首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The concentrations of PM10, PM2.5 and their water-soluble ionic species were determined for the samples collected during January to December, 2007 at New Delhi (28.63° N, 77.18° E), India. The annual mean PM10 and PM2.5 concentrations (± standard deviation) were about 219 (± 84) and 97 (±56) μgm−3 respectively, about twice the prescribed Indian National Ambient Air Quality Standards values. The monthly average ratio of PM2.5/PM10 varied between 0.18 (June) and 0.86 (February) with an annual mean of ∼0.48 (±0.2), suggesting the dominance of coarser in summer and fine size particles in winter. The difference between the concentrations of PM10 and PM2.5, is deemed as the contribution of the coarse fraction (PM10−2.5). The analyzed coarse fractions mainly composed of secondary inorganic aerosols species (16.0 μgm−3, 13.07%), mineral matter (12.32 μgm−3, 10.06%) and salt particles (4.92 μgm−3, 4.02%). PM2.5 are mainly made up of undetermined fractions (39.46 μgm−3, 40.9%), secondary inorganic aerosols (26.15 μgm−3, 27.1%), salt aerosols (22.48 μgm−3, 23.3%) and mineral matter (8.41 μgm−3, 8.7%). The black carbon aerosols concentrations measured at a nearby (∼300 m) location to aerosol sampling site, registered an annual mean of ∼14 (±12) μgm−3, which is significantly large compared to those observed at other locations in India. The source identifications are made for the ionic species in PM10 and PM2.5. The results are discussed by way of correlations and factor analyses. The significant correlations of Cl, SO42−, K+, Na+, Ca2+, NO3 and Mg2+ with PM2.5 on one hand and Mg2+ with PM10 on the other suggest the dominance of anthropogenic and soil origin aerosols in Delhi.  相似文献   

2.
Secondary aerosol formation was studied at Allahabad in the Indo-Gangetic region during a field campaign called Land Campaign-II in December 2004 (northern winter). Regional source locations of the ionic species in PM10 were identified by using Potential Source Contribution Function (PSCF analysis). On an average, the concentration of water soluble inorganic ions (sum of anions and cations) was 63.2 μgm−3. Amongst the water soluble ions, average NO3 concentration was the highest (25.0 μgm−3) followed by SO42− (15.8 μgm−3) and NH4+ (13.8 μgm−3) concentrations. These species, contributed 87% of the total mass of water soluble species, indicating that most of the water soluble PM10 was composed of NH4NO3 and (NH4)2SO4/NH4HSO4 or (NH4)3H(SO4)2 particles. Further, the concentrations of SO42−, NO3, and NH4+ aerosols increased at high relative humidity levels up to the deliquescence point (∼63% RH) for salts of these species suggesting that high humidity levels favor the conversion and partitioning of gaseous SO2, NOx, and NH3 to their aerosol phase. Additionally, lowering of ambient temperature as the winter progressed also resulted in an increase of NO3 and NH4+ concentrations, probably due to the semi volatile nature of ammonium nitrate. PSCF analysis identified regions along the Indo-Gangetic Plain (IGP) including Northern and Central Uttar Pradesh, Punjab, Haryana, Northern Pakistan, and parts of Rajasthan as source regions of airborne nitrate. Similar source regions, along with Northeastern Madhya Pradesh were identified for sulfate.  相似文献   

3.
A study has been carried out on water soluble ions, trace elements, as well as PM2.5 and PM2.5–10 elemental and organic carbon samples collected daily from Central Taiwan over a one year period in 2005. A source apportionment study was performed, employing a Gaussian trajectory transfer coefficient model (GTx) to the results from 141 sets of PM2.5 and PM2.5–10 samples. Two different types of PM10 episodes, local pollution (LOP) and Asian dust storm (ADS) were observed in this study. The results revealed that relative high concentrations of secondary aerosols (NO3, SO42− and NH4+) and the elements Cu, Zn, Cd, Pb and As were observed in PM2.5 during LOP periods. However, sea salt species (Na+ and Cl) and crustal elements (e.g., Al, Fe, Mg, K, Ca and Ti) of PM2.5–10 showed a sharp increase during ADS periods. Anthropogenic source metals, Cu, Zn, Cd, Pb and As, as well as coarse nitrate also increased with ADS episodes. Moreover, reconstruction of aerosol compositions revealed that soil of PM2.5–10 elevated approximately 12–14% in ADS periods than LOP and Clear periods. A significantly high ratio of non-sea salt sulfate to elemental carbon (NSS-SO42−/EC) of PM2.5–10 during ADS periods was associated with higher concentrations of non-sea-salt sulfates from the industrial regions of China. Source apportionment analysis showed that 39% of PM10, 25% of PM2.5, 50% of PM2.5–10, 42% of sulfate and 30% of nitrate were attributable to the long range transport during ADS periods, respectively.  相似文献   

