首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 530 毫秒
1.
Stress dependence of recrystallized-grain and subgrain size in olivine   总被引:1,自引:0,他引:1  
New experiments on Mt. Burnet dunite have been carried out to evaluate the effects of important physical parameters on recrystallized-grain size and subgrain size in olivine deforming under steady-state conditions. The experiments, done under both wet and dry conditions in a Griggs solid-pressure-medium apparatus, were conducted in constant strain rate, constant stress and stress relaxation modes at 10 kbar confining pressure, temperatures from 1000°C to 1300°C, strain rates from 10−4 to 10−8/sec and stress differences of from 0.5 to 10 kbar. For dunite deformed under wet conditions, recrystallized-grain size is slightly temperature-dependent but under dry conditions it is only stress-dependent with D = 137 σ−1.27 for D in μm and σ in kbar. Subgrain sizes also depend only on stress; for the dry experiments d = 28 σ−0.62 and for the wet ones d = 15 σ−0.69. Subgrain sizes decrease with increasing stress but do not increase with decreasing stress and hence record only maximum stress levels. Recrystallized-grain sizes adjust to both increasing and decreasing stress levels, at minimal strains and times, and thus record the stress history. Because of this and of the inherent stability of recrystallized grains, this technique is regarded as more reliable than the subgrain size and free dislocation density and curvature methods for estimating stress magnitudes in tectonites having deformed in the steadystate.  相似文献   

2.
The genesis of Lower Eocene calcite-cemented columns, “pisoid”-covered structures and horizontal interbeds, clustered in dispersed outcrops in the Pobiti Kamani area (Varna, Bulgaria) is related to fossil processes of hydrocarbon migration. Field observations, petrography and stable isotope geochemistry of the cemented structures and associated early-diagenetic veins, revealed that varying seepage rates of a single, warm hydrocarbon-bearing fluid, probably ascending along active faults, controlled the type of structure formed and its geochemical signature. Slow seepage allowed methane to oxidize within the sediment under ambient seafloor conditions (δ18O = − 1 ± 0.5‰ V-PDB), explaining columns' depleted δ13C ratios of − 43‰. Increasing seepage rates caused methane to emanate into the water column (δ13C = − 8‰) and raised precipitation temperatures (δ18O = − 8‰). Calcite-cemented conduits formed and upward migrating fluids also affected interbed cementation. Even higher-energy fluid flow and temperatures likely controlled the formation of “pisoids”, whereby sediment was whirled up and cemented.  相似文献   

3.
Petrological data provide evidence that framboidal pyrite, Fe-carbonates and kaolinite are the major diagenetic minerals developed during burial diagenesis in the Tertiary Niger Delta sandstones and associated mudrocks. The pyrite sulphur, carbonate carbon and oxygen and kaolinite oxygen and hydrogen isotope compositions have been determined. These data (pyrite, δ34S = −24.8 to 21.0‰; “siderite”, δ13C(PDB) = −14.7 to +5.0‰, δ18O(PDB) = −19.1 to −0.6‰; Fe-calcite, δ13C(PDB) = +17.5 to 17.9‰, δ18O(PDB) = −8.3 to −8.0‰; kaolinite, δ18O(SMOW) = +14.7 to 17.5‰, δD (SMOW) = −86 to −43‰) have been used to interpret the isotopic compositions of the precipitating pore fluids and/or the temperatures of mineral formation. The interpretation of these results indicate that in the deltaic depositional setting the syndepositional pore waters had a significant but variable marine influence that favoured the early formation of pyrite. Subsequently the subsurface influence of meteoric waters, showing varying degrees of modification involving organic and/or water-rock reactions, played an increasingly significant role in the development of later diagenetic cements in the sediments when abundant authigenic carbonates and kaolinites were formed.  相似文献   

