首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Diatom and pigment data are presented from a 6.39 m core from Little Lake, New Brunswick. From its inception to ca. 11.5k y.B.P., the lake was dominated by benthic alkaliphilic diatoms, predominantly Fragilaria spp, which are believed to have grown in the moat of a lake with extended periods of ice cover. Ice free summers apparently prevailed for up to 500 years (ca. 11.5–11k y.B.P.), during which time planktonic species — Cyclotella bodanica Eulenst. and C. stelligera Cl. & Grun. appeared for the first time. From ca. 11.–10k y.B.P. the lake was dominated by Fragilaria pinnata Ehr.v. pinnata, F. construens v. venter (Ehr.) Grun. and F. construens (Ehr.) Grun. The reappearance of these species, coincident with distinct changes in sediments, organic matter, pollen types and influx rates, is believed to represent the influence of the younger Dryas climatic cooling. Little Lake appears to have reverted to a period of only partial summer melting. The ca. 10k y.B.P. warming is marked by a Navicula/Cymbella/Cyclotella community, representing growth of both littoral and planktonic communities. Navicula was subsequently replaced by Eunotia and Tabellaria, and finally by a Pinnularia/Stauroneis/Eunotia community, in which Fragilaria pinnata v. pinnata and F. construens v. venter increase again. These two recent phases represent increasing growth of a littoral community, and some increase in littoral alkaliphilous elements. Trends in organic matter and pigment values are consistent with a gradual increase in biomass, particularly from ca. 10k y.B.P. Diatom growth is indicative of increasing littoral and benthic growth with time, but there is no indication that Little Lake was ever eutrophic.  相似文献   

2.
This paper presents the first paleolimnological study of the postglacial development of a marl and peat complex on the Canadian Precambrian Shield. Ring Lake (48° 46 N, 85° 51 W), situated within the carbonate glacial drift area of northwestern Ontario, originated about 9000 BP in a basin exposed by the retreating waters of proglacial Lake Superior. The development of Ring Lake was interpreted from pollen and diatom analysis of one sediment core from the littoral zone and another core from near the lake centre.The sequence of postglacial vegetation development parallels published accounts of forest history in northern Ontario. The predominant diatom throughout the littoral core was the alkaliphilous Cymbella diluviana. The central core was dominated by circumneutral and alkaliphilous species of Achnanthes Navicula, Fragilaria, and Cymbella, except in recent samples where acidophilous species of Anomoeoneis were common.Diatom-inferred (DI) pH shows that the early lake was alkaline because of drainage from base-rich tills. The presence of marl in the littoral core indicates deposition of calcareous materials until the site dried out during the Hypsithermal period. There is evidence that beaver activity around 5000 BP caused a temporary change in lake hydrology. A decline in DI pH over much of the postglacial reflects gradual exhaustion of carbonates in the drainage area. An increase in acidophilous diatoms in samples representing the past 3500 y is consistent with gradual acidification of the system and development of a littoral peatland in a cooler neoglacial climate.  相似文献   

3.
Palaeolimnological and palynological records from climatically variable central Alberta, Canada, document periods of hypersaline lake conditions indicative of late glacial and early Holocene drought. The sensitivity of palaeolimnological indicators for inferring palaeoclimates is examined by comparing records from two sites at opposite ends of the regional precipitation gradient. Palaeosalinity is identified by the presence of Ruppia pollen, a hypersaline aquatic plant not presently growing in either lake, and diatom assemblages comprising both saline epipelic and planktonic species. Goldeye Lake (52° 27 N; 116° 12 W), in the relatively moist Rocky Mountain Foothills remained saline from its inception before ca 14500 years BP until ca 10400 years BP by which time pioneering forests had replaced tundra vegetation; however, freshwater planktonic diatoms dominated ca 12500 to 11500 years BP. However, dating problems endemic to the Foothills region make this chronology only tentative. Moore Lake (54° 30 N; 110° 30 N), in dry, east-central Alberta contained Ruppia only between ca 9000 and 6000 years BP. Freshwater diatoms dominated until ca 10000 years BP when they were succeeded by taxa characteristic of saline water. The lake remained saline until ca 6000 years BP. The late glacial period of palaeosalinity at Goldeye Lake occurred because the lake was surrounded by Cordilleran and Laurentide glacial ice, and therefore, cut off from moisture sources until the early Holocene by which time significant ice recession had occurred. Factors causing the second period of salinity remain unknown at this time. In contrast, by the early Holocene, Moore Lake was influenced by drought caused by high summer insolation induced by orbital fluctuations. Freshwater conditions were maintained through the Holocene in the Foothills region of west-central Alberta, but occurred consistently only over the last 4000 years in central and east-central Alberta. The warmer, drier climate during the early Holocene did affect lake levels in at least one headwater Foothills lake (Fairfax Lake — 52° 58 N; 116° 34 W). The severity of the drought increased in an easterly direction across the province.This publication is the fourth of a series of papers presented at the Conference on Sedimentary and Palaeolimnological Records of Saline Lakes. This Conference was held August 13–16, 1991 at the University of Saskatchewan, Saskatoon, Canada. Dr. Evans is serving as Guest Editor.  相似文献   