4.
Long-term measurements of ambient particulate matter less than 2.5 μm in diameter (PM2.5) and its chemical compositions were performed at a rural site in Korea from December 2005 to August 2009. The average PM2.5 concentration was 31 μg m−3 for the whole sampling period, and showed a slightly downward annual trend. The major components of PM2.5 were organic carbon, SO42−, NO3, and NH4+, which accounted for 55 % of total PM2.5 mass on average. For the top 10 % of PM2.5 samples, anionic constituents and trace elements clearly increased while carbonaceous constituents and NH4+ remained relatively constant. Both Asian dust and fog events clearly increased PM2.5 concentrations, but affected its chemical composition differently. While trace elements significantly increased during Asian dust events, NO3, NH4+ and Cl were dramatically enhanced during fog events due to the formation of saturated or supersaturated salt solution. The back-trajectory based model, PSCF (Potential Source Contribution Function) identified the major industrial areas in Eastern China as the possible source areas for the high PM2.5 concentrations at the sampling site. Using factor analysis, soil, combustion processes, non-metal manufacture, and secondary PM2.5 sources accounted for 77 % of the total explained variance.  相似文献   

5.
An extensive aerosol sampling program was conducted during January-December 2006 over Kolkata (22o33?? N and 88o20?? E), a mega-city in eastern India in order to understand the sources, distributions and properties of atmospheric fine mode aerosol (PM2.5). The primary focus of this study is to determine the relative contribution of natural and anthropogenic as well as local and transported components to the total fine mode aerosol loading and their seasonal distributions over the metropolis. The average concentrations of fine mode aerosol was found to be 71.2?±?25.2???gm-3 varying between 34.5???gm-3 in monsoon and 112.6???gm-3 in winter. The formation pathways of major secondary aerosol components like nitrate and sulphate in different seasons are discussed. A long range transport of dust aerosol from arid and semi-arid regions of western India and beyond was observed during pre-monsoon which significantly enriched the total aerosol concentration. Vehicular emissions, biomass burning and transported dust particles were the major sources of PM2.5 from local and continental regions whereas sea-salt aerosol was the major source of PM2.5 from marine source regions.  相似文献   

6.
Airborne particulates were monitored at an urban location of middle Indo-Gangetic Plain (IGP) and subsequently analyzed for particulate diversity and mixing states. Exceptionally high particulate loadings were found both in case of coarser (PM10: 157.5 ± 102.9 μgm?3, n = 46) and finer particulates (PM2.5: 92.5 ± 49.8 μgm?3). Based on particulate morphology and elemental composition, five different clusters of particulates namely tarball, soot, sulphur-rich, aluminosilicate and mineral species were found to dominate. Soot particles (0.1–5 μm) were found to be partly coated, having voids filled by coating material without being completely engulfed. A specific type of amorphous, carbonaceous spherules was evident in wintertime fine particulates signifying emissions from biomass burning and wild fire. Traces of S, Na and Ca were found associated with carbonaceous agglomerates suggesting its metal scavenging behavior. Particle laden filters were further processed for metallic and water soluble ionic species to constitute aerosol composition. Coarser particulates were characterized with higher metallic species (9.2–17.8 %), mostly of crustal origin (Ca: 5.5 %; Fe: 1.6 %; Zn: 1.3 % and Na: 3.8 %) while PM2.5 also revealed their association with metallic components (6.0–14.9 %) having Ca (4.6 %), Fe (0.9 %) and K (0.8 %) as principle constituents. Ca, Na and NH4 + found to generate chloride and sulphate salts thus affecting particulate hygroscopicity. Elevated fractions of NO3 ? and K+ in PM2.5 signified contribution of biomass burning while presence of Cl? with carbonaceous aerosols having traces of Si and K denoted contribution of farming and burning practices. Black carbon aerosol exhibited significant seasonal variability (6.9?21.9 μgm?3) which support larger association of carbonaceous aerosols in particle micrograph.  相似文献   