4.
5.
In order to determine the effect of water on deformation in the brittle-ductile transition region of crustal rocks, experiments have been conducted on Westerly granite and a polycrystalline albite rock, comparing samples dried at 160°C for 12 h (‘dry’) and samples with about 0.2 wt% water added (‘wet’). The deformation mechanisms and style of deformation of the wet and dry samples, determined using optical and transmission electron microscopy, have been found to depend on temperature, pressure, strain rate, and strain. At 15 kb and 10−6, the added water reduces the temperature of the transition between microcracking and dislocation glide and climb by about 150–200°C for both quartz and feldspar. However, the penetration of ‘water’ into the grains is slow compared with the time of the experiments and many of the wet samples show evidence of initial microcracking and later dislocation creep. Wet samples deformed at 10 kb show less hydrolytic weakening than wet samples deformed at 15 kb. Because the deformation mechanism and strength of silicates depend so sensitively on trace amounts of water, and because the water content of experimental samples varies with temperature and pressure and thus with time, flow laws for any samples are only meaningful if the water content has been carefully controlled or characterized.  相似文献   

6.
Twiss (1976) has suggested that the “ductile faulting” events observed by Post (1973) during high temperature creep of dunite are due to a transition from creep by dislocation movement to a diffusion accommodated, grain-boundary sliding mechanism following a reduction in grain size by dynamic recrystallization. Similarly, Goetze (1978) has explained both ductile faulting and water weakening of dunite by transition to a “nonlinear Coble” creep mechanism. However, the fundamental assumption made by Twiss (1976) that the stress exponent, n, reduces to unity during ductile faulting events is questionable. If the stress exponent remains high, (n≥3), then a diffusion-accomodated grain-boundary sliding mechanism is excluded. “Nonlinear Coble” creep would remain a viable alternative; however, this model fails to adequately explain the water weakening phenomenon, and the available data do not constrain us to this model. Assuming that the water-weakening phenomenon can be explained by other models (e.g., Blacic, 1972), it will be shown (by analogy with the behavior of metals) that a third model, also consistent with the available data, also qualitatively explains the observations associated with ductile faulting without appeal to a transition in creep mechanisms. The model is similar to one for metals undergoing deformation by dislocation movement and recovery by dynamic recrystallization, which commonly exhibit behavior virtually identical to that observed in dunite during ductile faulting events without transition to grain-size-sensitive creep mechanisms.  相似文献   

7.
The island of Sark (Channel Islands, UK) exposes syntectonic plutons and country rock gneisses within a Precambrian (Cadomian) continental arc. This Sark arc complex records sequential pulses of magmatism over a period of 7 Ma (ca. 616–609 Ma). The earliest intrusion (ca. 616 Ma) was a composite sill that shows an ultramafic base overlain by a magma-mingled net vein complex subsequently deformed at near-solidus temperatures into the amphibolitic and tonalitic Tintageu banded gneisses. The deformation was synchronous with D2 deformation of the paragneissic envelope, with both intrusion and country rock showing flat, top-to-the-south LS fabrics. Later plutonism injected three homogeneous quartz diorite–granodiorite sheets: the Creux–Moulin pluton (150–250 m; ca. 614 Ma), the Little Sark pluton (>700 m; 611 Ma), and the Northern pluton (>500 m; 609 Ma). Similar but thinner sheets in the south (Derrible–Hogsback–Dixcart) and west (Port es Saies–Brecqhou) are interpreted as offshoots from the Creux–Moulin pluton and Little Sark pluton, respectively. All these plutons show the same LS fabric seen in the older gneisses, with rare magmatic fabrics and common solid state fabrics recording syntectonic crystallisation and cooling. The cooling rate increased rapidly with decreasing crystallisation age: >9 Ma for the oldest intrusion to cool to lower amphibolite conditions, 7–8 Ma for the Creux Moulin pluton, 5–6 Ma for the Little Sark pluton, and <3 Ma for the Northern pluton. This cooling pattern is interpreted as recording extensional exhumation during D2. The initiation of the D2 event is suggested to have been a response to the intrusion of the Tintageu magma which promoted a rapid increase in strain rate (>10−14 s−1) that focussed extensional deformation into the Sark area. The increased rates of extension allowed ingress of the subsequent quartz diorite–granodiorite sheets, although strain rate slowly declined as the whole complex cooled during exhumation. The regional architecture of syntectonic Cadomian arc complexes includes flat-lying “Sark-type” and steep “Guernsey-type” domains produced synchronously in shear zone networks induced by oblique subduction: a pattern seen in other continental arcs such as that running from Alaska to California.  相似文献   

