首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Continuous remediation monitoring using sensors is potentially a more effective and inexpensive alternative to current methods of sample collection and analysis. Gaseous components of a system are the most mobile and easiest to monitor. Continuous monitoring of soil gases such as oxygen, carbon dioxide, and contaminant vapors can provide important quantitative information regarding the progress of bioremediation efforts and the area of influence of air sparging or soil venting. Laboratory and field tests of a commercially available oxygen sensor show that the subsurface oxygen sensor provides rapid and accurate data on vapor phase oxygen concentrations. The sensor is well suited for monitoring gas flow and oxygen consumption in the vadose zone during air sparging and bioventing. The sensor performs well in permeable, unsaturated soil environments and recovers completely after being submerged during temporary saturated conditions. Calibrations of the in situ oxygen sensors were found to be stable after one year of continuous subsurface operation. However, application of the sensor in saturated soil conditions is limited. The three major advantages of this sensor for in situ monitoring arc as follows: (1) it allows data acquisition at any specified time interval; (2) it provides potentially more accurate data by minimizing disturbance of subsurface conditions; and (3) it minimizes the cost of field and laboratory procedures involved in sample retrieval and analysis.  相似文献   

2.
Dissolved carbon monoxide (CO) is present in ground water produced from a variety of aquifer systems at concentrations ranging from 0.2 to 20 nanomoles per liter (0.0056 to 0.56 microg/L). In two shallow aquifers, one an unconsolidated coastal plain aquifer in Kings Bay, Georgia, and the other a fractured-bedrock aquifer in West Trenton, New Jersey, long-term monitoring showed that CO concentrations varied over time by as much as a factor of 10. Field and laboratory evidence suggests that the delivery of dissolved oxygen to the soil zone and underlying aquifers by periodic recharge events stimulates oxic metabolism and produces transiently high CO concentrations. In between recharge events, the aquifers become anoxic and more substrate limited, CO is consumed as a carbon source, and CO concentrations decrease. According to this model, CO concentrations provide a transient record of oxic metabolism affecting ground water systems after dissolved oxygen has been fully consumed. Because the delivery of oxygen affects the fate and transport of natural and anthropogenic contaminants in ground water, CO concentration changes may be useful for identifying predominantly anoxic ground water systems subject to periodic oxic or microaerophilic conditions.  相似文献   

3.
A model is presented for estimating vapor concentrations in buildings because of volatilization from soil contaminated by non- aqueous phase liquids (NAPL) or from dissolved contaminants in ground water. The model considers source depletion, diffusive- dispersive transport of the contaminant of concern (COC) and of oxygen and oxygen-limited COC biodecay. Diffusive-advective transport through foundations and vapor losses caused by foundation cross-flow are considered. Competitive oxygen use by various species is assumed to be proportional to the product of the average dissolved-phase species concentration and a biopreference factor. Laboratory and field data indicate the biopreference factor to be proportional to the organic carbon partition coefficient for the fuel hydrocarbons studied. Predicted indoor air concentrations were sensitive to soil type and subbase permeability. Lower concentrations were predicted for buildings with shallow foundations caused by flushing of contaminants by cross-flow. NAPL source depletion had a large impact on average exposure concentration. Barometric pumping had a minor effect on indoor air emissions for the conditions studied. Risk-based soil cleanup levels were much lower when biodecay was considered because of the existence of a threshold source concentration below which no emissions occur. Computed cleanup levels at NAPL-contaminated sites were strongly dependent on total petroleum hydrocarbon (TPH) content and COC soil concentration. The model was applied to two field sites with gasoline-contaminated ground water. Confidence limits of predicted indoor air concentrations spanned approximately two orders of magnitude considering uncertainty in model parameters. Measured contaminant concentrations in indoor air were within model-predicted confidence limits.  相似文献   