7.
Campaigns were conducted to measure Organic Carbon (OC) and Elemental Carbon (EC) in PM2.5 during winter and summer 2003 in Beijing. Modest differences of PM2.5 and PM10 mean concentrations were observed between the winter and summer campaigns. The mean PM2.5/PM10 ratio in both seasons was around 60%, indicating PM2.5 contributed significantly to PM10. The mean concentrations of OC and EC in PM2.5 were 11.2±7.5 and 6.0±5.0μg m-3 for the winter campaign, and 9.4±2.1 and 4.3±3.0 μg m-3 for the summer campaign, respectively. Diurnal concentrations of OC and EC in PM2.5 were found high at night and low during the daytime in winter, and characterized by an obvious minimum in the summer afternoon. The mean OC/EC ratio was 1.87±0.09 for winter and Z39±0.49 for summer. The higher OC/EC ratio in summer indicates some formation of Secondary Organic Carbon (SOC). The estimated SOC was 2.8 μg m-3 for winter and 4.2μg m-3 for summer.  相似文献   

8.

Size-segregated aerosol particles were collected using a high volume MOUDI sampler at a coastal urban site in Xiamen Bay, China, from March 2018 to June 2020 to examine the seasonal characteristics of aerosol and water-soluble inorganic ions (WSIIs) and the dry deposition of nitrogen species. During the study period, the annual average concentrations of PM1, PM2.5, PM10, and TSP were 14.8?±?5.6, 21.1?±?9.0, 35.4?±?14.2 μg m?3, and 45.2?±?21.3 μg m?3, respectively. The seasonal variations of aerosol concentrations were impacted by the monsoon with the lowest value in summer and the higher values in other seasons. For WSIIs, the annual average concentrations were 6.3?±?3.3, 2.1?±?1.2, 3.3?±?1.5, and 1.6?±?0.8 μg m?3 in PM1, PM1-2.5, PM2.5–10, and PM>10, respectively. In addition, pronounced seasonal variations of WSIIs in PM1 and PM1-2.5 were observed, with the highest concentration in spring-winter and the lowest in summer. The size distribution showed that SO42?, NH4+ and K+ were consistently present in the submicron particles while Ca2+, Mg2+, Na+ and Cl? mainly accumulated in the size range of 2.5–10 μm, reflecting their different dominant sources. In spring, fall and winter, a bimodal distribution of NO3? was observed with one peak at 2.5–10 μm and another peak at 0.44–1 μm. In summer, however, the fine mode peak disappeared, likely due to the unfavorable conditions for the formation of NH4NO3. For NH4+ and SO42?, their dominant peak at 0.25–0.44 μm in summer and fall shifted to 0.44–1 μm in spring and winter. Although the concentration of NO3–N was lower than NH4–N, the dry deposition flux of NO3–N (35.77?±?24.49 μmol N m?2 d?1) was much higher than that of NH4–N (10.95?±?11.89 μmol N m?2 d?1), mainly due to the larger deposition velocities of NO3–N. The contribution of sea-salt particles to the total particulate inorganic N deposition was estimated to be 23.9—52.8%. Dry deposition of particulate inorganic N accounted for 0.95% of other terrestrial N influxes. The annual total N deposition can create a new productivity of 3.55 mgC m?2 d?1, accounting for 1.3–4.7% of the primary productivity in Xiamen Bay. In light of these results, atmospheric N deposition could have a significant influence on biogeochemistry cycle of nutrients with respect to projected increase of anthropogenic emissions from mobile sources in coastal region.