8.
Room-temperature torsional-shear strengths of 1.27-cm-diameter × 0.25-cm-high disks of Nevada Test Site “Hardhat” granodiorite and a Mt. Burnette, Alaska, dunite were determined to about 90 kbar. Tests, for the most part, were run under linearly increasing pressure at constant rates of applied twist: about 3–30° at 5.73 · 10−4–10−2 degr./sec for granodiorite, and 18° at 5.73 · 10−3 and 10−2 degr./sec for dunite. Transitions are observed in the rate of shear-strength change for the granodiorite at about 15, 35 and 80 kbar. Minor and recoverable instabilities in strength occur over the pressure range 15–80 kbar. Beyond about 80 kbar, the shear strength increases sharply and is terminated with a strain-release of explosion-like violence. Strain rate showed some influence on strength and magnitude of energy-release at higher pressures. Residual microstructures showed that, below 15 kbar, intragranular extensional fracturing, intergranular sliding, and bulk consolidation mainly occur. Between 15 and 35 kbar, intragranular undulatory extinction, random and crystallographic ruptures, and initial intragranular slip are observed. The predominant mechanisms between 35 and 80 kbar are an increasing frequency of intragranular slip, and networks of short, irregular, intragranular ruptures. Bulk fracturing and faulting were not observed. Samples stressed to explosion-like failure showed extensive crystal fragmentation, and series of parallel bands. Alternate bands were birefringent and isotropic, respectively, and extended over a considerable part of the samples. Dunite showed a transition from diminishing to increasing shear strength at about 80 kbar, but no explosion-like release of strain energy to 95 kbar. Comparative data to 70 kbar also are given for a slightly serpentinized dunite, a granite, a gneiss, three extrusive porphyries, and a marble. X-ray diffraction powder patterns of all stressed samples revealed only a broadening of peaks and a reduction of intensities from higher levels of stress.  相似文献   

9.
Dunite, wehrlite and websterite are rare members of the mantle xenolith suite in the Kimberley kimberlites of the Kaapvaal Craton in southern Africa. All three types were originally residues of extensive melt extraction and experienced varying amounts and types of melt re-enrichment. The melt depletion event, dated by Re-Os isotope systematics at 2.9 Ga or older, is evidenced by the high Mg# (Mg/(Mg + Fe)) of silicate minerals (olivine (0.89-0.93); pyroxene (0.88-0.93); garnet (0.72-0.85)), high Cr# (Cr/(Cr + Al)) of spinel (0.53-0.84) and mostly low whole-rock SiO2, CaO and Al2O3 contents. Shortly after melt depletion, websterites were formed by reaction between depleted peridotites and silica-rich melt (>60 wt% SiO2) derived by partial melting of eclogite before or during cratonization. The melt-peridotite interaction converted olivine into orthopyroxene.All three xenolith types have secondary metasomatic clinopyroxene and garnet, which occur along olivine grain boundaries and have an amoeboid texture. As indicated by the preservation of oxygen isotope disequilibrium in the minerals and trace-element concentrations in clinopyroxene and garnet, this metasomatic event is probably of Mesozoic age and was caused by percolating alkaline basaltic melts. This melt metasomatism enriched the xenoliths in CaO, Al2O3, FeO and high-field-strength-elements, and might correspond to the Karoo magmatism at 200 Ma. The websterite xenoliths experienced both the orthoyproxene-enrichment and clinopyroxene-garnet metasomatic events, whereas dunite and wehrlite xenoliths only saw the later basaltic melt event, and may have been situated further away from the source of melt migration channels.  相似文献   