4.
Large-scale column experiments were undertaken to evaluate the potential of polymer mats to remove selected volatile organic compounds, polycyclic aromatic hydrocarbons, and pesticides (atrazine and fenamiphos) from ground water and potentially to act as permeable reactive barriers in contaminated ground water environments. The polymer mats, composed of interwoven silicone (dimethylsiloxane) tubes and purged with air, were installed in 2 m long flow-through columns. The polymer mats proved efficient in physically removing (stripping) benzene and naphthalene from contaminated water. Removal efficiencies for both these compounds from an aqueous phase flowing past a polymer mat were 75% or greater. However, for atrazine and fenamiphos, removal efficiencies were 5% or less, probably as a result of their lower Henry's law constants and possibly lower polymer diffusion coefficients.
These experiments indicate that, at least for relatively volatile compounds, polymer mats can provide a remediation technique for the removal of organic compounds from contaminated water. Application of this technique may be well suited as a longer-term, semipassive strategy to remediate contaminated ground water, using natural ground water flow to deliver contaminated ground water to polymer mats engineered as sorption-stripping barriers.
Additional benefits of this technique may include targeted delivery of gaseous chemical amendments, such as oxygen, to enhance aerobic biodegradation and to further reduce any residual concentrations of contaminants.  相似文献   

5.
Enhanced subsurface biorestoration is rapidly becoming recognized as a valuable tool for the restoration of hydrocarbon-contaminated aquifers and sediments. Previous field and laboratory studies at a former wood creosoting facility near Conroe, Texas, have indicated that insufficient oxygen is the primary factor limiting the biotransformation of polynuclear aromatics (PNAs) in sediments and ground water at this site. A series of laboratory experiments and field push-pull injection tests were performed as part of this project to: (1) study the effect of low oxygen concentrations on the biotransformation of PNAs; (2) identify the minimum concentration of PNAs that could be achieved through the addition of oxygen alone; (3) confirm that enhanced subsurface biorestoration is feasible at this site; and (4) test an existing numerical model of the biotransformation process (BIOPLUME). The laboratory studies demonstrated that biotransformation of the PNAs was not inhibited at dissolved oxygen concentrations as low as 0.7 mg/L although this work did suggest that there may be a minimum PNA concentration of 30 to 70 μg/L total PNAs below which biotransformation was inhibited. The field push-pull tests confirmed that addition of oxygen was effective in enhancing the subsurface biodegradation of the PNAs. The minimum concentration achieved using oxygen alone was approximately 60 μg/L total PNAs. Minimal biotransformation of these compounds was observed without oxygen addition. The numerical model BIOPLUME was tested against monitoring data from the field experiments and appears to provide a good approximation of the biodegradation process.  相似文献   

6.
Nonaqueous phase liquid (NAPL) is a long-term source of ground water contamination as the pollutant slowly partitions into the air and water phases. The objective of this work was to study the efficacy of aqueous surfactant solution to enhance the dissolution of a residual NAPL below the capillary fringe, hence reducing the time needed for aquifer restoration. An analytical technique was developed to measure the concentration of NAPL in a nonionic surfactant. Soil column experiments simulated conditions in the saturated soil where a NAPL may become trapped as a discontinuous immobile phase. Experimental results indicate that dissolution was a rate-limited process, approaching equilibrium concentrations after 24 hours. The relative permeability of the aqueous phase initially decreased as surfactant was injected, but increased over time as the saturation of residual NAPL was reduced through mass transfer into the surfactant-enhanced aqueous phase. These findings suggest that enhancing the aqueous phase with a nonionic surfactant may significantly enhance the in situ recovery or residual NAPL.  相似文献   

