共查询到20条相似文献,搜索用时 11 毫秒
1.
Zahra Badrzadeh Timothy J. Barrett Jan M. Peter Domingo Gimeno Mossaieb Sabzehei Mehraj Aghazadeh 《Mineralium Deposita》2011,46(8):905-923
The Sargaz Cu–Zn massive sulfide deposit is situated in the southeastern part of Kerman Province, in the southern Sanandaj–Sirjan Zone of Iran. The stratigraphic footwall of the Sargaz deposit is Upper Triassic to Lower Jurassic (?) pillowed basalt, whereas the stratigraphic hanging wall is andesite. Mafic volcanic rocks are overlain by andesitic volcaniclastics and volcanic breccias and locally by heterogeneous debris flows. Rhyodacitic flows and volcaniclastics overlie the sequence of basaltic and andesitic rocks. Based on the bimodal nature of volcanism, the regional geologic setting and petrochemistry of the volcanic rocks, we suggest massive sulfide mineralization in the Sargaz formed in a nascent ensialic back-arc basin. The current reserves (after ancient mining) of the Sargaz deposit are 3 Mt at 1.34% Cu, 0.38% Zn, 0.08%Pb, 0.24 g/t Au, and 7 g/t Ag. The structurally dismembered massive sulfide lens is zoned from a pyrite-rich base, to a pyrite?±?chalcopyrite-rich central part, and a sphalerite–chalcopyrite-rich upper part, with a sphalerite-rich zone lateral to the upper part. The main sulfide mineral is pyrite, with lesser chalcopyrite and sphalerite. The feeder zone, comprised of a vein stockwork consists of quartz–sulfide–sericite pesudobreccia and, in the deepest part, chlorite–quartz–pyrite pesudobreccia. Footwall hydrothermal alteration extends at least 70–80 m below the massive sulfide lens and more than a hundred meters along strike from the massive sulfide lens. Jasper and Fe–Mn bearing chert horizons lateral to the sulfide deposit represent low-temperature hydrothermal precipitates of the evolving hydrothermal system. Based on mineral textures and paragenetic relationships, the growth history of the Sargaz deposit is complex and includes: (1) early precipitation of sulfides (protore) on the seafloor as precipitation of fine-grained anhedral pyrite, sphalerite, quartz, and barite; (2) anhydrite precipitation in open spaces and mineral interstices within the sulfide mound followed by its subsequent dissolution, formation of breccia textures, and mound clasts and precipitation of coarse-grained pyrite, sphalerite, tetrahedrite–tennantite, galena and barite; (3) replacement of pre-existing sulfides by chalcopyrite precipitated at higher temperatures (zone refining); (4) continued “refining” led to the dissolution of stage 3 chalcopyrite and formation of a base-metal-depleted pyrite body in the lowermost part of the massive sulfide lens; (5) carbonate veins were emplaced into the sulfide lens, replacing stage 2 barite. The δ34S composition of the sulfides ranges from +2.8‰ to +8.5‰ (average, +5.6‰) with a general increase of δ34S ratios with depth within the massive sulfide lens and underlying stockwork zone. The heavier values indicate that some of the sulfur was derived from seawater sulfate that was ultimately thermochemically reduced in deep hydrothermal reaction zones. 相似文献
2.
《International Geology Review》2012,54(10):1239-1262
The Chahgaz Zn–Pb–Cu volcanogenic massive sulphide (VMS) deposit occurs within a metamorphosed bimodal volcano–sedimentary sequence in the south Sanandaj–Sirjan Zone (SSZ) of southern Iran. This deposit is hosted by rhyodacitic volcaniclastics and is underlain and overlain by rhyodacitic flows, volcaniclastics, and pelites. Peperitic textures between rhyodacite flows and contact pelites indicate that emplacement of the rhyodacite occurred prior to the lithification of the pelites. The rhyodacitic flows are calc-alkaline, and show rare earth and trace elements features characteristic of arc magmatism. Zircons extracted from stratigraphic footwall and hanging-wall rhyodacitic flows of the Chahgaz deposit yield concordant U–Pb ages of 175.7 ± 1.7 and 172.9 ± 1.4 Ma, respectively, and a mean age of 174 ± 1.2 Ma. This time period is interpreted to represent the age of mineralization of the Chahgaz deposit. This Middle Jurassic age is suggested as a major time of VMS mineralization within pull-apart basins formed during Neo-Tethyan oblique subduction-related arc volcano-plutonism in the SSZ. Galena mineral separates from the layered massive sulphide have uniform lead isotope ratios of 206Pb/204Pb?=?18.604–18.617, 207Pb/204Pb?=?15.654–15.667, and 208Pb/204Pb?=?38.736–38.769; they show a model age of 200 Ma, consistent with the derivation of Pb from a Late Triassic, homogeneous upper crustal source. 相似文献
3.