10.
A reversal of the conventional carbon isotope relationship, “terrestrial-lighter-than-marine” organic matter, has been documented for two Pennsylvanian (Desmoinesian) cyclothemic sequence cores from the Midcontinent craton of the central United States. “Deep” water organic-rich phosphatic black shales contain a significant proportion of algal-derived marine organic matter (as indicated by organic petrography, Rock-Eval hydrogen index and ratios) and display the lightest δ13C-values (max −27.80‰ for kerogen) while shallower water, more oxic facies (e.g. fossiliferous shales and limestones) contain dominantly terrestrial organic matter and have heavier δ13Ckerogen-values (to −22.87‰ for a stratigraphically adjacent coal). δ13C-values for extract fractions were relatively homogeneous for the organic-rich black shales with the lightest fraction (often the aromatics) being only 1‰, or less, more negative than the kerogen. Differences between extract fractions and kerogens were much greater for oxic facies and coals (e.g. saturates nearly 5‰ lighter than the kerogen).A proposed depositional model for the black shales calls upon a large influx of nutrients and humic detritus to the marine environment from the laterally adjacent, extremely widespread Pennsylvanian (peat) swamps which were rapidly submerged by transgression of the epicontinental seas. In this setting marine organisms drew upon a CO2-reservoir which was in a state of disequilibrium with the atmosphere, being affected by isotopically light “recycled-CO2” derived from the decomposition of peaty material in the water column and possibly from the anoxic diagenesis of organic matter in the sediments.  相似文献   

11.
The Pleistocene deposits at Zhoukoudian, often referred to as the “Peking Man” site, contain dental remains from a diverse group of herbivores, including Equus sanmeniensis, Cervus elaphus, Cervus nippon, Megaloceros pachyosteus, Sus lydekkeri, and Dicerorhinus choukoutienensis. The carbon and oxygen isotopic compositions of structural carbonate within the enamel of these teeth are used to reconstruct the paleodiet and paleoenvironment of the mammals. The δ13C values of enamel from Zhoukoudian range from −2.3‰ to −13.0‰, indicating that these mammals consumed between 25% and 100% C3 plants. The presence of significant amounts of C4 plants in the diets of some herbivore species indicates that at the onset of the Middle Pleistocene local habitats included mixed C3/C4 vegetation. By approximately 470,000 yr ago, C3 plants dominated the diets of herbivores studied, suggesting that the abundance of C4 flora had decreased in the area. For all deer analyzed in this study, the values of δ13C and δ18O decrease substantially from about 720,000 to 470,000 yr ago. This trend may be due to a strengthening of the winter monsoon during the Middle Pleistocene.  相似文献   

12.
This paper discusses the occurrence of 28,30-dinor-17α,18α,21β-hopane (bisnorhopane) in stratigraphically, fairly well preserved Viking Group sections from wells in local depressions in the North Viking Graben Area. The results show the presence of high relative amounts of bisnorhopane in the “Syn-rift sections”, whilst the “Post-rift sections” contain little or no bisnorhopane. Since most exploration wells are drilled on structural highs, primarily penetrating the “Post-rift Draupne”, this may explain why many analyzed source rock sections in this area contain little bisnorhopane.As a correlation of Draupne sections using the vertical, relative bisnorhopane distributions, it is suggested to be a potential stratigraphic marker for the area, indicating the presence of “Syn-rift Draupne” sediments.The relative bisnorhopane amounts follow a logarithmic reduction with depth and thermal maturity. The bisnorhopane signal is nearly extinguished at 3700 m depth at a maturity of Ro = 0.9–1.0%.  相似文献   

