首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier–Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers (Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.  相似文献   

2.
A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.  相似文献   

3.
Wind-tunnel studies of dispersion processes of traffic exhaust in urban street canyons with tree planting were performed and tracer gas concentrations using electron capture detection (ECD) and flow fields using laser Doppler velocimetry (LDV) were measured. It was found that tree planting reduces the air exchange between street canyons and the ambience. In comparison to treeless street canyons, higher overall pollutant concentrations and lower flow velocities were measured. In particular, for perpendicular approaching wind, markedly higher concentrations at the leeward canyon wall and slightly lower concentrations at the windward canyon wall were observed. Furthermore, a new approach is suggested to model porous vegetative structures such as tree crowns for small-scale wind-tunnel applications. The approach is based on creating different model tree crown porosities by incorporating a certain amount of wadding material into a specified volume. A significant influence of the crown porosity on pollutant concentrations was found for high degrees of porosity, however, when it falls below a certain threshold, no further changes in pollutant concentrations were observed.  相似文献   

4.
城市湍流边界层内汽车尾气扩散规律数值模拟研究   总被引:2,自引:1,他引:1  
吕萍  袁九毅  张文煜 《高原气象》2005,24(2):167-172
以纳维斯托克斯方程组、大气平流扩散方程、湍流动能及湍流动能耗散率方程组为基础.采用伪不定常方法,建立了一个数值模式.利用该模式列城市湍流边界层内流场结构及汽车排放污染物扩散规律进行了研究。结果表明:街谷内会形成一个涡旋型流场.汽车排放污染物浓度在地面及建筑物背风面产生堆积,且其沿高度方向的梯度变化在背风面大.迎风而小。随着街谷两侧建筑物屋顶风速的增大,峡谷内形成的涡旋流场的强度增大,污染物扩散速率增大:当屋顶来流与街道之间的夹角逐渐增大时.涡旋中心位置由街道中心偏向于背风面及更高层且污染物扩散速度加快。  相似文献   

5.
Boundary-Layer Meteorology - Coherent flow structures and pollutant dispersion in a spanwise-long street canyon are investigated using a parallelized large-eddy-simulation model. Low- and...  相似文献   

6.
The questions on how vortices are constructed and on the relationship between the flow patterns and concentration distributions in real street canyons are the most pressing questions in pollution control studies. In this paper, the very large eddy simulation (VLES) and large eddy simulation (LES) are applied to calculate the flow and pollutant concentration fields in an urban street canyon and a cross-road respectively. It is found that the flow separations are not only related to the canyon aspect ratios, but also with the flow velocities and wall temperatures. And the turbulent dispersions are so strongly affected by the flow fields that the pollutant concentration distributions can be distinguished from the different aspect ratios, flow velocities and wall temperatures.  相似文献   

7.
Using a computational fluid dynamics(CFD)model,the effects of street-bottom and building-roof heating on flow in three-dimensional street canyons are investigated.The building and street-canyon aspect ratios are one.In the presence of street-bottom heating,as the street-bottom heating intensity increases,the mean kinetic energy increases in the spanwise street canyon formed by the upwind and downwind buildings but decreases in the lower region of the streamwise street canyon.The increase in momentum due to buoyancy force intensifies mechanically induced flow in the spanwise street canyon.The vorticity in the spanwise street canyon strengthens.The temperature increase is not large because relatively cold above-roof-level air comes into the spanwise street canyon.In the presence of both street-bottom and building-roof heating,the mean kinetic energy rather decreases in the spanwise street canyon.This is caused by the decrease in horizontal flow speed at the roof level,which results in the weakening of the mean flow circulation in the spanwise street canyon.It is found that the vorticity in the spanwise street canyon weakens.The temperature increase is relatively large compared with that in the street-bottom heating case,because relatively warm above-roof-level air comes into the spanwise street canyon.  相似文献   

8.
This study summarizes the effects of avenues of trees in urban street canyons on traffic pollutant dispersion. We describe various wind-tunnel experiments with different tree-avenue models in combination with variations in street-canyon aspect ratio W/H (with W the street-canyon width and H the building height) and approaching wind direction. Compared to tree-free street canyons, in general, higher pollutant concentrations are found. Avenues of trees do not suppress canyon vortices, although the air ventilation in canyons is hindered significantly. For a perpendicular wind direction, increases in wall-average and wall-maximum concentrations at the leeward canyon wall and decreases in wall-average concentrations at the windward wall are found. For oblique and perpendicular wind directions, increases at both canyon walls are obtained. The strongest effects of avenues of trees on traffic pollutant dispersion are observed for oblique wind directions for which also the largest concentrations at the canyon walls are found. Thus, the prevailing assumption that attributes the most harmful dispersion conditions to a perpendicular wind direction does not hold for street canyons with avenues of trees. Furthermore, following dimensional analysis, an estimate of the normalized wall-maximum traffic pollutant concentration in street canyons with avenues of trees is derived.  相似文献   