  相似文献   

9.
The contribution of emissions from agricultural facilities is rapidly becoming a major concern for local and regional air quality. Characterization of particle properties such as physical size distribution and chemical composition can be valuable in understanding the processes contributing to emissions and ultimate fate of particulate matter from agricultural facilities. A measurement campaign was conducted at an Iowa, deep-pit, three-barn swine finishing facility to characterize near-source ambient particulate matter. Size-specific mass concentrations were determined using minivol samplers, with additional size distribution information obtain using optical particle counters. Particulate composition was determined via ion chromatographic analysis of the collected filters. A thermal-CO2 elemental/organic carbon analyzer measured particulate carbon. The chemical composition and size distribution of sub-micron particles were determined via real-time aerosol mass spectrometry. Primary particulate was not found to be a major emission from the examined facility, with filter-based impactor samples showing average near-source increases (~15–50 m) in ambient PM10 of 5.8 ± 2.9 μg m−3 above background levels. PM2.5 also showed contribution attributable to the facility (1.7 ± 1.1 μg m−3). Optical particle counter analysis of the numerical size distributions showed bimodal distributions for both the upwind and downwind conditions, with maximums around 2.5 μm and below the minimum quantified diameter of 0.3 μm. The distributions showed increased numbers of coarse particles (PM10) during periods when wind transport came from the barns, but the differences were not statistically significant at the 95% confidence level. The PM10 aerosols showed statistically increased concentrations of sulfate, nitrate, ammonium, calcium, organic carbon, and elemental carbon when the samplers were downwind from the pig barns. Organic carbon was the major constituent of the barn-impacted particulate matter in both sub-micron (54%) and coarse size (20%) ranges. The AMS PM1 chemical speciation showed similar species increases, with the exception of and Ca+2, the latter not quantified by the AMS.  相似文献   

10.
The new European Council Directive (PE-CONS 3696/07) frames the inhalable (PM10) and fine particles (PM2.5) on priority to chemically characterize these fractions in order to understand their possible relation with health effects. Considering this, PM2.5 was collected during four different seasons to evaluate the relative abundance of bulk elements (Cl, S, Si, Al, Br, Cu, Fe, Ti, Ca, K, Pb, Zn, Ni, Mn, Cr and V) and water soluble ions (F, Cl, NO2 , NO3 , SO4 2−, Na+, NH4 +, Ca2+ and Mg2+) over Menen, a Belgian city near the French border. The air quality over Menen is influenced by industrialized regions on both sides of the border. The most abundant ionic species were NO3 , SO4 2− and NH4 +, and they showed distinct seasonal variation. The elevated levels of NO3 during spring and summer were found to be related to the larger availability of the NOx precursor. The various elemental species analyzed were distinguished into crustal and anthropogenic source categories. The dominating elements were S and Cl in the PM2.5 particles. The anthropogenic fraction (e.g. Zn, Pb, and Cu) shows a more scattered abundance. Furthermore, the ions and elemental data were also processed using principal component analysis and cluster analysis to identify their sources and chemistry. These approach identifies anthropogenic (traffic and industrial) emissions as a major source for fine particles. The variations in the natural/anthropogenic fractions of PM2.5 were also found to be a function of meteorological conditions as well as of long-range transport of air masses from the industrialized regions of the continent. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Cloud/fog samples were collected during spring of 2007 in the highly polluted North China Plain in order to examine the impact of pollution and dust particles on cloud water chemistry. The volume weighted mean pH of cloud water was 3.68. The cloud acidity was shown to be associated with air mass origins. Cloud water with its air mass trajectories originating from the southern part of China was more acidic than those from northern China. Anthropogenic source and dust had obvious impact on cloud water composition as indicated by the very high mean concentrations of SO42? (1331.65 μeq L? 1), NO3? (772.44 μeq L? 1), NH4+ (1375.92 μeq L? 1) and Ca2+ (625.81 μeq L? 1) in the observation periods. During sandstorm days, cloud pH values were relatively high, and the concentrations of all the ions in cloud water reached unusual high levels. Significant decreases in the mass concentrations of PM2.5 and PM10 were observed during cloud events. The average scavenging ratio for PM2.5 and PM10 was 52.0% and 55.7%, respectively. Among the soluble ions in fine particles, NO3?, K+ and NH4+ tend to be more easily scavenged than Ca2+ and Na+.  相似文献   