4.
The late Quaternary diatom records from alpine Opabin Lake (altitude 2285 m a.s.l.) and sub-alpine Mary Lake (altitude 2054 m a.s.l.), located in Yoho National Park, British Columbia (lat. 51 ° 21N; long. 116 ° 20), have been analyzed, and changes in these records have been used to reconstruct lake histories. The results have also been related to independently inferred vegetation and climate changes. Following deglaciation, when both lakes were receiving high inputs of clastic materials, benthic diatom taxa dominate the records of these two shallow lakes with small species ofFragilaria being particularly prominent. During the early to mid-Holocene period, when treeline was at a higher elevation than today, the diatom flora of both lakes became more diverse with previously minor species becoming more prominent.Cyclotella radiosa occurs in cores from both Mary Lake, and much deeper, neighbouring Lake O'Hara during the warm early Holocene, and may reflect this warmer climate, a longer ice-free season than presently, and perhaps less turbid water, or its presence may reflect a subtly higher nutrient status of the lake water during this period. The Neoglacial is marked by increased amounts of sediments originating from glacial sources in Opabin Lake, which undoubtedly led to very turbid water, and by the presence ofEllerbeckia arenaria f.teres andCampylodiscus noricus v.hibernica in Opabin Lake; however, these species are absent from Mary Lake which has not been influenced by either glacial activity since the recession of the glaciers prior toc. 10 000 years BP or water originating from Opabin Lake. The impact of the two tephras during the Holocene was dramatic in terms of increased diatom production, as exemplified by the increases in diatom numbers, but there was little effect upon species composition. The diatom records and changes in the diatom:cyst ratio suggest that the chemical status of these two small, shallow lakes has changed little during the Holocene, other than after deposition of the two tephras. These results provide evidence that shallow alpine and high sub-alpine lakes are sensitive recorders of past environmental changes.  相似文献   

5.
Diatom analyses from a 40 cm sediment core from Water Supply Lake, northeastern Baffin Island, reveal 67 taxa of primarily benthic forms, strongly dominated by small Fragilaria spp. No major stratigraphic changes are noted in the diatom floral record, which encompasses the last 7000 years. In the uppermost 2 cm, there are increases in: a) F. virescens var. subsalina, b) the ratio of symmetric: asymmetric valves of F. construens, and c) species richness. These are interpreted as reflecting anthropogenic modifications of the lake (chlorination and deepening) associated with its use as a source of water for the community of Pond Inlet since 1979.  相似文献   