13.
The Pleistocene outburst floods from glacial Lake Missoula, known as the “Spokane Floods”, released as much as 2184 km3 of water and produced the greatest known floods of the geologic past. A computer simulation model for these floods that is based on physical equations governing the enlargement by water flow of the tunnel penetrating the ice dam is described. The predicted maximum flood discharge lies in the range 2.74 × 106−13.7 × 106 m3 sec−1, lending independent glaciological support to paleohydrologic estimates of maximum discharge.  相似文献   

14.
The chromites from the alpine type ultramafic intrusive of Sukinda, India, display a typical partly inverse spinel form and occur in two distinct zones: Brown Ore Zone (BOZ) and Grey Ore Zone (GOZ). The host ultramafites are mostly altered and are represented by the serpentinite, tremolite-talc(chlorite) schist, talc-serpentine schist and chlorite rock. The less altered variants are dunite, harzburgite and websterite. A dyke of orthopyroxenite runs through the main ultramafic body.The composition of olivine (Fo92), orthopyroxene (En92–89) and Al2O3 contents of the parental liquid (10.40–11.45%) determined from chromites, suggest that the parent melt is of boninitic affinity. The chemical plot of TiO2 content against cr# of chromites corroborates a boninitic parental melt. The Fe–Mg partitioning in olivine and chromite depicts the temperature for chromitites as 1200 °C. A compositional plot of mg# and cr# suggests crystallization at high pressure conditions, corresponding to the kimberlite xenolith field. From the PT diagram of pyrolite melting and mineral assemblage, the pressure of crystallization is stipulated to be ≥1.2 GPa. The fO2 values estimated from Fe3+/Cr+Al+Fe3+ ratios range from 10−8.3 to 10−9.3 for the GOZ and 10−7.1 to 10−7.3 for the BOZ. The fO2 values together with the pressure range suggest crystallization at upper mantle conditions. The heterogeneity in chemical composition and fO2 conditions for the GOZ and BOZ could be linked to heterogeneity in the upper mantle.  相似文献   

15.
Exposure of the ca. 6 Ma Taitao ophiolite, Chile, located 50 km south of the Chile Triple Junction, allows detailed chemical and isotopic study of rocks that were recently extracted from the depleted mantle source of mid-ocean ridge basalts (DMM). Ultramafic and mafic rocks are examined for isotopic (Os, Sr, Nd, and O), and major and trace element compositions, including the highly siderophile elements (HSE). Taitao peridotites have compositions indicative of variable extents of partial melting and melt extraction. Low δ18O values for most whole rock samples suggest some open-system, high-temperature water–rock interaction, most likely during serpentinization, but relict olivine grains have δ18O values consistent with primary mantle values. Most of the peridotites analyzed for Nd–Sr isotopes have compositions consistent with estimates for the modern DMM, although several samples are characterized by 87Sr/86Sr and 143Nd/144Nd indicative of crustal contamination, most likely via interactions with seawater. The peridotites have initial 187Os/188Os ratios that range widely from 0.1168 to 0.1288 (γOs = −8.0 to +1.1), averaging 0.1239 (γOs = −2.4), which is comparable to the average for modern abyssal peridotites. A negative correlation between the Mg# of relict olivine grains and Os isotopic compositions of whole rock peridotites suggests that the Os isotopic compositions reflect primary mantle Re/Os fractionation produced by variable extents of partial melting at approximately 1.6 Ga. Recent re-melting at or near the spatially associated Chile Ridge further modified these rocks, and Re, and minor Pt and Pd were subsequently added back into some rocks by late-stage melt–rock or fluid–rock interactions.In contrast to the peridotites, approximately half of the mafic rocks examined have whole rock δ18O values within the range of mantle compositions, and their Nd and Sr isotopic compositions are all generally within the range of modern DMM. These rocks have initial 187Os/188Os ratios, calculated for 6 Ma, that range from 0.126 (γOs = −1) to as high as 0.561 (γOs = +342). The Os isotopic systematics of each of these rocks may reflect derivation from mixed lithologies that include the peridotites, but may also include pyroxenites with considerably more radiogenic Os than the peridotites. This observation supports the view that suprachondritic Os present in MORB derives from mixed mantle source lithologies, accounting for some of the worldwide dichotomy in 187Os/188Os between MORB and abyssal peridotites.The collective results of this study suggest that this >500 km3 block of the mantle underwent at least two stages of melting. The first stage occurred at 1.6 Ga, after which the block remained isolated and unmixed within the DMM. A final stage of melting recently occurred at or near the Chile Ridge, resulting in the production of at least some of the mafic rocks. Convective stirring of this mantle domain during a >1 Ga period was remarkably inefficient, at least with regard to Os isotopes.  相似文献   