12.
Both aerosol and rainwater samples were collected and analyzed for ionic species at a coastal site in Southeast Asia over a period of 9 months (January–September 2006) covering different monsoons. In general, the occurrence and distribution of ionic species showed a distinct seasonal variation in response to changes in air mass origins. Real-time physical characterization of aerosol particles during rain events showed changes in particle number distributions which were used to assess particle removal processes associated with precipitation, or scavenging. The mean scavenging coefficients for particles in the range 10–500 nm and 500–10 μm were 7.0 × 10−5 ± 2.8 × 10−5 s−1 and 1.9 × 10−4 ± 1.6 × 10−5 s−1, respectively. A critical analysis of the scavenging coefficients obtained from this study suggested that the wet removal of aerosol particles was greatly influenced by rain intensity, and was particle size-dependent as well. The scavenging ratios, another parameter used to characterize particle removal processes by precipitation, for NH4 +, Cl, SO4 2−, and NO3 were found to be higher than those of Na+, K+, and Ca2+ of oceanic and crustal origins. This enrichment implied that gaseous species NH3, HCl, and HNO3 could also be washed out readily. These additional sources of ions in precipitation presumably counter-balanced the dilution effect caused by high total precipitation volume in the marine and tropical area.  相似文献   

13.
The chemistry of heavy haze over Urumqi,Central Asia   总被引:1,自引:0,他引:1  
A sampling campaign of aerosols over Urumqi from 2001–2007 and soil samples in the surrounding areas were carried out to investigate the severe air pollution in Urumqi, a typical inland city, located in the center of Asia. Urumqi is one of the heavy polluted cities in the world, as the days of haze spanned over one third of the year and accounted for 60–80% of the heating period for the past 6 years. High concentration of fine aerosols, frequent occurrence, and rapid formation of heavy haze were the three main characteristics. With comparison of the pollution elements, As, Cd, and S, and the ratio of Ca/Al in aerosols and soils in those sites located on the south of Jungger Basin as tracers, it was found that As, Cd, and S highly enriched in the aerosols over urban Urumqi were not only from the re-suspended road dust but also from the soil transported from south of the Jungger Basin. Different from the most cities in China, the high concentration of sulfate in Urumqi was partially from the primary soil dust transported from the surrounding areas. The mixing of the local anthropogenic aerosols with the soil transported from outside the city was the main source of the high sulfate concentration. Ammonium salts were higher than the summed equivalents of SO42−, NO3, and Cl in Urumqi and much higher than that in other Chinese cities. The total water soluble ions and the total ammonium salts were as high as 57.8% and 51.0% in PM2.5. The high concentration of soluble salts with high hygroscopicity, especially ammonium and sulfate salts, were the main factors contributing to the heavy haze over Urumqi.  相似文献   

14.
Size-segregated high-volume (HV) quartz filter samples were collected daily at the Melpitz rural site in Germany for PM10 (November 1992 until April 2012), and for PM2.5 and PM1 (January 2003 until April 2012, PM1 sampled every sixth day). The samples were analysed for mass concentration (gravimetrically), water-soluble ions (ion-chromatography) and since 2003 for organic carbon (OC) and elemental carbon (EC) (thermography). The long-term measurements first show a decreasing trend for PM10 (1993–2000) followed by a second period (2001–2011) with a mean mass concentration of about 22.4 μgm?3 and an inter-annual variation of about?±?2.9 μgm?3 (13% fluctuation margin). The absolute sulphate and calcium concentration (for the full period), as well as the EC concentration (time after 2003) decrease by about 50, 75 and 30% for PM10, respectively. The nitrate concentration remains constant all the time. For the daily objective weather type classification (OWTC, 1993–2002) the highest PM10 concentration was found for South-East (SE) and the lowest for North-West (NW) wind direction with 44 and 24 μgm?3, respectively. These concentrations decrease for 2003–2011 in comparison to 1993–2002 by about 21% and 26%, respectively. The highest PM10, PM2.5 and PM1 concentrations (2003–2011) were found for SE and the lowest for NW wind direction with about 34 and 17 μgm?3 (PM10), 28 and 19 μgm?3 (PM2.5) and 22 and 11 μgm?3 (PM1), respectively. The relative content of sulphate, OC and EC was the highest for SE wind direction. A differentiation into four categories for winter (Wi) and summer (Su) and air mass inflow from West (W) and East (E) was carried out. The highest PM concentrations were observed for WiE with the highest inter-annual fluctuation. In this category sulphate contents are largest. The lowest concentrations where found for SuW. The means for WiE show the strongest relative decreases, e.g. in PM10 sulphate (1993–2011) and EC (2003–2011) by about 60% and 40%, respectively. Nitrate is an indicator for NOx motor-car emissions. It shows a typical variation with maximum values in the middle of the week, especially for air mass inflow from West. In contrast, chloride mostly originating from sea spray doesn’t show such a concentration pattern. The PM2.5/PM10 as well the PM1/PM10-ratio have the highest median (0.878 and 0.654) during WiE and the lowest (0.718 and 0.578) during SuW, respectively. For the ratio PM2.5/PM10 a slightly increasing trend was found (about 0.71 and 0.83 for 1995 and 2011, respectively). The increase is stronger in summer than in winter.  相似文献   