7.
We performed quasi‐two‐dimensional flow through laboratory experiments to study the effect of a coarse‐material inclusion, located in the proximity of the water table, on flow and oxygen transfer in the capillary fringe. The experiments investigate different phases of mass transfer from the unsaturated zone to anoxic groundwater under both steady‐state and transient flow conditions, the latter obtained by fluctuating the water table. Monitoring of flow and transport in the different experimental phases was performed by visual inspection of the complex flow field using a dye tracer solution, measurement of oxygen profiles across the capillary fringe, and determination of oxygen fluxes in the effluent of the flow‐through chamber. Our results show significant effects of the coarse‐material inclusion on oxygen transfer during the different phases of the experiments. At steady state, the oxygen flux across the unsaturated/saturated interface was considerably enhanced due to flow focusing in the fully water‐saturated coarse‐material inclusion. During drainage, a zone of higher water saturation formed in the fine material overlying the coarse lens. The entrapped oxygen‐rich aqueous phase contributed to the total amount of oxygen supplied to the system when the water table was raised back to its initial level. In case of imbibition, pronounced air entrapment occurred in the coarse lens, causing oxygen to partition between the aqueous and gaseous phases. The oxygen mass supplied to the anoxic groundwater following the imbibition event was found to be remarkably higher (approximately seven times) in the heterogeneous system compared with a similar experiment performed in a homogeneous porous medium.  相似文献   

8.
In situ air sparging is used to remediate petroleum fuels and chlorinated solvents present as submerged contaminant source /ones and dissolved contaminant plumes, or to provide barriers to dissolved contaminant plume migration. Contaminant removal occurs through a combination of volatilization and aerobic biodegradation: thus, the performance at any given site depends on the contaminant and oxygen mass transfer rates induced by the air injection. It has been hypothesized that these rates are sensitive to changes in process flow conditions and site lithology, but no data is available to identify trends or the magnitude of the changes. In this work, oxygenation rates were measured for a range of air injection rates, ground water flow rates, and pulsing frequencies using a laboratory-scale two-dimensional physical model constructed to simulate a homogeneous hydrogeologic setting. Experiments were conducted with water having low chemical and biochemical oxygen demand. Results suggest the following: that there is an optimum air injection rate: advective How of ground water can be a significant factor when ground water velocities are > 0.3 m/d: and pulsing the air injection had little effect on the oxygenation rate relative lo the continuous air injection case.  相似文献   

9.
The mobility of phosphorus (P) in septic system plumes remains a topic of debate because of the considerable reactivity of this constituent. In this study, a septic system plume in Ontario was monitored over a 16-year period with detail that clearly shows the advancing frontal portion of the P plume. This monitoring record provides insight into the extent of secondary P attenuation in the ground water zone beyond that available from previous studies. A P plume 16 m in length developed over the monitoring period with PO(4)-P concentrations (3 to 6 mg/L) that approached the concentrations present under the tile bed. Simulations using an analytical model showed that when first-order solute decay was considered to account for the possibility of secondary P attenuation in the ground water zone, field values could only be matched when decay was absent or occurred at an exceedingly slow rate (half-life greater than 30 years). Thus, hypothesized secondary P attenuation mechanisms such as slow recystallization of sorbed P into insoluble metal phosphate minerals, diffusion into microsites, or kinetically slow direct precipitation of P minerals such as hydroxyapatite were inactive in the ground water zone at this site or occurred at rates that were too slow to be observed in the context of the current 16-year study. Desorption tests on sediment samples from below the tile bed indicated a PO(4) distribution coefficient (K(d)) of 4.8, which implies a P retardation factor of 25, similar to the field apparent value of 37 determined from model calibrations. This example of inactive secondary P attenuation in the ground water zone shows that phosphorus in some ground water plumes can remain mobile and conservative for decades. This has important implications for septic systems located in lakeshore environments when long-term usage scenarios are considered.  相似文献   