6.
Mono Lake is a hypersaline alkaline lake in the high altitude Great Basin desert of eastern California. Algal productivity of the lake is nitrogen-limited, and a contributing source is derived from benthic nitrogen fixation. Lake level and salinity have fluctuated with natural climatic variations but have also been affected by the diversion of tributary streams. This research examines the influence of varied salinity and lake level on the potential for benthic nitrogen fixation in Mono Lake. A sediment-surface microbial mat community was exposed directly, and in acclimated cultures, to a range of Mono Lake salinities under anaerobic incubations and the activity of nitrogenase assayed by acetylene reduction. Activity was stimulated in light, but also occurred in darkness. Over an experimental salinity range from 50 to 150 g L−1 TDS, nitrogenase activity was reduced by 90 per cent, with the activity persisting at the highest salinity being attributable to dark fixation alone. Between a salinity of 50 g L−1, occurring in Mono Lake over 50 years ago, and 100 g L−1, nitrogenase activity was reduced by nearly half. Changes in the area of the littoral zone at varied lake levels also affect the total amount of potential benthic nitrogen fixation in the lake. An accounting of yearly inputs of nitrogen to Mono Lake suggests N2-fixation could contribute as much as 76–81 percent of the total. Inhibition of nitrogen fixation rates by increased salinity could limit the long-term nutrient supply and benthic primary productivity of this ecosystem.  相似文献   

7.
Using an expanded surface sample data set, representing lakes distributed across a transect from southernmost Canada to the Canadian High Arctic, a revised midge-palaeotemperature inference model was developed for eastern Canada. Modelling trials with weighted averaging (with classical and inverse deshrinking; with and without tolerance downweighting) and weighted averaging partial least squares (WA-PLS) regression, with and without square-root transformation of the species data, were used to identify the best model. Comparison of measured and predicted temperatures revealed that a 2 component WA-PLS model for square-root transformed percentage species data provided the model with the highest explained variance (r =0.88) and the lowest error estimate (RMSEP jack =2.26 °C). Comparison of temperature inferences based on the new and old models indicates that the original model may have seriously under-estimated the magnitude of late-glacial temperature oscillations in Atlantic Canada. The new inferences suggest that summer surface water temperatures in Splan Pond, New Brunswick were approximately 10 to 12 °C immediately following deglaciation and during the Younger Dryas. During the Allerod and early Holocene, surface water temperatures of 20 to 24 °C were attained. The new model thus provides the basis for more accurate palaeotemperature reconstructions throughout easternmost Canada.  相似文献   

8.
Remains of chironomids and cladocerans were studied in a profundal sediment core, which covered a time period since the Oldest Dryas. The aim was to observe long-term variability in the structure of the aquatic fauna. The most dramatic change in the chironomid fauna occurred at the end of the Younger Dryas when the predominating cold-stenothermal Sergentia coracina disappeared due to both climatic amelioration and eutrophic conditions. The chydorids showed a distinct response to the changing temperature at the end of the Oldest Dryas as evidenced by an increase in species diversity, whereas no effect was discernible in the Younger Dryas. A decrease in the proportion of clear water species occurred in the Boreal. In the planktonic Cladocera,Bosmina longispina became extinct in the Atlantic and two Eubosmina morphs of uncertain taxonomic state very recently invaded the lake.  相似文献   

9.
A paleolimnological study of eutrophied Lake Arendsee (Germany)   总被引:1,自引:0,他引:1  
To study the algal microfossil assemblages of eutrophic Lake Arendsee (Germany) prior to the beginning of a restoration project, a 47-cm long freeze core, dating back to ca 1800, was taken from the deepest area of the lake. Based on the CRS modeled 210Pb and 137Cs profiles from the core, 1948 is around 15 cm and the sedimentation rate has increased from 21.2 mg cm-2 yr-1 in 1900 to 56.6 mg cm-2 yr-1 in 1986. The sediments were dominated by three centric diatoms. Stephanodiscus binatus, a species associated with eutrophic environments, dominated the upper 19 cm of the core. Cyclotella rossii, a species commonly found in less productive freshwater systems, was found to dominate the lower portion of the core and was absent above 16 cm. S. agassizensis was found throughout the core. In addition to the centric diatoms, three penate diatoms were found to be abundant. Fragilaria crotonensis was found throughout the core, but was most abundant from 19 cm to 16 cm. Asterionella formosa was prevalent below 15 cm, while Diatoma elongatum was found to be common from 17 cm to the surface. The abundances of algal remains of cyanobacteria, chlorophytes, cryptophytes and dinoflagellates decrease dramatically below 25 cm. Zooplankton remains were most abundant around 20 cm, with copepod spermatophores, fecal pellets and protozoa remains most common in the lower portion of the core. The major species shifts observed in the core from Lake Arendsee occur in a transition zone between 20 cm and 15 cm (1920–1940), a time when agricultural production was being increase with the use of inorganic fertilizer.  相似文献   