15.
The indoor PM2.5 aerosol samples for charcoal broiling source under Chinese traditional charbroiling and the ambient fine aerosols samples (PM2.5) were collected in Beijing to investigate the characteristics of the charcoal broiling source and its impact on the fine organic aerosols in the atmosphere. The concentrations of 20 species of the trace organic compounds, including polycyclic aromatic hydrocarbons (PAHs), fatty acids, levoglucosan, and cholesterol in PM2.5 were identified and quantified by GC/MS. The total PAHs and fatty acids emitted from charcoal broiling to PM2.5 were 8.97 and 87,000 ng mg−1 respectively. The concentrations of the light molecular weight (LMW) 3- and 4-ring PAHs were much higher than those of the high molecular weight (HMW) 5- and 6-ring PAHs. Fatty acids were the most abundant species in source profile, accounting for over 90% of all identified organic compounds. More polyunsaturated fatty acid (linoleic acids) than the saturated fatty acid (stearic acids) emitted in the cooking. Charcoal broiling is a minor source of PAHs compared to the source of biomass burning. Comparing the ratios of levoglucosan/fatty acid and levoglucosan/cholesterol in the charcoal broiling samples to the ambient samples, it is evident that meat cooking is an important source of fatty acids, but a less important source of cholesterol. Cooking, as one of the source of fine organic particles, plus other anthropogenic sources would be related to the formation of the severe haze occurred and spread over the urban atmosphere in most of the cities of China in the past several years.  相似文献   

16.
气候变化引起的地面气溶胶浓度变化与区域空气质量密切相关。本文利用“国际大气化学—气候模式比较计划”(Atmospheric Chemistry and Climate Model Intercomparison Project, ACCMIP)中4个模式的试验数据分析了RCP8.5情景下2000~2100年气候变化对中国气溶胶浓度的影响。结果显示,在人为气溶胶排放固定在2000年、仅考虑气候变化的影响时,2000~2100年气候变化导致中国北部地区(31°N~45°N, 105°E~122°E)硫酸盐、有机碳和黑碳气溶胶分别增加28%、21%和9%,硝酸盐气溶胶在中国东部地区减少30%。气候变化对细颗粒物(PM2.5)浓度的影响有显著的季节变化特征,冬季PM2.5浓度在中国东部减少15%,这主要是由硝酸盐气溶胶在冬季的显著减少造成的;夏季PM2.5浓度在中国北部地区增加16%,而长江以南地区减少为9%,这可能与模式模拟的未来东亚夏季风环流的增强有关。  相似文献   

17.
Continuous observations of mass concentration and elemental composition of aerosol particles (PM2.5) were conducted at Tongyu, a semi-arid site in Northeast China in the spring of 2006. The average mass concentration of PM2.5 at Tongyu station was 260.9±274.4 μg m^-3 during the observation period. Nine dust events were monitored with a mean concentration of 528.0±302.7 μgm^-3. The PM2.5 level during non- dust storm (NDS) period was 111.65±63.37 μg m^-3. High mass concentration shows that fine-size particles pollution was very serious in the semi-arid area in Northeast China. The enrichment factor values for crust elements during the dust storm (DS) period are close to those in the NDS period, while the enrichment factor values for pollution elements during the NDS period are much higher than those in the DS period, showing these elements were from anthropogenic sources. The ratios of dust elements to Fe were relative constant during the DS period. The Ca/Fe ratio in dust aerosols at Tongyu is remarkably different from that observed in other source regions and downwind regions. Meteorological analysis shows that dust events at Tongyu are usually associated with dry, low pressure and high wind speed weather conditions. Air mass back-trajectory analysis identified three kinds of general pathways were associated with the aerosol particle transport to Tongyu, and the northwest direction pathway was the main transport route.  相似文献   

