Alaskan Gyre. In contrast, no apparent gradient was observed in the integrated pyropheophorbide a and pheophytin a. Grazing experiments conducted with the copepod (Neocalanus cristatus) and salp (Cyclosalpa bakeri) fed on five species of phytoplankton cultures, showed a marked difference in the composition of the derivatives in their fecal pellets. Pyropheophorbide a was dominant in the copepod fecal pellet regardless of the phytoplankton species fed on. In the salp, however, pheophytin a and pheophorbide a were found in the fecal pellets, the relative concentrations varying with the algal food. Spatial heterogeneity in the distribution of the derivatives is considered to reflect local variations in dominant herbivorous processes.  相似文献   

11.
During the EPOS I expedition (leg 1, 1988) into the WeddellSea (Antarctica) the dimethylsulfoniopropionate (DMSP) contents of various ice-algal assemblages and phytoplankton populations in the open water and in the ice edge zones were investigated. The chlorophyll a content in the ice samples was 25–70 times higher than that of the open water column, and about 100–390 more than in the under-ice water column. The DMSP content in ice-algae was about 20–56 times higher than in the open water, and 107–245 than in the under-ice water. There was no strict (linear ) correlation between pigment content and DMSP concentration, although high chlorophyll values were always accompanied by high DMSP contents. The variability of DMSP data can be explained by variation in species composition. Especially high concentrations were observed in samples where Phaeocystis pouch-etii was present. In ice DMSP may have a twofold biological role: as an osmolyte and/or as a cryoprotectant (antifreeze).  相似文献   

12.
Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwelling zone compared with the surrounding offshore area. Based on pigments analysis with subsequent calculations of group contributions to total chlorophyll a(Chl a) using CHEMTAX, we studied the distribution and composition of phytoplankton assemblages in the subsurface chlorophyll maximum along the south coast of Java and the influence of upwelling. Nineteen phytoplankton pigments were identified using high-performance liquid chromatography, and CHEMTAX analysis associated these to ten major phytoplankton groups. The phytoplankton community in the coastal area influenced by upwelling was characterized by high Chl a and fucoxanthin concentrations, indicating the dominance of diatoms. In contrast, in the offshore area, the Chl a and fucoxanthin concentrations declined to very low levels and the community was dominated by haptophytes represented by 19′-Hexanoyloxyfucoxanthin. Accordingly, microphytoplankton was found to be the major size class in the coastal area influenced by upwelling, while nanophytoplankton was most abundant in the offshore area. Low concentrations of other accessory pigments indicated less contribution from dinoflagellates,prasinophytes, chlorophytes and cryptophytes. Photo-pigment indices revealed that photosynthetic carotenoids(PSCs) were the largest component of the pigment pool, exceeding the proportion of Chl a, with the average PSCTP up to 0.62. These distribution trends can mainly be explained by phytoplankton adaption strategies to upwelling and subsurface conditions by changing species composition and adjusting the pigment pool.  相似文献   