The Pingshui Cu–Zn deposit is located in the Jiangshan–Shaoxing fault zone, which marks the Neoproterozoic suture zone between the Yangtze block and Cathaysia block in South China. It contains 0.45 million tons of proven ore reserves with grades of 1.03 wt.% Cu and 1.83 wt.% Zn. This deposit is composed of stratiform, massive sulfide ore bodies, which contain more than 60 vol.% sulfide minerals. These ore bodies are hosted in altered mafic and felsic rocks (spilites and keratophyres) of the bimodal volcanic suite that makes up the Neoproterozoic Pingshui Formation. Metallic minerals include pyrite, chalcopyrite, sphalerite, tennantite, tetrahedrite and magnetite, with minor galena. Gangue minerals are quartz, sericite, chlorite, calcite, gypsum, barite and jasper. Three distinct mineralogical zones are recognized in these massive sulfide ore bodies: a distal zone composed of sphalerite + pyrite + barite (zone I); an intermediate zone characterized by a pyrite + sphalerite + chalcopyrite assemblages (zone II); and a proximal zone containing chalcopyrite + pyrite + magnetite (zone III). A thin, layer of exhalative jaspilite overlies the sulfide ore bodies except in the proximal zone. The volcanic rocks of the Pingshui Formation are all highly altered spilites and keratophyres, but their trace element geochemistry suggests that they were generated by partial melting of the depleted mantle in an island arc setting. Homogenization temperatures of the primary fluid inclusions in quartz from massive sulfide ores are between 217 and 328 °C, and their salinities range from 3.2 to 5.7 wt.% NaCl equivalent. Raman spectroscopy of the fluid inclusions showed that water is the dominant component, with no other volatile components. Fluid inclusion data suggest that the ore-forming fluids were derived from circulating seawater. The δ34S values of pyrite from the massive sulfide ores range from − 3.6‰ to + 3.4‰, indicating that the sulfur was primarily leached from the arc volcanic rocks of the Pingshui Formation. Both pyrite from the massive sulfide ores and plagioclase from the spilites have similar lead isotope compositions, implying that the lead was also derived from the Pingshui Formation. The low lead contents of the massive sulfide ores and the geochemistry of their host rocks are similar to many VMS Cu–Zn deposits in Canada (e.g., Noranda) and thus can be classified as belonging to the bimodal-mafic subtype. The presence of magnetite and the absence of jaspilite and barite at the − 505 m level in the Pingshui deposit suggest that this level is most likely the central zone of the original lateral massive sulfide ore bodies. If this interpretation is correct, the deep part of the Pingshui Cu–Zn deposit may have significant exploration potential. 相似文献
4.
Two sequentially formed groups of dikes in the gabbro–porphyrite complex have been distinguished, the ages of which are early Eifelian (early dikes) and early Givetian (late dikes). We have estimated the temperature impact of ore contact metamorphism, which is related to dikes of the Lower Carboniferous Magnitogorsk intrusive complex. A hidden zonality of microimpurities in the ore-forming minerals has been established for the first time by the LA-ICP-MS method. The ore formation age has been determined as early Eifelian–early Givetian. 相似文献
5.
Located adjacent to the Banded Gneissic Complex, Rampura–Agucha is the only sulfide ore deposit discovered to date within
the Precambrian basement gneisses of Rajasthan. The massive Zn–(Pb) sulfide orebody occurs within graphite–biotite–sillimanite
schist along with garnet–biotite–sillimanite gneiss, calc–silicate gneisses, amphibolites, and garnet-bearing leucosomes.