18.
PM10 samples were collected over three years at Monzenmachi, the Japan Sea coast, the Noto Peninsula, Ishikawa, Japan from January 17, 2001 to December 18, 2003, using a high volume air sampler with quartz filters. The concentrations of the water-soluble inorganic ions in PM10 were determined with using ion chromatography. By analyzing the characteristics of these, the evidences were found that the Asian outflow had an obviously influence on the air quality at our study site. The results were as follows: the secondary pollutants SO42−, NO3 and NH4+ were the primary water-soluble inorganic ions at our study site. The monthly mean concentrations of SO42−, NH4+, NO3 and Ca2+ have prominent peak in spring due to the strong influence of the Asian continent outflow—these according to backward air trajectory analysis, the maximum of which were 6.09 for nss-SO42− in May, 2.87 for NO3 and 0.68 μg m−3 for nss-Ca2+ in April, respectively. Comparable to similar data reported from various points around East Asia, it had the characteristics of a polluted coastal area at our study site. The concentration of nss-Ca2+ in PM10 drastically increased when the Asian dust invaded, the mean value during the Asian dust days(AD) was 0.86 μg m−3, about 4 times higher than those of normal days (NAD). Meanwhile, the mean concentrations of nss-SO42−, NO3 and NH4+ in AD periods were higher than those in NAD periods which were 5.87, 1.76 and 1.82 μg m−3, respectively, it is due to the interaction between dust and secondary particles during the long-range transport of dust storms. Finally, according to the source apportionment with positive matrix factorization (PMF) method in this study, the major source profiles of PM10 at our study site were categorized as (1) marine salt, (2) secondary sulfate, (3) secondary nitrate and (4) crustal source.  相似文献   

19.
Near real-time measurements of PM2.5 ionic compositions were performed at the summit of the highest mountain in the central-eastern plains in the spring and summer of 2007 in order to characterize aerosol composition and its interaction with clouds. The average concentrations of total water soluble ions were 27.5 and 36.7 μg?m?3, accounting for 44% and 62% of the PM2.5 mass concentration in the spring and summer, respectively. A diurnal pattern of SO 4 2- , NH 4 + and NO 3 - was observed in both campaigns and attributed to the upslope/downslope transport of air mass and the development of the planetary boundary layer (PBL). The average SO2 oxidation ratio (SOR) in summer was 57% (±27%), more than twice that in spring 24% (±16%); the fine nitrate oxidation ratio (NOR) was comparable in the two seasons (9?±?6% and 11?±?10% in summer and spring, respectively). This result indicates strong summertime production of sulfate aerosol. A principal component analysis shows that short-range and long-range transport of pollution, cloud processing, and crustal source were the main factors affecting the variability of the measured ions (and other trace gases and aerosols) at Mt. Tai. Strong indications of biomass burning were observed in summer. Cloud scavenging rates showed larger variations for different ions and in different cloud events. The elevated concentrations of the water soluble ions at Mt. Tai indicate serious aerosol pollution over the North China plain of eastern China.  相似文献   

20.
Ambient respirable particles (PM10; aerodynamic diameter ≤10 μm) collected in a tropical urban environment (Delhi, India) during December 2008-November 2009 were characterized with respect to 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) and 8 major and trace metals (Fe, Mn, Cd, Cu, Ni, Pb, Zn and Cr). Concentrations of Σ16PAHs (annual mean: 74.7 ± 50.7 ng m−3, range 22.1–258.4 ng m−3) and most metallic species were at least an order of magnitude greater than values reported from similar locations worldwide. Seasonal variations in Σ16PAHs were significant (p < 0.001) with highest levels in winter while crustal and anthropogenic metals showed significant but mutually opposite seasonal dependence. Statistically significant associations were observed between chemical species and various meteorological parameters. The PAH profile was dominated by combustion-derived large-ring species (~85%) that were essentially local in origin. Principal component analysis–multiple linear regression (PCA-MLR) apportioned four sources: crustal dust (73%), vehicular emission (21%), coal combustion (4%) and industrial emission (2%) that was further validated by hierarchical cluster analysis (HCA). Temporal trend analysis showed that crustal sources were predominant in summer (p < 0.05) while the remaining sources were most active in winter. Summertime intrusions of Saharan dust were identified with the help of aerosol maps and air parcel backward trajectories. Inhalation cancer risk assessment showed that up to 3,907 excess cancer cases (357 for PAHs, 122 for Cd, 2040 for Cr (VI) and 1387 for Ni) are likely in Delhi considering lifetime inhalation exposure to these chemicals at their current concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号