10.
The study was undertaken as part of a wider palaeoecological investigation of Late glacial and Holocene lake sediments from a site on the exposed Atlantic coast of the Shetland Islands. The diatom data presented here define a sequence of assemblages, commencing at c. 15.8 cal ka BP, which reflects lithological variation in the section, in particular the Late glacial alternation of minerogenic and more organic horizons. Cliff retreat caused drainage of the lake sometime after c. 4.0 cal ka BP. Almost all taxa recorded are small benthic and tychoplanktonic diatoms: Fragilaria (sensu lato), Achnanthes (s.l.) and some Navicula spp. predominate in the Late glacial. Different benthos become dominant in the Holocene, but no plankton developed. Stauroforma was the commonest genus present, and results indicate a relationship between the occurrence of two types, Stauroforma A and Stauroforma B, and the severity of prevailing environmental conditions. The lithology and associated assemblages suggest a sequence including the classic north European Bølling and Allerød' warmer periods, followed by the Loch Lomond Stadial. Subsequently, the temporal diatom succession resembles the pattern described in modern linear transects across the circumpolar treeline in north America and Asia, both in type of assemblage and some dominant species.  相似文献   

11.
Fossil diatoms were analysed from a 10.3 m core from Harris Lake, Cypress Hills, Saskatchewan, and a diatom-salinity transfer function was used to construct a history of Holocene salinity changes for the lake. The diatom paleosalinity record indicates that Harris Lake remained fresh <0.5 g l-1 throughout the Holocene, with only slight increases in salinity between approximately 6500 and 5200 years BP. This interval corresponds to the only period in the lake's history when planktonic diatoms were abundant; benthic Fragilaria taxa, mainly F. pinnata, F. construens and F. brevistriata were dominant throughout most of the Holocene. The shift from a benthic to a planktonic diatom flora between 6500 and 5200 years BP may be an indirect response to a warmer climate that reduced forest cover in the watershed and allowed greater rates of inorganic sedimentation. The small salinity increase that accompanies the floristic change is probably not the result of lower lake levels; in fact the lake was probably deeper at this point than in the later Holocene. This paleosalinity record indicates that Harris Lake did not experience episodes of hypersalinity during the mid-Holocene, as suggested by a previous study, and that the lake may have been fresh during the early Holocene as well.  相似文献   

12.
This study is focused on the endorheic Uyni-Coipasa Basin located in the southern Bolivian Altiplano. Stratigraphical and fossil diatom studies based on a detailed radiocarbon chrnology revealed six phases in water-level changes and paleosalinity variations. At 15,430±80 yr B.P., lacustrine conditions settled in the southern Bolivian Altiplano. A saline lake, characterized by benthic meso-metasaline species, reached +4 m altitude above the present bottom of the basin. After 15,430±80 yr B.P., the level rapidly rose to +27 m, as suggested by a tychoplanktonic mesosaline flora. Between 14,500 years and 13,000 years, finely lanminated sediments at +32 m contained successively a dominance of epiphytic mesosaline to hypersaline species and tychoplanktonic oligosaline diatoms, indicating weak fluctuations in water-level and salinity. At 13,000 years, strong changes in the diatom flora occurred; epiphytic oligo-hypersaline diatoms were replaced by planktonic meso-polysaline species. They indicate a deep salt lake (the lake reached +100 m). After 12,000 years, the lake level abruptly dropped, as suggested by fluviatile sediments with a benthic mesopolysaline diatom flora. The main lake was replaced by shallow saline ponds. A wet pulse occurred at 11,400 years, characterized by low water level (+7 m) and high salinity. This lacustrine phase remained until 10,400 yr B.P. These data indicate changes in Precipitation minus Evaporation (P-E). Our regional interpretations are based on a comparison with teh available data on the northern (Lake Titicaca) and southern (Lipez are) Bolivian Altiplano and on the northern Chilean Altiplano (Atacama Desert).  相似文献   