13.
南海U形海疆国界线(简称南海U形线)是我国的南海国界线。该研究分析多源卫星遥感和GIS数据,系统研究南海U形海疆线水域的水深地形和环境生态要素,并重点分析2014年生态要素的季节变化,首次整体展现了南海U形线立体水深分布特征。根据海底地形的平缓、波峰、波谷和递增四大特征,将南海U形线分为东北、西北、东、西和南区5个区间。南海U形线总长大于4 000 km。西北区和南区的水深浅且变化平缓(<1 000 m),西区水深呈波峰分布(平均2 303 m),东区水深由南向北递增(>2 000 m);东北区水深最深且呈波谷分布(平均3 535 m)。南海U形线的5个区间,西北区与北部湾盆地、西区与越东断裂、南区与曾母盆地、东区与南海海槽、东北区与马尼拉海沟地形构造相吻合。研究发现季风对南海U形线5个区间海洋环境季节性变化有明显影响:西北区和东北区海表温度温差大,呈冬季最低夏季最高,混合层深度冬季最深春季最浅,海表流场和海表盐度季节变化小,但西北区海表叶绿素a浓度冬季爆发,其余季节呈对数分布,而东北区冬季区内中部略有增长;西区、南区和东区海表温度盐度季节变化小,海表风场和混合层深度冬季最强春季最弱,但海表叶绿素a浓度西区季节变化小,南区区内中部冬季增长明显,东区区内南部冬季小幅增长。西北区和南区(浅地形区)呈相似的季节分布。研究阐明了5个区间具有各自明显的区域性海洋环境特征:西北区海表温度和海表叶绿素a浓度的季节变化最大、西区混合层深度季节变化最大、南区海表流场季节变化最大、东区海表盐度季节变化最大、东北区风场变化大但海表叶绿素a浓度季节变化小。研究显示,南海U形线上的台风路径时空分布南北差异大,东西不均。1945—2016年共604个台风跨过南海U形线,年均8个,路径集中在东北、西北、东3个区,112.3°E以东台风537个,112.3°E以西415个。南海U形线东北区的生态环境受台风"风泵效应"影响最大。1991—2000年为台风多发期,跨线台风年均达11个。研究提出的南海U形海疆线5区间分法,具有科学意义和实践指导作用。  相似文献   

14.
The phytoplankton community in the western subarctic Pacific (WSP) is composed mostly of pico- and nanophytoplankton. Chlorophyll a (Chl a) in the <2 μm size fraction accounted for more than half of the total Chl a in all seasons, with higher contributions of up to 75% of the total Chl a in summer and fall. The exception is the western boundary along the Kamchatka Peninsula and Kuril Islands and the Oyashio region where diatoms make up the majority of total Chl a during the spring bloom. Among the picophytoplankton, picoeukaryotes and Synechococcus are approximately equally abundant, but the former is more important in term of carbon biomass. Despite the lack of a clear seasonal variation in Chl a concentration, primary productivity showed a large seasonal variation, and was lowest in winter and highest in spring. Seasonal succession in the phytoplankton community is also evident with the abundance of diatoms peaking in May, followed by picoeukaryotes and Synechococcus in summer. The growth of phytoplankton (especially >10 μm cell size) in the western subarctic Pacific is often limited by iron bioavailability, and microzooplankton grazing keeps the standing stock of pico- and nano-phytoplankton low. Compared to the other HNLC regions (the eastern equatorial Pacific, the Southern Ocean, and the eastern subarctic Pacific), iron limitation in the Western Subarctic Gyre (WSG) may be less severe probably due to higher iron concentrations. The Oyashio region has similar physical condition, macronutrient supply and phytoplankton species compositions to the WSG, but much higher phytoplankton biomass and primary productivity. The difference between the Oyashio region and the WSG is also believed to be the results of difference in iron bioavailability in both regions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The effects of tidal flushing on the abundance, productivity, and community structure of phytoplankton in response to eutrophication were examined every 2–3 months for more than 2 years in Tapong Bay, a tropical lagoon with only 1 tidal inlet connecting it to the sea in southern Taiwan. Water flushing time ranged from 4–12 d (8–25% d−1) in the outer region subject to fast flushing to 8–24 d (4–12% d−1) in the inner region subject to poor flushing. Chlorophyll a, cell number, and gross production (GP) rate of phytoplankton were significantly greater in the inner region than in the outer region. However, while GP rate was normalized by chlorophyll a (PB) and was expressed as photosynthetic intensity, no significant differences were detected among the study sites. These parameters exhibited a unimodal seasonal pattern across all study sites, with greater values in summer and lower values in winter. No significant differences in species richness or Shannon–Wiener diversity were detected among the study sites. Nevertheless, diversity indices were significantly higher in winter and lower in summer. Classification of phytoplankton communities showed that the grouping patterns were primarily determined by sampling time. Ordination by non-metric multidimensional scaling (MDS) revealed a clear temporal continuum of changes in species composition across all study sites, suggesting that the communities were primarily structured by time, but that it was little affected by study site. Analyses of similarities (ANOSIM) showed that phytoplankton communities sampled in winter could be separated from those in summer, but others were barely separable at all. In summer, the most frequently observed species were the diatom Skeletonema costatum and the cyanobacterium Oscillatoria sp., and these shifted to the diatoms S. costatum and Cylindrotheca closterium in winter. Our results suggest that tidal flushing is an important factor for regulating responses of phytoplankton abundance and productivity to eutrophication in tropical lagoons, but the community structure was little affected due to horizontal mixing by the tidal circulation.  相似文献   