Plagioclase–hornblende thermometry in amphibolites yielded a peak metamorphic temperature of 720–780°C, whereas temperatures
obtained from Fe–Mg exchange between garnet and biotite (580–610°C) in the pelites correspond to postpeak resetting. Thermodynamic
considerations of pertinent silicate equilibria, coupled with sphalerite geobarometry, furnished part of a clockwise P–T–t path with peak P–T of ∼6.2 kbar and 780°C, attained during granulite grade metamorphism of the major Zn-rich stratiform sedimentary exhalative
deposits orebody and its host rocks. Arsenopyrite composition in the metamorphosed ore yielded a temperature [and log f(S
2)] range of 352°C (−8.2) to 490°C (−4.64), thus indicating its retrograde nature. Contrary to earlier research on the retrogressed
nature of graphite, Raman spectroscopic studies on graphite in the metamorphosed ore reveal variable degree of preservation
of prograde graphite crystals (490 ± 43°C with a maximum at 593°C). The main orebody is mineralogically simple (sphalerite,
pyrite, pyrrhotite, arsenopyrite, galena), deformed and metamorphosed while the Pb–Ag-rich sulfosalt-bearing veins and pods
that are irregularly distributed within the hanging wall calc–silicate gneisses show no evidence of deformation and metamorphism.
The sulfosalt minerals identified include freibergite, boulangerite, pyrargyrite, stephanite, diaphorite, Mn–jamesonite, Cu-free
meneghinite, and semseyite; the last three are reported from Agucha for the first time. Stability relations of Cu-free meneghinite
and semseyite in the Pb–Ag-rich ores constrain temperatures at >550°C and <300°C, respectively. Features such as (1) low galena–sphalerite
interfacial angles, (2) presence of multiphase sulfide–sulfosalt inclusions, (3) microcracks filled with galena (±pyrargyrite)
without any hydrothermal alteration, and (4) high contents of Zn, Ag (and Sb) in galena, indicate partial melting in the PbS–Fe0.96S–ZnS–(1% Ag2S ± CuFeS2) system, which was critical for metamorphic remobilization of the Rampura–Agucha deposit. 相似文献
6.
The Bianjiadayuan Pb–Zn–Ag deposit in the Southern Great Xing'an Range consists of quartz-sulfide vein-type and breccia-type mineralization related to granite. Vein orebodies are localized in NW-trending extensional faults. Hydrothermal alteration is well developed and includes silicification, potassic alteration, chloritization and sericitization. Three stages of mineralization are recognized based on field evidence and petrographic observation and are marked by assemblages of quartz–arsenopyrite–pyrite (stage I), quartz–pyrrhotite–chalcopyrite–sphalerite (stage II) and quartz–galena–silver minerals (stage III). The granite, with a zircon age of 143.2 ± 1.5 Ma (n = 14, MSWD = 0.93), is subalkaline, peraluminous and is classified as A2-type granite originating in a post-orogenic extensional setting during the opening of suture zone between the North China Craton and the Siberia Craton from the Late Jurassic to the Early Cretaceous. The δ34SCDT values of sulfides, ranging from 3.19 to 10.65‰, are not consistent with the majority of magmatic hydrothermal deposits in the SGXR, possibly implying accessory source in addition to magmatic source. Microthermometric measurements show that ore minerals were deposited at intermediate temperatures (347.8–136.4 °C) with moderate salinities (2.9–14.4 wt.% NaCl). Ore-forming fluids were derived largely from magmatic hydrothermal processes, with the addition of meteoric water in late stage. Successive precipitation of Pb, Zn and Ag occurred with changes of physicochemical conditions. Overall considering mineralization features, ore-forming fluids and materials and tectonic setting and comparing with adjacent deposits, the Bianjiadayuan deposit is a mesothermal magmatic hydrothermal vein-type Pb–Zn–Ag deposit controlled by fractures and related to A2-type granite in response to the tectonic/magmatic/hydrothermal activity in late Jurassic. Besides, the explosive breccias in the west area require more attention in future exploration. 相似文献
7.