13.
Lacustrine diatoms are diverse, well preserved and abundant in cores of lake sediment to 334 m depth near the town of Tulelake, Siskiyou County, northern California. The cores have been dated by radiometric, tephrochronologic and paleomagnetic techniques, which indicate a basal age of about 3 million years (Ma) and a nearly continuous depositional record for the Tule Lake basin for the last 3 million years (My). Fossil diatoms document the late Cenozoic paleolimnologic and paleoclimatic history for the northwestern edge of the Basin and Range Province. During the last 3 My, Tule Lake was typically a relatively deep, extensive lake. The Pliocene is characterized by a diatom flora dominated by Aulacoseira solida suggesting more abundant summer precipitation and warmer winters. Increases in Fragilaria at 2.4 Ma and between 2.0 and 1.7 Ma imply cooler summers that correlate to glacial environments recorded elsewhere in the world. Stephanodiscus niagarae and Fragilaria species dominate the Pleistocene. Benthic diatoms of alkalineenriched, saline waters occur with S. niagarae between 100 and 40 m depth (0.90–0.14 Ma). Tephrochronology indicates slow deposition and possible hiatuses between about 0.6 and 0.2 Ma. Overall, the Pleistocene diatom flora reflects cooler and sometimes drier climates, especially after major glaciations began 0.85 Ma. The chronology of even-numbered oxygen isotope stages approximately matches fluctuations in the abundance in Fragilaria species since 1 Ma, suggesting that glacial periods at Tule Lake were expressed by relatively cool summers with enhanced effective moisture. Interglacial periods are represented by variable mixtures of freshwater planktonic and benthic alkaline diatom assemblages that suggest seasonal environments with winter-spring precipitation and summer moisture deficits.Glacial-interglacial environments since 150 ka were distinct from, and more variable than, those occurring earlier. The last full glacial period was very dry. Aulacoseira ambigua characterizes the late glacial and early Holocene record of Tule Lake. Its distribution indicates that warmer and wetter climates began about 15 ka in this part of the Great Basin.Fluctuations in diatom concentration suggests a 41000-yr. cycle between 3.0 and 2.5 Ma and 100000-yr. cycles after 1.0 Ma. In the late Pliocene and early Pleistocene, Aulacoseira solida percentages wax and wane in an approximately 400000-yr. cycle. The apparent response of Tule Lake diatom communities to orbitally induced insolation cycles underscores the importance of this record for the study of late Cenozoic paleoclimate change.The diatom stratigraphy records the evolution and local extinction of several species that may be biochronologically important. Stephanodiscus niagarae first appeared and became common in the Tule Lake record shortly after 1.8 Ma. Stephanodiscus carconensis disappeared about 1.8 Ma, while Aulacoseira solida is rare in the core after about 1.35 Ma. Cyclotella elgeri, a diatom characteristic of some outcrops referred to the Yonna Formation (Pliocene), is common only near the base of the core at an age of about 3 Ma. Detection of local extinctions is complicated by reworking of distinctive species from Pliocene diatomites surrounding Tule Lake.A new species, Aulacoseira paucistriata, is described from Pliocene lake deposits in the Klamath Basin.  相似文献   

14.
Changes in the diatom assemblages preserved in a sediment core taken from a small lake located north of arctic treeline on the western Taimyr Peninsula, Russia, were examined in order to investigate late Holocene (i.e., ca 5000 cal yr BP to present) climatic and environmental changes within the region. Early diatom assemblages were dominated by benthic Fragilaria taxa and indicate a transitional phase in the lake history, most likely reflecting lake development and environmental change associated with treeline retreat to the south of the study site. Concurrent with pollen and macrofossil evidence of a vegetation shift to shrub tundra in the catchment basin at ca 4200 cal yr BP, an increase in cold-water taxa, followed by little change in diatom assemblages until ca 2800 cal yr BP, suggests that conditions were relatively cool and stable at this time. The last 2000 years of the Middendorf Lake record have been marked by fluctuating limnological conditions, characterized by striking successional shifts between Fragilaria pinnata and Aulacoseira distans var. humilis. Recent conditions in Middendorf Lake indicate an increase in diatom taxa previously rare in the record, possibly associated with twentieth-century climatic warming. The Middendorf Lake record indicates that significant limnological change may occur in the absence of catchment vegetation shifts, suggesting late-Holocene decoupling of aquatic and terrestrial responses to climatic and hydrological change. Our study results represent one of the few paleoecological records currently available from northern Russia, and highlight the need for further development of calibration data sets from this region.  相似文献   