10.
The extent of natural attenuation is an important consideration in determining the most appropriate corrective action at sites where ground water quality has been impacted by releases of petroleum hydrocarbons or other chemicals. The objective of this study was to develop a practical approach that would evaluate natural attenuation based on easily obtained field data and field tested indicators of natural attenuation. The primary indicators that can he used to evaluate natural attenuation include plume characteristics and dissolved oxygen levels in ground water. Case studies of actual field sites show that plumes migrate more slowly than expected, reach a steady state, and decrease in extent and concentration when natural attenuation is occurring. Background dissolved oxygen levels greater than 1 to 2 mg/L and an inverse correlation between dissolved oxygen and contaminant levels have been identified through laboratory and field studies as key indicators of aerobic biodegradation. an important attenuation mechanism. Secondary indicators such as geochemical data, and more intensive methods such as contaminant mass balances, laboratory microcosm studies, and detailed ground water modeling can demonstrate natural attenuation as well. The recommended approach for evaluating natural attenuation is to design site assessment activities so that required data such as dissolved oxygen levels and historical plume flow path concentrations are obtained. With the necessary data, the primary indicators should be applied to evaluate natural attenuation. II the initial evaluation suggests that natural attenuation is a viable corrective action alternative, then a monitoring plan should be implemented to verify the extent of natural attenuation.  相似文献   

11.
Efforts to sample representative, undisturbed distributions of uranium in ground water beneath the Fernald Environmemal Management Project (FEMP) prompted the application of a novel technique that is less invasive in the monitoring well. Recent studies (Kearl et al. 1992; Barcelona et al. 1994) indicate that representative samples can and should be collected without prior well volume exchange purging or borehole evacuation. Field experiments conducted at the FMMP demonstrate that under specific sampling conditions in a welldefined hydrogeologic system, representative ground water samples for a monitoring program can be obtained without removing the conventional three well volumes from the well. The assumption is made that indicator parameter equilibration may not be necessary to determine when to collect representative samples at the P'liMP. Preliminary results obtained from the field experiment suggest that this may be true. The technique employs low purge rates (< 1 L/min) with dedicated bladder pumps with inlets located in the screened interval of the well, while not disturbing the stagnant water column above the screened interval. If adopted, this technique, termed micro-purge low-flow sampling, will produce representative ground water samples, significantly reduce sampling costs, and minimize; waste water over the monitoring life cycle at the FEMP. This technique is well suited for sites that have been fully characterized and are undergoing long-term monitoring.  相似文献   

12.
Air sparging has been used for several years as an in situ technique for removing volatile compounds from contaminated ground water, but few studies have been completed to quantify the extent of remediation. To gain knowledge of the air flow and water behavior around air injection wells, laboratory tests and model simulations were completed at three injection flow rates (62, 187, and 283 lpm) in a cylindrical reactor (diameter - 1.2 m, depth = 0.65 m). Measurements of the air flux distribution were made across the surface of the reactor at 24 monitoring locations, six radial positions equally spaced along two orthogonal transects. Simulations using a multiphase flow model called T2VOC were completed for a homogeneous, axisymmetric configuration. Input parameters were independently measured soil properties. In all the experiments, about 75 percent of the flow injected exited the water table within 30 cm of the sparge well. Predictions with T2VOC showed the same. The averages of four flux measurements at a particular distance from the sparge well compare satisfactorily with T2VOC predictions. Measured flux values at a given radius varied by more than a factor of two, but the averages were consistent between experiments and agreed well with T2VOC simulations. The T2VOC prediction of the radial extent of sparging coincided with the distance out to which air flow from the sparge well could not be detected in the reactor. The sparging pattern was relatively unaffected by the air injection rate over the range of conditions studied. Changes in the injection rate resulted in nearly proportional changes in flux rates.  相似文献   

13.
Detection of free-phase gas (FPG) in groundwater wells is critical for accurate assessment of dissolved gas concentrations and the occurrence of FPG in the subsurface, with consequent implications for understanding groundwater contamination and greenhouse gas emissions. However, identifying FPG is challenging during routine groundwater monitoring and there is poor agreement on the best approach to detect the occurrence of FPG in groundwater. In this study, laboratory experiments in a water column were designed to mimic nonflowing and flowing conditions in a groundwater well to evaluate how the presence of FPG affects water pressure and commonly used continuous field parameters. The laboratory results were extrapolated to interpret field data at an abandoned exploration well with episodic release of free-gas CO2. The FPG effect on water pressure varied between flowing and nonflowing wells, and depending on whether the FPG was above or below the sensor. Electrical conductivity values were decreased and/or behaved erratically when FPG was present in the water column. Findings from this study have shown that the combined measurement of water pressure, electrical conductivity, and total dissolved gas pressure can provide information about the occurrence of FPG in groundwater wells. Measurement of these parameters at different depths can also provide information about relative depths and amounts of FPG within the well water column. This approach can be used for long-term monitoring of groundwater gases, managing gas-locking in production wells with gassy groundwater, and measuring fugitive greenhouse gas emissions from groundwater wells.  相似文献   