The super-large Shuangjianzishan Pb–Zn–Ag deposit is a newly discovered deposit located in the Huanggang–Ganzhuermiao polymetallic metallogenic belt of Inner Mongolia, NE China. The deposit's resource includes 0.026 Mt Ag, 1.1 Mt Pb, and 3.3 Mt Zn. The deposit is controlled by a NW-trending ductile shear zone and NE- and NW-trending faults in black pelite assigned to the lower Permian Dashizhai Formation. LREE enrichment, HREE depletion, Nb, Ta, P, and Ti depletion, and Zr and Hf enrichment characterize felsic magmatic rocks in the Shuangjianzishan Pb–Zn–Ag district. The ages of porphyritic monzogranite, rhyolitic crystal–vitric ignimbrite, and porphyritic granodiorite are 254–252, 169, and 130 Ma, respectively. Pyrite sampled from the mineralization has Re–Os isochron ages of 165 ± 7 Ma, which suggest the mineralization is associated with the ca. 169 Ma magmatism in the Shuangjianzishan district.Zircons extracted from the porphyritic granodiorite yield εHf(t) values of − 11.34 to − 1.41, with tDM2 dates of 1275–1901 Ma. The εHf(t) values of zircons in the rhyolitic crystal–vitric ignimbrite and the ore-bearing monzogranite porphyry are 7.57–16.23 and 10.18–15.96, respectively, and their tDM2 ages are 177–733 and 257–632 Ma, respectively. Partial melting of depleted mantle resulted in the formation of the ca. 254–252 Ma ore-bearing porphyritic monzogranite and the ca. 169 Ma rhyolitic crystal–vitric ignimbrite; dehydration partial melting of subducted oceanic crust resulted in the formation of the ca. 130 Ma porphyritic granodiorite. The porphyritic monzogranite was emplaced during the late stages of closure of the Paleo-Asian Ocean during the transformation from a collisional to extensional tectonic setting. The ca. 170 and ca. 130 Ma magmatism and mineralization in the Shuangjianzishan district are related to subduction of the Mongolia–Okhotsk Ocean and subduction of the Paleo-Pacific Ocean Plate, respectively. 相似文献
8.
Laila Salama El Mostafa Mouguina Essaid El Bachari Larbi Rddad Mohamed Outhounjite Mohamed Essaoudi Lhou Maacha Mohamed Zouhair 《Arabian Journal of Geosciences》2018,11(24):785
Draa Sfar is a polymetallic (Zn–Pb–Cu) volcanogenic massive sulfide deposit with an actual resource of 13 Mt at 4.0% Zn and 1.3% Pb. It is part of the central Jbilets area known for its several Cu–Zn ore deposits. The ore is hosted in the upper Visean-Namurien sedimentary formation. Owing to the complexity of the geology of the ore deposits, numerical simulation approach was attempted to shed light into the temperature distribution, the circulation of the hydrothermal fluid and the genesis of massive sulfide ore bodies by evaluating the permeability, porosity, and thermal conductivity. On the basis of this simulation approach, the ore is predicted to be deposited at a temperature ranging between 230 and 290 °C. This temperature range is dependent on the pre-existing temperature of the discharge area where a metal-rich fluid precipitated the ore. The duration of the Draa Sfar ore body formation is predicted to be 15, 000 to 50, 000 years. Based on geological studies of Draa Sfar deposit together with the aforementioned results of the simulation approach, an ore genetic model for the massive sulfide ore bodies is proposed. In this model, the supply of ore-forming fluids is ensured by the combination of seawater and magmatic waters. Magma that generated rhyodacite dome acted as the heat source that remobilized the circulation of these ore-bearing fluids. The NW-SE trending faults acted as potential pathways for both the downward and upward migration of the ore-forming fluids. Due to their high permeability, the ignimbritic facies, host rocks of Draa Sfar ore bodies, have favored the circulation of the fluids. The mixing between the ore-forming fluids of magmatic origin and the descending seawaters and/or in situ pore waters led to the formation the ore bodies in 35,000 years. The position and size of the ore body, determined by the simulation approach, is consistent with the actual field geological data. 相似文献
9.
N. R. Ayupova V. V. Maslennikov V. A. Kotlyarov S. P. Maslennikova L. V. Danyushevsky R. Large 《Doklady Earth Sciences》2017,473(1):318-322
For the first time, extremely high Se and In contents were determined for the pinches of massive sulfide orebodies that are composed of small-clastic layered sulfide sediments transformed during submarine supergenesis. Se (clausthalite and naumannite) and In (roquesite) minerals were found. Hydrothermal chalcopyrite, a significant amount of which is present in the clasts of paleohydrothermal black smoker chimneys, was the source of Se. Most of the amount of In was contributed during dissolution of clasts of hydrothermal sphalerite, which is unstable in the submarine oxidation zone in the presence of oxidized pyrite. 相似文献
10.