15.
We assess Holocene environmental change at alpine Lake Njulla(68°22N, 18°42E, 999 m a.s.l.) innorthernmost Sweden using sedimentary remains of chironomid head capsules anddiatoms. We apply regional calibration sets to quantitatively reconstruct meanJuly air temperature (using chironomids and diatoms) and lake-water pH(using diatoms). Both chironomids and diatoms infer highest temperatures(1.7–2.3°C above present-day estimates, includinga correction for glacio-isostatic land up-lift by0.6°C) during the early Holocene (c.9,500–8,500 cal. yrs BP). Diatoms suggest a decreasing lake-waterpH trend (c. 0.6 pH units) since the early Holocene. Usingdetrended canonical correspondence analysis (DCCA), we compare the Holocenedevelopment of diatom communities in Lake Njulla with four other nearby lakes(Lake 850, Lake Tibetanus, Vuoskkujávri, Vuolep Njakajaure) locatedalong an altitudinal gradient. All five lakes show similar initial DCCA scoresafter deglaciation, suggesting that similar environmental processes such ashigh erosion rates and low light availability associated with high summertemperature appear to have regulated the diatom community, favouring highabundances of Fragilaria species. Subsequently, the diatomassemblages develop in a directional manner, but timing and scale ofdevelopment differ substantially between lakes. This is attributed primarily todifferences in the local geology, which is controlling the lake-waterpH. Imposed on the basic geological setting, site-specific processessuch as vegetation development, climate, hydrological setting andin-lake processes appear to control lake development in northernSweden.  相似文献   

16.
A paleolimnological investigation of post-European sediments in a Lake Michigan coastal lake was used to examine the response of Lower Herring Lake to anthropogenic impacts and its role as a processor of watershed inputs. We also compare the timing of this response with that of Lake Michigan to examine the role of marginal lakes as early warning indicators of potential changes in the larger connected system and their role in buffering Lake Michigan against anthropogenic changes through biotic interactions and material trapping. Sediment geochemistry, siliceous microfossils and nutrient-related morphological changes in diatoms, identified three major trophic periods in the recent history of the lake. During deforestation and early settlement (pre-1845–1920), lake response to catchment disturbances results in localized increases in diatom abundances with minor changes in existing communities. In this early phase of disturbance, Lower Herring Lake acts as a sediment sink and a biological processor of nutrient inputs. During low-lake levels of the 1930s, the lake goes through a transitional period characterized by increased primary productivity and a major shift in diatom communities. Post-World War II (late 1940s–1989) anthropogenic disturbances push Lower Herring Lake to a new state and a permanent change in diatom community structure dominated by Cyclotella comensis. The dominance of planktonic summer diatom species associated with the deep chlorophyll maximum (DCM) is attributed to epilimnetic nutrient depletion. Declining Si:P ratios are inferred from increased sediment storage of biogenic silica and morphological changes in the silica content of Aulacoseira ambigua and Stephanodiscus niagarae. Beginning in the late 1940s, Lower Herring Lake functions as a biogeochemical processor of catchment inputs and a carbon, nutrient and silica sink. Microfossil response to increased nutrients and increased storage of biogenic silica in Lower Herring Lake and other regional embayments occur approximately 20–25 years earlier than in a nearby Lake Michigan site. Results from this study provide evidence for the role of marginal lakes and bays as nutrient buffering systems, delaying the impact of anthropogenic activities on the larger Lake Michigan system.  相似文献   