14.
Measurements of dissolved gases have numerous applications in ground water hydrology, and it is now possible to measure the total dissolved gas pressure in situ using a probe. Dissolved gas pressure is measured by submerging a headspace volume with a gas-permeable membrane, allowing dissolved gases in the water to equilibrate with gases in the headspace, then measuring the pressure in the headspace with a pressure transducer. Total dissolved gas pressure (TGP) probes have many potential uses in ground water studies employing dissolved gases, including: (1) determining approximate excess air levels, which may provide information about the time and location of recharge; (2) screening wells for air contamination, which can compromise the accuracy of dissolved gas tracer techniques: (3) detecting a trapped gas phase, which can significantly reduce hydraulic conductivity and impede the transport of dissolved solutes and gases; (4) enabling the use of gas-filled passive diffusion samplers for determining accurate dissolved gas concentrations; and (5) determining relative concentrations of CH4 and CO2 when they are known to be highly abundant. Although TGP probes designed for surface water have been available for several years, TGP probes suitable for ground water applications have only recently become available. Herein we present what are, to our knowledge, the first reported ground water dissolved gas data collected using a TGP probe. We also explain the basic operating principles of these probes and discuss the potential applications listed.  相似文献   

15.
The New Jersey Department of Environmental Protection's Technical Regulations require the horizontal and vertical delineation of contamination. Monitor wells screened at increasingly deeper intervals are used to delineate vertical contamination. In New Jersey, the open interval in a bedrock well cannot exceed 7.6 m. Since contamination has been found at depths as great as 91.4 m in a production well in the study area, it would be prohibitively expensive to install monitor wells with 7.6 m open holes at ever-increasing depths until no contamination was found. Isolation of discrete zones in boreholes using pneumatic packers was implemented at a site in north central New Jersey. Ground water samples were collected from selected 6.1 m sections of boreholes drilled into fractured bedrock at three locations on the property and one offsite location. The ground water samples were analyzed in a field laboratory. The analytical results were used to determine the vertical extent of gasoline-related compounds dissolved in the ground water on the property and offsite. These compounds include benzene, ethylbenzene, methyl tertiary butyl ether, toluene, and xylenes. The four boreholes were converted into bedrock monitor wells. The intake interval for each of the wells was selected through evaluation of the vertical distribution of contaminants as determined from analytical results obtained from a field laboratory located onsite. Three wells are used for the recovery of contaminated ground water. The recovered water will be treated at the onsite air-stripping unit. The fourth well is used to chemically and hydraulically monitor the progress of the ground water recovery program.  相似文献   

16.
Dissolved oxygen (D.O.) concentration has a significant effect upon ground water quality by regulating the valence state of trace metals and by constraining the bacterial metabolism of dissolved organic species. For these reasons, the measurement of dissolved oxygen concentration should be considered essential in most water quality investigations. D.O. measurements have been frequently neglected in ground water monitoring. This is because O2 has often been assumed absent below the water table; measurement of O2, concentrations is not mandated by drinking water standards; and the redox potential has previously been considered an adequate and encompassing electrochemical measurement. Redox potentials, however, cannot adequately predict dissolved oxygen concentrations nor can D.O. concentrations be used to calculate redox potentials.
D.O. concentrations can be measured precisely in the field by titration or electrode methods. The best methods of sample recovery are those that use positive pressure displacement devices. A fully adequate sampling procedure will isolate ground water from the atmosphere and will collect samples at restricted depth intervals at ambient temperature and pressure.  相似文献   