16.
Spectral absorption coefficients of total particulate material and detritus were measured throughout the euphotic zone along the equator between 165°E and 150°W and during time-series for each of these two longitudes in October 1994 (JGOFS-FLUPAC cruise). The sum of pigments obtained by spectrofluorometry (tChla=DV−chla+Chla) was used for normalization (and was also compared to fluorometric and HPLC measurements as an intercalibration study). In order to assess the specific absorption coefficient of photosynthetically active pigments (aps) from the pigment-specific absorption coefficient for phytoplankton (aph*), we made a multiple regression analysis of measured phytoplankton absorption spectra onto publishedin vivo spectra of pure pigments. This made it possible to calculate the concentrations of photoprotective carotenoids (tPPC) when HPLC measurements were not available and thus to subtract their contribution to absorption from the total phytoplanktonic absorption coefficient (aph). Methodological uncertainties in both coefficients used for calculating absorption coefficients and in pigment measurements are discussed. Pigments and absorption measurements made during the cruise enabled us to describe two typical trophic regimes in the equatorial Pacific ocean: oligotrophic waters of the ”warm pool“ west of 170°W and high-nutrient, low-chlorophyll waters (HNLC) of the upwelling east of 170°W. The vertical decreasing gradient of aph* from the surface to the deep chlorophyll maximum (DCM) was due to a high tPPC/tChla ratio at the surface and was higher in the oligotrophic (0.14-0.065 m2 mg (tChla)−1 biomass dominated byProchlorococcus, rich in zeaxanthin) than in the mesotrophic area (0.07-0.06 m2 mg (tChl a)-' biomass dominated by picoeucaryotes). Below the DCM,aph* reached a similar minimum value in both oligotrophic and mesotrophic areas.a*ps varied less than a*ph from the surface layer to the DCM in both oligotrophic and mesotrophic areas. The difference in a*ph and a*ps from west to east of the transect could be interpreted as a shift in the phytoplankton composition, with a dominance of procaryotes in the west and a dominance of eucaryotes in the upwelling area. Higher aps in well-lit typical oligotrophic waters indicated that phytoplankton communities dominated byProclorococcus might be more efficient for capturing light usable for photosynthesis than those present in the HNLC situation.  相似文献   

17.
于2009年3月对鸭绿江河口进行了10个站的浮游植物生态调查,分析了该海域浮游植物的种类组成、优势种类、群落结构以及水平分布等特征参数.本次调查共鉴定浮游植物48种,其中硅藻种类最多,达41种,甲藻其次,为6种,金藻1种.浮游植物可划分为广温类群、暖水类群和暖温类群3个生态类群,以广温类群为主.浮游植物细胞数量平均4.67×108个/m3,细胞数量自河口向外海逐渐降低.其中,中肋骨条藻(Skeletonema costatum)占据绝对优势.浮游植物群落优势种单一且优势度较大,群落结构相对简单.相关性分析表明温度和盐度是浮游植物细胞数量的主要限制性因子.浮游植物数量受鸭绿江径流的影响较大.  相似文献   