17.
Paleolimnological analyses were used to infer limnological changes during the past ~ 300 yrs in the west basin of Peninsula Lake, a small (853 ha) Precambrian Shield lake in Ontario, Canada, that has been subjected to moderate cultural disturbances (forest clearance, cottage and resort development). This study represents a pioneering attempt to use sedimentary chironomid assemblages and weighted-averaging models to quantify past hypolimnetic anoxia (expressed as the anoxic factor, AF). Impacts of forest clearance and human land-use on deepwater oxygen availability and surface water quality were assessed by comparing chironomid-inferred AF and diatom-inferred total phosphorus concentration ([TP]) to changes in terrestrial pollen and historical data. This study also discusses the ability of chironomids to quantitatively infer changes in AF.Pre-disturbance chironomid assemblages were stable and dominated by taxa indicative of oxygen-rich hypolimnetic conditions (e.g., Protanypus, Heterotrissocladius, Micropsectra type), while diatoms indicated oligotrophic lake status (diatom inferred [TP] = 5-7 g·l-1). Chironomids characteristic of lower oxygen availability (e.g., Chironomus, Procladius) increased following land-clearance, road construction, establishment of a grist mill and lakeshore development beginning ca. 1870. Increased abundances of Tanytarsus s. lat., a multigeneric group of mainly littoral chironomids, since 1900, indicated that littoral chironomids may have comprised a greater proportion of fossil assemblages during periods of eutrophication and prolonged anoxia. Abundances of meso-eutrophic diatom taxa (e.g., Fragilaria crotonensis, Asterionella formosa, Aulacoseira ambigua, A. subarctica) increased concurrent with European settlement (ca. 1870) and diatom-inferred [TP] doubled (~ 6-12 g·l-1), further indicating that naturally-oligotrophic Precambrian Shield lakes were extremely sensitive to initial land-clearance activities.Recent increases in oligotrophic diatom taxa (e.g., Cyclotella stelligera) indicate a shift to more oligotrophic conditions since ca. mid-1960s, with greatest changes since ca. 1980. The chironomids Heterotrissocladius and Micropsectra type also increased at this time suggesting greater deepwater oxygen availability. These recent water-quality improvements, possibly in response to enhanced nutrient removal from detergents and sewage, climate-related reductions in external phosphorus loads, and catchment (but not lake) acidification and reforestation, suggest that habitat for commercially-valuable cold-water fishes has improved in recent decades despite greater recreational lake-use.Paleolimnological assessment of trophic status changes in Peninsula Lake using fossil diatom and chironomid assemblages were in good agreement. Diatom inferences of [TP] and chironomid inferences of AF both suggest that Peninsula Lake was historically oligotrophic, became oligo-mesotrophic after European settlement, and returned to oligotrophy in recent yrs. Chironomid inferences of [TP] consistently underestimated the trophic status of Peninsula Lake, possibly due to its relatively large hypolimnion. These results suggest that AF represents a useful tool for quantitatively reconstructing the past trophic status of deeper, stratified lakes.  相似文献   

18.
This multi-disciplinary investigation documents the longterm effects of atmospheric pollution of metals and acids on a geologically sensitive catchment in the umava Mountains, southwestern Czech Republic, a region with a long history of human disturbance. A 30 cm long sediment core (I) from ertovo Lake was analyzed for natural and artifical radionuclides, metals, diatoms, chrysophytes, and pollen in sediments accumulated during the last 200 years. A second core (II), extending to 95 cm, included sediment judged to be free of atmospheric deposition of pollutants associated with the Industrial Revolution. Chronostratigraphic markers include several changes in the pollen assemblages corresponding to well-documented changes in land-use, and distinct distributions of 137Cs, 134Cs and 241Am from weapons testing and the 1986 nuclear accident at Chernobyl, Russia. These markers corroborate the 210Pb dating and, together, produce a reliable chronology extending back nearly to 1800 A.D.Stratigraphic profiles of Cu, Pb, and Zn in Core I are unlike any previously reported in the literature. Concentrations of Cu, Pb, and Zn remain generally above 100, 400, and 200 g g-1, respectively, for the 200 years represented by Core I. These values are unusually high for sediments from a watershed with no known heavy-metal ore bodies. Accumulation rates for Cu, Pb, and Zn, which include both atmospheric and watershed contributions, are also high (ca 1, > 1 and > 1 g cm-2 yr-1, respectively) for the same period, although the anthropogenic contribution of Zn rose from nearly zero at 1800 A.D. The Cu and Pb accumulation rates rose dramatically about 1640 A.D.Accumulation rates of anthropogenically-derived Be, a relatively abundant element in the soft coals of the region, are also elevated by about 0.01 g cm-2 yr-1 in sediments of this period. Vanadium accumulation rates increased only since 1980 A.D., presumably along with increased consumption of oil.Diatom assemblages illustrate that the lake was acidic (pH between 4.5 and 5) through at least the past 200 years. The pH declined significantly (from ca 5 to 4) between 1960 and 1985 with a slight increase to 4.5 in the last few years. Recent diatom and chrysophyte assemblages suggest high trace metal concentrations, consistent with the present lake-water chemistry.  相似文献   