16.
Measurements of compressional wave velocity Vp were made in a gas apparatus to 500°C at 10 kbar in three cores of an anisotropic dunite specimen from Twin Sisters Mountain. The axial directions of the three chosen cores coincide with the preferred directions and concentration of olivine crystallographic axes (a [100], b [010], andc [001]).Measured (δVp/δT)p values at 10 kbar in the three cores (−6.7, −5.4 and −6.2 · 10−4 km/sec · deg, respectively), and the mean value for the dunite (−6.1 · 10−4 km/sec · deg) are larger than the Voigt-Reuss-Hill values calculated from single-crystal data. This discrepancy is explained by the presence of internal thermal stresses, due to anisotropic expansion of olivine grains, causing grain boundary cracks to widen.It is concluded that high negative values of (δVp/δT)p for rocks reported in the literature should be carefully evaluated in terms of the formation of new cracks or widening of cracks already present under high pressure-temperature environments.  相似文献   

17.
In the Mt. Franks area of the Willyama Complex, microfabric evidence suggests that the alteration of andalusite to sillimanite has taken place by a process similar to that suggested by Carmichael (1969). Andalusite is pre- to syn-S2 in age. Alteration to “sericite” has resulted in the formation of “sericite” laths, some of which are crenulated about S2, and some which are syn- and post-S2. “Fibrolite” occurs in these andalusite—“sericite” aggregates within the sillimanite zone and is wholly embedded in “sericite”. “Fibrolite” is pre- to syn-S2 in age. This evidence is interpreted as suggesting that the formation of sillimanite from andalusite took place via a “sericite” phase.Further microfabric observations are interpreted to imply constant volume for the reaction aluminosilicate → “sericite”. This suggests a situation in which Al3+ is relatively mobile but Al4+ is relatively immobile. This suggestion differs from Carmichael's (1969) idea of Al3+ immobility.  相似文献   

18.
Marine, organic-rich rock units commonly contain little for vitrinite reflectance (VR0) measurement, the most commoly used method of assessing thermal maturity. This is true of the Lower Jurassic “Nordegg Member”, a type I/II, sulphur-rich source rock from the Western Canada Sedimentary Basin. This study examines the advantages and pitfalls associated with the use of Rock-Eval Tmax and solid bitumen reflectance (BR0) to determined maturity in the “Nordegg”. Vitrinite reflectance data from Cretaceous coals and known coalification gradients in the study area are used to extrapolate VR0 values for the “Nordegg”.Tmax increases non-linearly with respect to both BR0 and extrapolated VR0 values. A sharp increase in the reflectaance of both solid bitumen and vitrinite occurs between Tmax 440–450°C, and is coincident with a pronounced decrease in Hydrogen Index values and the loss of solid bitumen and telalginite fluorescence over the same narrow Tmax interval. This Tmax range is interpreted as the main zone of hydrocarbon generation in the “Nordegg”, and corresponds to extrapolated VR0 values of 0.55–0.85%. The moderate to high sulphur contents in the kerogen played a significant role in determining the boundaries of the “Nordegg” oil window.A linear relationship between BR0 and extrapolated VR0, as proposed elsewhere, is not true for the “Nordegg”. BR0 increases with respect to extrapolated VR0 according to Jacob's (1985) formula (VR0=0.618×(BR0)+0.40) up to VR0≈0.72% (BR0≈0.52%). Beyond this point, BR0 increases sharply relative to extrapolated VR0, according to the relatioship VR0 = 0.277 × (BR0) + 0.57 (R2 = 0.91). The break in the BR0−VR0 curve at 0.72%VR0 is thought to signifiy the peak of hydrocarbon generation and represents a previously unrecognized coalification jump in the solid bitumen analogous to the first coalification jump of liptinites.  相似文献   