Patrick Mercier-Langevin Vicky McNicoll Rodney L. Allen James H. S. Blight Benoît Dubé 《Mineralium Deposita》2013,48(4):485-504
The Boliden deposit (8.3 Mt at 15.9 g/t Au) is interpreted to have been formed between ca. 1894 and 1891 Ma, based on two new U–Pb ID-TIMS ages: a maximum age of 1893.9?+?2.0/?1.9 Ma obtained from an altered quartz and feldspar porphyritic rhyolite in the deposit footwall in the volcanic Skellefte group and a minimum age of 1890.8?±?1 Ma obtained from a felsic mass-flow deposit in the lowermost part of the volcano-sedimentary Vargfors group, which forms the stratigraphic hanging wall to the deposit. These ages are in agreement with the alteration and mineralization being formed at or near the sea floor in the volcanogenic massive sulfide environment. These two ages and the geologic relationships imply that: (1) volcanism and hydrothermal activity in the Skellefte group were initiated earlier than 1.89 Ga which was previously considered to be the onset of volcanism in the Skellefte group; (2) the volcano-sedimentary succession of the Vargfors group is perhaps as old as 1892 Ma in the eastern part of the Skellefte district; and (3) an early (synvolcanic) deformation event in the Skellefte group is evidenced by the unconformity between the ≤1893.9?+?2.0/?1.9 Ma Skellefte group upper volcanic rocks and the ≤1890.8?±?1 Ma Vargfors sedimentary and volcanic rocks in the Boliden domain. Differential block tilting, uplift, and subsidence controlled by synvolcanic faults in an extensional environment is likely, perhaps explaining some hybrid VMS-epithermal characteristics shown by the VMS deposits of the district. 相似文献
11.
The southern Tien Shan metallogenic province of Central Asia hosts a number of important gold resources including the Jilau
gold–quartz vein system in western Tajikistan. These deposits were formed at the late stages of continent–continent collision
in association with subduction-related magmatism, metamorphism and continental margin deformation attributed to the Central
Asian Hercynian Orogeny. Jilau is hosted by a Hercynian syntectonic granitoid intrusive that was emplaced into bituminous
dolomite country rocks. Economic mineralisation is associated with a dilational jog within a high-angle, oblique dextral-reverse
slip shear zone that was undergoing brittle–ductile deformation. The orebody takes the form of shear-zone subparallel quartz
veins and lenses that emanate from a steeply plunging ore shoot of veins and stringers within a silicified and sulphidised
granodiorite core. It is thought to have formed by a dynamic process in which fluid flow was governed by a fault-valve mechanism.
Numerous cycles of fluid pressure build-up, fault failure, jog dilation, fluid flow, phase separation of low salinity H2O–CO2–CH4(–N2) fluids, and sealing took place. Gold appears together with scheelite and bismuth minerals predominantly as inclusions in
arsenopyrite in quartz veins and altered wall-rock, and is mainly associated with quartz containing fluid inclusions enriched
in CH4. The correlation between high gold grades and high CH4 concentrations suggests that components of the mineralising fluids were derived from, or passed through, the reducing, carbonaceous
rocks in the contact aureole of the intrusive. The occurrence of Au and W in an adjacent Hercynian skarn deposit and in the
Jilau orebody, infers that the ore metals in both these systems were ultimately derived from a magmatic source.
Received: 15 April 1999 / Accepted: 30 December 1999 相似文献
12.
13.