9.
In order to investigate the microclimatic conditions in a street canyon, a physical model was used to conduct the Joint ATREUS-PICADA Experiment (JAPEX) in situ experimental campaign. Four lines of buildings simulated by steel containers were installed to form three parallel street canyons at 1:5 scale, with width/height aspect ratio approximately 0.40. The reference wind and atmospheric conditions were measured, as well as the flow velocity and direction in the street. Preliminary results concern street canyon ventilation and thermal effects on in-canyon airflow, and show that vortical motions appear for reference wind directions perpendicular to the street axis. The presence of adjacent rows of buildings did not appear to significantly influence the flow character within the canyon for the case of a low aspect ratio corresponding to a skimming flow regime. The flow structure was not significantly affected by the thermal effects although some slight interference occurred in the lower part of the canyon. An analysis of horizontal temperature gradients indicated that a thin boundary layer develops near the heated facade. These facts imply that the thermal effects are considerable only very close to the wall.  相似文献   

10.
Large-eddy simulations are conducted to investigate the effects of the incoming turbulent structure of the flow on pollutant removal from an ideal canyon. The target canyon is a two-dimensional street canyon with an aspect ratio of 1.0 (building height to street width). Three turbulent flows upwind of the street canyon are generated by using different block configurations, and a tracer gas is released as a ground-level line source at the centre of the canyon floor. Mean velocity profiles for the three flows are similar, except near the roof. However, the root-mean-square values of the velocity fluctuations and the Reynolds shear stress increase with the friction velocity of the incoming turbulent flow. The spatially-averaged concentration within the canyon decreases with increasing friction velocity. Coherent structures of low-momentum fluid, generated above the upwind block configurations, contribute to pollutant removal, and the amount of pollutant removal is directly related to the size of the coherent structure.  相似文献   

11.
街谷环流和热力结构的数值模拟   总被引:11,自引:1,他引:11  
文章介绍一种用于模拟街谷流场和温度场的动力学模式和热力学模式.应用动力模式模拟了方柱体塔楼和圆柱体塔楼形成的流场,应用动力和热力模式模拟了街谷中流场和温度场的日变化过程.计算实例表明,上述模式可用于城市街谷和建筑群风环境和热力环境研究以及街谷中空气污染物传输和扩散的计算.  相似文献   

12.
The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods.A series of numerical tests were performed,and three factors including height-to-width(H/W) ratio,ambient wind speed and ground heating intensity were taken into account.Three types of street canyon with H/W ratios of 0.5,1.0 and 2.0,respectively,were used in the simulation and seven speed values ranging from 0.0 to 3.0 m s 1 were set for the ambient wind speed.The ground heating intensity,which was defined as the difference between the ground temperature and air temperature,ranged from 10 to 40 K with an increase of 10 K in the tests.The results showed that under calm conditions,ground heating could induce circulation with a wind speed of around 1.0 m s 1,which is enough to disperse pollutants in a street canyon.It was also found that an ambient wind speed threshold may exist for street canyons with a fixed H/W ratio.When ambient wind speed was lower than the threshold identified in this study,the impact of the thermal effect on the flow field was obvious,and there existed a multi-vortex flow pattern in the street canyon.When the ambient wind speed was higher than the threshold,the circulation pattern was basically determined by dynamic effects.The tests on the impact of heating intensity showed that a higher ground heating intensity could strengthen the vortical flow within the street canyon,which would help improve pollutant diffusion capability in street canyons.  相似文献   

13.
The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.  相似文献   

14.
Despite their importance for pollutant dispersion in urban areas, the special features of dispersion at street intersections are rarely taken into account by operational air quality models. Several previous studies have demonstrated the complex flow patterns that occur at street intersections, even with simple geometry. This study presents results from wind-tunnel experiments on a reduced scale model of a complex but realistic urban intersection, located in central London. Tracer concentration measurements were used to derive three-dimensional maps of the concentration field within the intersection. In combination with a previous study (Carpentieri et al., Boundary-Layer Meteorol 133:277–296, 2009) where the velocity field was measured in the same model, a methodology for the calculation of the mean tracer flux balance at the intersection was developed and applied. The calculation highlighted several limitations of current state-of-the-art canyon dispersion models, arising mainly from the complex geometry of the intersection. Despite its limitations, the proposed methodology could be further developed in order to derive, assess and implement street intersection dispersion models for complex urban areas.  相似文献   

15.
吕萍  袁九毅  张文煜 《高原气象》2004,23(4):534-539
利用数值模拟方法研究了微尺度街道峡谷范围内街谷几何结构及街道两侧建筑物高度对称性对街谷内流场及机动车排放污染物扩散规律的影响。结果表明:当街道峡谷高宽比>2.1时,街谷内的流场结构由一个完整的垂直涡旋变为上下两个反向运动的强弱不同的垂直涡旋。各类型街谷内污染物扩散水平从强到弱依次为迎风面建筑物高度大于背风面建筑物高度的街道峡谷,迎风面建筑物高度小于背风面建筑物高度的街道峡谷;平行型街道峡谷。  相似文献   