19.
Europe Lake occupies a small, closed, basin that would have been an embayment in Lake Michigan during the high water level events in the larger lake. Cores recovered from the lake reveal late Holocene water level fluctuations in the basin that are inferred from changes in taxa and abundance of molluscs, ostracodes, magnetic susceptibility, organic carbon, and oxygen isotopes.Non-glacial, Holocene lacustrine/paludal sedimentation in this portion of the Europe Lake basin started after 6600 RCYBP and was probably initiated by a rise in the water table of the deep bedrock aquifer, during the Nipissing transgression in Lake Michigan. Isotopically light ground water from this source was probably a major contributor during this phase to the negative 18O spikes in Valvata tricarinata and Amnicola limosa.The start of stable lacustrine conditions is marked by maximum diversity of ostracode and mollusc taxa and a shift toward much more positive 18O values. The Europe Lake basin at this time became an embayment of Lake Michigan. This event was probably coeval with the peak of the Nipissing transgression, when the water plane reached an altitude of about 183 m.The isolation of Europe Lake from Lake Michigan started at about 2390 RCYBP and is probably due to a drop in water level in Lake Michigan and/or to isostatic uplift of the Door Peninsula. Since isolation from Lake Michigan, water levels in Europe lake have been controlled primarily by fluctuations in local precipitation, evaporation and ground water discharge.  相似文献   

20.
The return of hundreds to millions of adult sockeye salmon (Oncorhynchus nerka), which have returned from the ocean to their natal nursery lake environment to spawn, can result in significant nutrient loading. By analyzing sedimentary diatom assemblages from nursery lakes, we demonstrated that a salmon-derived nutrient signal could be traced over time and be used to infer past sockeye salmon population dynamics. We conducted a 2,200 year paleolimnological study of two Alaskan sockeye salmon nursery lakes, Karluk and Frazer lakes. The two lakes are very similar, except that sockeye salmon were only introduced into Frazer Lake in 1951 (first spawners returned in 1956). In both lakes we found a strong correspondence between diatom assemblages and the number of adult salmon spawners recorded in the historical data (40 and 70 years for Frazer and Karluk lakes, respectively). Given this robust relationship, we then used our analyses of diatoms from Karluk Lake over the past 2,200 years to gain insight into salmon-derived nutrient loading changes (which are directly related to the number of sockeye salmon spawners). The diatom record from Karluk Lake recorded dramatic species changes on both decadal and century timescales, and was strongly correlated with an independent indicator of sockeye salmon abundances, 15N. Together, these data suggest pronounced variability in sockeye salmon abundances at Karluk Lake over the past 2,200 years. The direct impacts of regional environmental variability were not likely responsible for the patterns apparent in Karluk Lake, as the diatom and 15N profiles from Frazer Lake were relatively stable prior to the introduction of sockeye salmon. Application of total phosphorus transfer functions to the Karluk and Frazer lakes' diatom records revealed that sockeye salmon carcasses substantially increased the trophic status in these lakes, which has important implications for the health of juvenile salmon that rear in nursery lakes. Overall, this paper illustrates the potential use of diatoms in reconstructing past sockeye salmon population dynamics, which in turn can lead to a greater understanding of the mechanisms influencing abundances of sockeye salmon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号