17.
Gasoline constituents were detected in unsaturated soil and rock during abandonment of a leaky underground storage tank (UST). The unsaturated sequence beneath the former UST consists of 90 feet of silty till, fractured dolomite, and friable sand-stone. Pore gas probes were installed in each of the unsaturated units, both in the source area and in a background on-site location. Pore gas samples were collected to evaluate the nature, extent, and fate of residual hydrocarbons in the vadose zone. Pore gas from the till and dolomite in the source area was enriched in petroleum hydrocarbons and carbon dioxide, and was depleted in oxygen, relative to pore gas from the background area. During two years of ground water monitoring at the site, methyl tertiary butyl ether was periodically detected in the ground water beneath the source area as pulses of recharge passed through the unsaturated zone, but no other gasoline constituents were detected. Apparently, the most degradable fraction of the gasoline (aromatic hydrocarbons) is being attenuated in the vadose zone before the water table is reached.  相似文献   

18.
A number of samples of polyvinyl chloride (PVC) well casings used for ground water monitoring that varied in schedule, diameter or manufacturer were placed in contact with low concentrations of aqueous solutions of TNT, RDX, HMX and 2,4-DNT for 80 days. Analysis indicated that there was more loss of TNT and HMX with the PVC casing than with the glass controls, but that the amount lost was, for the most part, equivalent among different types. A second experiment was performed to determine if these losses were due to sorption or if biodegradation was involved. Several different ground water conditions were simulated by varying salinity, initial pH and dissolved oxygen content. The only case where there was an in-creased loss of any substance due to the presence of PVC casing was with the TNT solution under non-sterile conditions. The extent of loss was small, however, considering the length of the equilibration period. This increased loss is thought to be associated with increased microbial degradation rather than sorption. Several samples of PVC casing were also leached with ground water for 80 days. No detectable interferences were found by reversed-phase high performance liquid chromatography (HPLC) analysis. Therefore, it is concluded that PVC well casings are suitable for monitoring ground water for the presence of these munitions.  相似文献   

19.
Four state-of-the-art ground water sampling systems were analyzed to determine their reliability in providing representative samples of the volatile chlorinated hydrocarbons trichloroethylene (TCE), perchloroethylene (PCE), and 1,1,1-trichloroethane (TCA) from a simulated monitoring well. The sampling systems studied represent four commonly used devices, including a stainless steel and Teflon® piston pump, a Teflon bailer, a Teflon bladder pump, and a PVC air-lift pump.
Controlled laboratory sampling experiments were conducted in a tank and well test chamber designed to approximate field conditions. A well purging and sampling procedure was used in the test apparatus to determine the accuracy and precision of each device for detecting low concentrations of the compounds in ground water. The compounds selected are some of the most ubiquitous hazardous contaminants found in shallow aquifers near hazardous waste sites throughout the United States.
No significant statistical difference was found among the four sampling systems in detecting the compounds.  相似文献   

20.
Data from an existing network of ground water monitoring wells at the U.S. Department of Energy (DOE) Hoe Creek Underground Coal Gasification (UCG) Experimental Site indicated that organic contaminants, particularly phenols produced during gasification experiments, were threatening neighboring ground water resources. The existing monitoring well network was sparse and further definition of the extent and direction of contaminant migration was needed. Additionally, water level data, important in determining flow directions, was incomplete. A field program was designed and implemented to locate and define the organic contamination and expand the existing ground water monitoring program. The program utilized field analysis of phenol for contaminant detection and well location, followed by completion using gas-drive ground water samplers/piezometers. Geophysical logging was used to permit optimum placement of the samplers. The geologic aspects of the site posed some interesting problems to the installation of the samplers. The contaminant plume edge was defined in the east, west and south directions during the field program. Further work is needed in the north direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号