18.
The species composition and biomass of phytoplankton, concentrations of chlorophyll a (Chl a) and nutrients, and accompanying hydrophysical conditions have been studied in the White Sea on July 6–11, 2009. The temperature of the surface water layer was lower than the multiyear average in July. Dinoflagellates dominated in the entire studied area; this was not the typical event for July. We suggest that domination of dinoflagellates was caused by low water temperature, when the nutrient regeneration rate was insufficient to support diatom growth. The abundance of microalgae and the structure of the phytoplankton community depended on the water structure. Variations in the phytoplankton community structure were caused not by substitution of specific species but rather by variability of the abundance of a single species, Heterocapsa triquetra. The highest phytoplankton biomass has been recorded in weakly stratified waters, where tidal mixing supplied the income of inorganic nutrients. The income of nutrients to the photic layer was limited in the stratified waters of Dvina Bay during the summer low-water period, so the phytoplankton abundance was low. We suggest that the lens of surface desalinated water presumably originated from the outlet of the Dvina River was registered in the central part of the White Sea.  相似文献   

19.
The East China Sea (ECS),one of the largest continental seas,has dynamic hydrology and complex optical characteristics that make ocean color remote-sensing retrieval difficult.The distributions and proportions of the light absorption coefficients of major ocean color components based on two large-scale investigations in the ECS are presented,showing these features in typical summer and winter seasons.The absorption coefficient a CDOM,a NAP and a phy of colored dissolved organic matter,non-algal particle,and pigment of phytoplankton show a decreasing trend from the coast to the outer shelf.According to the a CDOM distribution at 440 nm,the Changjiang River plume shows an abnormal southeastward transport.An extremely high a NAP value patch at 440 nm is present in the middle coast.The chlorophyll-a-specific phytoplankton pigment absorption (a phy) is much higher in winter than in summer,which may cause serious underestimated results when applying the averaged a phy into remote-sensing algorithms for chlorophyll concentration retrieval.The importance of phytoplankton size was evident in outer shelf waters.The absorption of a CDOM (440) is a dominant component accounting for over half of the total seawater absorption in summer.The a NAP (440) accounts for 64% of the absorption of the ECS coastal area in winter.  相似文献   

20.
The changes in the phytoplankton absorption properties during a diurnal cycle were investigated at one station located in the north-western area of the Alborán Sea. The experiment was performed in spring when the water column was strongly stratified. This hydrological situation permitted the establishment of a deep chlorophyll a (chl a) fluorescence maximum (DFM) which was located on average close to the lower limit of the mixed layer and the nutricline. The relative abundance of pico-phytoplankton (estimated as its contribution to the total chl a) was higher in the surface, however, micro-phytoplankton dominated the community at the DFM level. Chl a specific absorption coefficient (a*(λ)) also varied with optical depth, with a* (the spectrally average specific absorption coefficient) decreasing by 30% at the DFM depth with respect to the surface. A significant negative correlation between the contribution of the micro-phytoplankton to the total chl a and a* was obtained indicating that a* reduction was due to changes in the packaging effect. Below the euphotic layer, a* increased three-fold with respect to the DFM, which agrees with the expected accumulation of accessory pigments relative to chl a as an acclimation response to the low available irradiance. The most conspicuous change during the diurnal cycle was produced in the euphotic layer where the chl a concentration decreased significantly in the afternoon (from a mean concentration of 1.1 μg L−1 to 0.7 μg L−1) and increased at dusk when it averaged 1.4 μg L−1. In addition, a* and the blue-to-red absorption band ratio increased in the afternoon. These results suggest that a*(λ) diurnal variability was due to increase in photo-protective and accessory pigments relative to chl a. The variation ranges of a*(λ) at 675 and 440 nm (the absorption peaks in the red and blue spectral bands, respectively) in the euphotic layer were 0.01–0.04 and 0.02–0.10 m2 mg−1 chl a, respectively. Approximately 30% out of this variability can be attributed to the diurnal cycle. This factor should therefore be taken into account in refining primary production models based on phytoplankton light absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号