《International Geology Review》2012,54(7):816-832
The newly discovered Jiyuan Cu–Ag–(Pb–Zn–Au) deposit is located in the southern section of the eastern Tianshan orogenic belt, Xinjiang, northwestern China. It is the first documented deposit in the large Aqikekuduke Ag–Cu–Au belt in the eastern Tianshan orogen. Detailed field observations, parageneses, and fluid inclusion studies suggest an epithermal ore genesis for the main Cu–Ag mineralization, accompanied by a complicated hydrothermal alteration history most likely associated with the multi-stage tectonic evolution of the eastern Tianshan. The Jiyuan Cu–Ag ore bodies are located along the EW-striking, south-dipping Aqikekuduke fault and are hosted by Precambrian marble and intercalated siliceous rocks. Early-stage skarn alteration occurred along the contact zone between the marble layers and Early Carboniferous diorite–granodiorite and monzogranite intrusions; the skarns are characterized by diopside–tremolite–andradite–pyrite–(magnetite) assemblages. Local REE-enriched synchysite–rutile–arsenopyrite–(clinochlorite–microcline–albite) assemblages are related to K–Na alteration associated with the monzogranite intrusions and formed under conditions of high temperature (310°C) and high salinity (19.9 wt.% NaCl). Subsequent hydrothermal alteration produced a series of quartz and calcite veins that precipitated from medium- to low-temperature saline fluids. These include early ‘smoky’ quartz veins (190°C; 3.0 wt.% NaCl) that are commonly barren, coarse-grained Cu–Ag mineralized quartz veins (210°C; 2.4 wt.% NaCl), and late-stage unmineralized calcite veins (140°C; 1.1 wt.% NaCl). Tremolite and Ca-rich scapolite veins formed at an interval between early and mineralized quartz veins, indicating a high-temperature, high-salinity (>500°C; 9.5 wt.% NaCl) Ca alteration stage. Fluid mixing may have played an important role during Cu–Ag mineralization and an external low-temperature Ca-rich fluid is inferred to have evolved in the ore-forming system. The Jiyuan auriferous quartz veins possess fluid characteristics distinct from those of the Cu–Ag mineralized quartz veins. CO2-rich fluid inclusions, fluid boiling, and mixing all demonstrate that these auriferous quartz veins acted as hosts for the orogenic-type gold mineralization, a common feature in the Tianshan orogenic belt. 相似文献
14.
The Ansil Cu–Au volcanogenic massive sulfide deposit is located within an Archean-age cauldron infill sequence that contains
the well-known Noranda base metal mining district. The deposit is unusual in that 17% of the massive pyrrhotite–chalcopyrite
orebody is replaced by semi-massive to massive magnetite. Temporally associated with the magnetite formation are several calc-silicate
mineral assemblages within the massive sulfide lens and the underlying sulfide stockwork vein system. Coarse-grained andradite–hedenbergite
and ferroactinolite–ilvaite alteration facies formed in the immediate footwall to the massive magnetite–sulfide lens, whereas
an epidote–albite–pyrite-rich mineral assemblage overprints the margins of the chlorite-rich stockwork zone. The epidote-rich
facies is in turn overprinted by a retrograde chlorite–magnetite–calcite mineral assemblage, and the andradite–hedenbergite
is overprinted first by ferroactinolite–ilvaite, followed by semi-massive to massive magnetite. The footwall sulfide- and
magnetite-rich alteration facies are truncated by a late phase of the Flavrian synvolcanic tonalite–trondhjemite complex.
Early phases of this intrusive complex are affected to varying degrees by calc-silicate-rich mineral assemblages that are
commonly confined to miarolitic cavities, pipe vesicles and veins. The vein trends parallel the orientation of synvolcanic
faults that controlled volcanism and hydrothermal fluid migration in the overlying cauldron succession. The magnetite-rich
calc-silicate alteration facies are compositionally similar to those of volcanic-hosted Ca–Fe-rich skarn systems typical of
oceanic arc terranes. Tonalite–trondhjemite phases of the Flavrian complex intruded to within 400 m of the base of the earlier-formed
Ansil deposit. The low-Al trondhjemites generated relatively oxidized, acidic, Ca–Fe-rich magmatic–hydrothermal fluids either
through interaction with convecting seawater, or by assimilation of previously altered rocks. These fluids migrated upsection
along synvolcanic faults that controlled the formation of the original volcanogenic massive sulfide deposit. This is one of
the few documented examples of intense metasomatism of a VMS orebody by magmatic–hydrothermal fluids exsolved from a relatively
primitive composite sub-seafloor intrusion.
Received: 15 April 1999 / Accepted: 20 January 2000 相似文献
15.