16.
Air flow inside an array of cubes is simulated. Cubes (edge length 0.15 m) are arranged in a regular array, separated by 0.15 m in the streamwise and spanwise directions. Numerical simulations are performed based on Reynolds-averaged Navier–Stokes equations (RANS), solved in a computational fluid dynamics model (CFD), with standard k–ε turbulent closure (two prognostic equations are solved for the turbulent kinetic energy k and its dissipation ε, respectively). Simulations are validated against wind-tunnel data using a technique based on hit-rate calculations, and calculated statistical parameters. The results show that the horizontal velocity is very well modelled, and despite some discrepancies, the model that fulfils the hit-rate test criteria gives useful results that are used to investigate three-dimensional (3-D) flow structures. The 3-D analysis of the flow shows interesting patterns: the centre of the canyon vortex is at 3/4 of the canyon height, and stronger downward than upward motions are present within the canyon. Such behaviour is explained by the presence of a compensation flow through the side of the canyon, which enters the canyon from the upper part and exits from the lower part. This complex 3-D structure affects the tracer dispersion, and is responsible for pollutant transport and diffusion.  相似文献   

17.
城市街道峡谷汽车尾气污染的数值模拟   总被引:7,自引:3,他引:4  
李磊  张镭  胡非 《高原气象》2004,23(1):97-102
建立了一个简单的三维街道峡谷空气污染模式,并用实测资料进行了验证。利用建立的模式设计了7种试验方案,对街道峡谷内的污染状况进行了模拟。以CO为模拟对象的数值试验结果表明,街道峡谷上空的风速风向条件是决定街道峡谷内的污染状况的重要因素。峡谷上空风向与街道轴线的夹角越大、风速越小,则街道地面CO浓度越高。以现有的兰州典型车流量和排放因子,兰州街道地面CO浓度容易超标;若不控制车流量,到2008年,即使兰州上路汽车排放达标,但街道地面CO浓度仍然容易超标。  相似文献   

18.
Large-eddy simulations were conducted to investigate the mechanism of pollutant removal from a three-dimensional street canyon. Five block configurations with aspect ratios (building height to length) of 1, 2, 4, 8 and $\infty $ were used to create an urban-like array. A pollutant was released from a ground-level line source at the centre of the target canyon floor. For smaller aspect ratios, the relative contribution of the turbulent mass flux to net mass flux at the roof level, which was spatially averaged along the roof-level ventilation area, was closer to unity, indicating that turbulent motions mainly affected pollutant removal from the top of the canyon. As aspect ratio increased, the relative contribution became smaller, owing to strong upwind motions. However, the relative contribution again reached near unity for the infinite aspect ratio (i.e. a two-dimensional street canyon) because of lowered lateral flow convergence. At least 75 % of total emissions from the three-dimensional street canyon were attributable to turbulent motions. Pollutant removal by turbulent motions was related to the coherent structures of low-momentum fluid above the canyons. Though the coherent structure size of the low-momentum fluid differed, the positions of low-momentum fluid largely corresponded to instantaneous high concentrations of pollutant above the target canyon, irrespective of canyon geometry.  相似文献   

19.
为研究机动车辆排出的污染物在大气中的扩散规律,在北京做了小风条件下的街谷示踪试验。当楼顶风速u接近或大于1米/秒时,街谷内可形成一稳定的原生涡;u<0.6米/秒时原生涡将消失。对于楼之间空间较小的街谷,背风面和迎风面的示踪剂浓度平均比值可达8。浓度值沿楼层高度无明显变化;由于快车路旁松墙的阻挡和抬升作用,可能造成沿高度方向楼层中段的浓度偏高。在街谷外,除下风方路面上有一按下风距离的负幂指数衰减的浓度分布外,上风方路面上也有一按较大负幂指数衰减的分布。根据上述试验,给出了用以预测街谷中机动车辆排出的惰性气体污染物的扩散模式;模式中,对原生涡和小尺度湍流,做了分别处理。  相似文献   

20.
Experimental Study of Pollutant Dispersion Within a Network of Streets   总被引:2,自引:2,他引:0  
We investigate the dispersion of a passive scalar within an idealised urban district made up of a building-like obstacle array. We focus on a street network in which the lateral dimension of the buildings exceeds the street width, a geometry representative of many European cities. To investigate the effect of different geometries and wind directions upon the pollutant dispersion process, we have performed a series of wind-tunnel experiments. Concentration measurements of a passive tracer have enabled us to infer the main features characterising its dispersion within the street network. We describe this by focusing on the roles of different transfer processes. These are the channelling of the tracer along the street axes, the mixing at street intersections, and the mass exchange between the streets and the overlying atmospheric flow. Our experiments provide evidence of the dependence of these processes on the geometrical properties of the array and the direction of the overlying atmospheric flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号