19.
The initiation of analogue studies of rock flow is stimulated by improving our knowledge of suitable model materials. Bouncing Putties and “Plasticines” are the most frequently used model materials in analogue studies of flow instabilities in deforming rocks. Polydimethyl-siloxane (PDMS) and polyborondimethylsiloxane (PBDMS), both substrates of Bouncing Putty, are introduced as convenient geological model materials. The chemistry of PDMS, PBDMS, Bouncing Putties and “Plasticines” is reviewed. A comprehensive set of instructions and graphs is provided for the manipulation of these model materials.In particular, a high viscosity PDMS produced as an intermediate compound under the code name SGM36 by Dow Corning (Great Britain) opens exciting possibilities for analogue studies of rock flow, because it is perfectly transparent. This allows continuous observation of three-dimensional strain markers during an experiment.The polymeric flow mechanisms are compared with the flow behaviour and crystal plasticity theory of rocks. The flow of natural rocks is taken to be of Reiner-Rivlin type with powers n varying between 1 and 10.Flow curves have been constructed for Bouncing Putties, Plastilinas (cf. Plasticines) and SGM36 (cf. PDMS). These original curves are supplemented with extensive data on similar materials compiled from the literature. The combined data reveal a consistent flow curve pattern for each group of model materials considered.Strain-rate softening of commercially available Bouncing Putties and “Plasticines” at low strain rates can be attributed to the solid filler concentration. The power n, which describes the departure from Newtonian flow, appears to be dependent on the angular filler volume concentration c and is governed by the preliminary equation n = 1−11c + 48c2. This finding provides a technique for manipulating liquid polymers to simulate natural rock flow with various powers of n.The (T, P) dependence of the viscosity and thermal properties of PDMS are outlined to stimulate modelling which includes natural (T, P) gradients.  相似文献   

20.
Three major types of xenoliths, namely, dunite, spinel lherzolite, and pyroxenite suites, occur. The spinel lherzolite suite [ol: Fo86–92] is more refractory than the pyroxenite suite [Fo71–85], and is composed of olivine, orthopyroxene, Cr-diopside, and spinel. Spinel lherzolites represent metasomatically modified mantle residues that constitute the lithosphere underneath Oahu. Metasomatism has induced significant heterogeneity in terms of [Na]cpx in the spinel lherzolitic lithosphere: compared to other vents, Salt Lake xenoliths are anomalously high in [Na]cpx. The fluids responsible for such a process may have been released after crystallization of the hydrous phases in pyroxenite suite veins intrusive into the spinel lherzolites.The pyroxenite suite rocks range from clinopyroxenites, wehrlites, websterites, to lherzolites and a rare dunite. Garnet generally occurs as a secondary phase forming reaction rims around spinel or exsolved blebs in clinopyroxene. Phlogopite and amphibole are common. The garnet-bearing pyroxenite suite rocks last equilibrated in the mantle at 1000°–1150° C and 16–25 kb (50–75 kms depth). Similar temperature range is recorded by the spinel lherzolite suite and rare plagioclase lherzolites. This P-T path is significantly hotter than a calculated conductive geotherm indicating that the lithosphere was substantially warmed up by passing Hawaiian magmas.Contribution No. 585, Geosciences Program, University of Texas at Dallas  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号