Mineralogy and Petrology - The Bavanat Cu deposit occurs as veins controlled by a NE–trending structure within the Permo–Triassic Surian metamorphic complex (SMC), southwest of Iran.... 相似文献
16.
Zhaxikang is one large Sb–Pb–Zn–Ag deposit located in the North Himalaya of southern Tibet. To date, the genesis of this deposit still remains controversial. Here, we present new pyrite Fe and sphalerite Zn isotopic data for the first three stages of mineralization, Fe–Zn isotopic data for Mn–Fe carbonate that formed during the first two stages of mineralization, and Zn isotopic data for the slate wall rocks of the Jurassic Ridang Formation to discuss the genesis of the Zhaxikang deposit. The overall δ56Fe and δ66Zn values range from −0.80‰ to 0.43‰ and from −0.03‰ to 0.38‰, respectively. The δ56Fe values of Mn–Fe carbonates are lighter than those of associated pyrite in six mineral pairs, indicating that the iron carbonates are preferentially enriched in light Fe isotopes relative to pyrite. The sphalerite has lighter δ66Zn values than associated Mn–Fe carbonates in three mineral pairs.The δ56Fe values of pyrite that formed during the first three stages of mineralization gradually increase from stage 1 (−0.33‰ to −0.09‰) through stage 2 (−0.30‰ to 0.19‰) to stage 3 (0.16‰–0.43‰). In comparison, the sphalerite that formed during these stages has δ66Zn values that gradually decrease from stage 1 (0.16‰–0.35‰) through stage 2 (0.09‰–0.23‰) to stage 3 (−0.03‰ to 0.22‰). These data, in conjunction with the observations of hand specimens and thin sections, suggest that the deposit was overprinted by a second pulse of mineralization. This overprint would account for these Fe–Zn isotopic variations as well as the kinetic Rayleigh fractionation that occurred during mineralization. The temporally increasing δ56Fe and decreasing δ66Zn values recorded in the deposit are also coincident with an increase in alteration, again supporting the existence of two pulses of mineralization. The δ56Fe values of the first pulse of ore-forming fluid were calculated using theoretical equations, yielding values of −0.54‰ to −0.34‰ that overlap with those of submarine hydrothermal solutions (−1‰ to 0‰). However, the δ56Fe values of the stage 3 pyrite are heavier than those of typical submarine hydrothermal solutions, which suggests that the second pulse of mineralization was probably derived from a magmatic hydrothermal fluid. In addition, the second pulse of ore-forming fluid has brought some Fe and taken away parts of Zn, which results the lighter δ66Zn values of sphalerite and heavier δ56Fe values of pyrite from the second pulse of mineralization. Overall, the Zhaxikang deposit records two pulses of mineralization, and the overprint by the second pulse of mineralization causes the lighter δ66Zn values and heavier δ56Fe values of modified samples. 相似文献
17.
The Re–Os isotopic system is applied for the first time to the sulfide ores and the overlying black-shales at the Küre volcanogenic massive sulfide deposit of the Central Pontides, Northern Turkey. The ore samples collected include predominantly pyrite, accompanied by chalcopyrite, sphalerite and other species. Massive ore is almost free of gangues, whereas the stockwork ore includes quartz and calcite gangue. The composition of sphalerite is similar to ancient and modern massive sulfide mineralizations globally. Microthermometric studies from quartz from the stockwork ore has shown two populations of two-phase fluid inclusions with vapor/liquid ratios between 4 to 28%, low to intermediate Th (161.5–317.0 °C) and low salinities (0.9–5 wt.% NaCl equiv.) which are mostly in good agreement with the ranges for volcanogenic massive sulfide mineralizations. These studies also suggest a H2O–CaCl2–KCl–MgCl2 ore-forming fluid system in a shallower subsurface near the seafloor vents. The Re–Os dating of the LLHR sulfides yield a nominal depositional age of upper Toarcian for the massive sulfide mineralization. Two largely different model ages obtained are attributed to other pyrite crystallization events prior to and postdating the main sulfide deposition. Some lower homogenization temperatures (< 200 °C) from the quartz of the stockwork may also similarly be related to the post-VMS events. It is concluded that a submarine volcanic extrusion episode has continued until upper Toarcian in the Küre Basin, when it has entered a stagnation period that allowed the discharge of hydrothermally circulated sulfide-laden fluids from the seafloor vents. This age data promotes the palaeotectonic models interpreting the Küre Basin as a Permian–early Jurassic marginal back-arc basin of the Devonian-Triassic Karakaya Ocean. The Re–Os data from the overlying black-shale provide a glimpse to the initial Os isotope ratio of the water column at the time of the sedimentation (0.45–0.46 for 180 Ma). The lack of common Os from the sulfides does not let us to infer a source of Os and initial 187Os/188Os ratios from the black shale are not statistically robust to make a significant deduction. A further detailed study on the isotopic composition of the black shale strata may help us to make an apporach to the Os source(s) in the deposition environment of the Küre VMS deposit. 相似文献
18.
CUI Yinliang QING Dexian CHEN Yaoguang 《中国地球化学学报》2007,26(3):312-324
The Longbohe Cu deposit, which is located in the southern part of the Honghe ore-forming zone, Yunnan Province, China, belongs to a typical ore field where volcanic rocks are of wide distribution and are associated with Cu mineralization in time and space. The volcanic rocks in the ore field, which have experienced varying degree of alteration or regional metamorphism, can be divided into three types, i.e., meta-andesite, meta-subvolcanic rock and meta-basic volcanic rock in accordance with their mineral assemblages. These three types of volcanic rocks in the ore field are relatively rich in Na and the main samples plot in the area of alkali basalts in the geochemical classification diagram. With the exception of very few elements, these three types of volcanic rocks are similar in the content of trace elements. In comparison to the basalts of different tectonic settings, the meta-volcanic rocks in the ore field are rich in high field strength elements (HFSE) such as Th, Nb, etc. and depleted in large ion lithophile elements (LILE) such as Sr, Ba, etc. and their primary mantle-normalized trace element patterns show remarkable negative Th and Nb anomalies and negative Sr and Ba anomalies. These three types of volcanic rocks are similar in REE content range and chondrite-normalized REE patterns with the exception of Eu anomaly. Various lines of evidence show that these three types of volcanic rocks in the ore field have the same source but are the products of different stages of magmatic evolution, their original magma is a product of partial melting of the metasomatically enriched mantle in the tensional tectonic setting within the continent plate, and the crystallization differentiation plays an important role in the process of magmatic evolution. 相似文献
19.
Russell Bailie Jens Gutzmer Harald Strauss Eva Stüeken Craig McClung 《Mineralium Deposita》2010,45(5):481-496
Zn- and Cu-rich massive sulfide ores of volcanogenic origin [volcanogenic massive sulfide (VMS) deposits] occur as stratiform/stratabound
lenses of variable size hosted by gneisses, amphibolites, and schists of the Areachap Group, in the Northern Cape Province
of South Africa. The Areachap Group represents the highly deformed and metamorphosed remnants of a Mesoproterozoic volcanic
arc that was accreted onto the western margin of the Kaapvaal Craton during the ∼1.0–1.2 Ga Namaquan Orogeny. Sulfur isotope
data (δ34S) are presented for 57 sulfide separates and one barite sample from five massive sulfide occurrences in the Areachap Group.
Although sulfides from each site have distinct sulfur isotope values, all δ34S values fall within a very limited range (3.0‰ to 8.5‰). Barite has a δ34S value of 18.5‰, very different from that of associated sulfides. At one of the studied sites (Kantienpan), a distinct increase
in δ34S of sulfides is observed from the massive sulfide lens into the disseminated sulfides associated with a distinct footwall
alteration zone. Sulfide–sulfide and sulfide–barite mineral pairs which recrystallized together during amphibolite- and lower
granulite facies metamorphism are not in isotopic equilibrium. Sulfur isotope characteristics of sulfides and sulfates of
the Zn–Cu ores in the Areachap Group are, however, very similar to base metal sulfide accumulations associated with modern
volcanic arcs and unsedimented mid-ocean ridges. It is thus concluded that profound recrystallization and textural reconstitution
associated with high-grade regional metamorphism of the massive sulfide ores of the Areachap Group did not result in extensive
sulfur isotopic homogenization. This is similar to observations in other metamorphosed VMS deposit districts and confirms
that massive sulfide ores remain effectively a closed system for sulfur isotopes for both sulfides and sulfates during metamorphism. 相似文献