首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GPS-measured land subsidence in Ojiya City, Niigata Prefecture, Japan   总被引:1,自引:0,他引:1  
Land subsidence caused by compression of clay layers in Ojiya City, Japan was measured by global positioning system (GPS) between 1 April 1996 and 31 December 1998.

Three baselines were selected in and around the city, and height difference on a WGS-84 ellipsoid was measured by GPS on each baseline. The ground at the GPS station in the city subsides and rebounds 7 cm every winter and spring, respectively. Measurement accuracy was 9.5 mm standard deviation. Ground water level was observed at a well near the GPS station. Regression analysis between total strain, calculated as ratio of the height difference displacement to the total thickness of the clay layers, and the layers' effective stress change with ground water level change gave good correlation. The slope of regression line 7.0×10−11 m2/N was obtained as an average apparent coefficient of volume compressibility of the layers.  相似文献   


2.
A spatial database of 791 landslides is analyzed using GIS to map landslide susceptibility in Tsugawa area of Agano River. Data from six landslide-controlling parameters namely lithology, slope gradient, aspect, elevation, and plan and profile curvatures are coded and inserted into the GIS. Later, an index-based approach is adopted both to put the various classes of the six parameters in order of their significance to the process of landsliding and weigh the impact of one parameter against another. Applying primary and secondary-level weights, a continuous scale of numerical indices is obtained with which the study area is divided into five classes of landslide susceptibility. Slope gradient and elevation are found to be important to delineate flatlands that will in no way be subjected to slope failure. The area which is at high scale of susceptibility lies on mid-slope mountains where relatively weak rocks such as sandstone, mudstone and tuff are outcropping as one unit.  相似文献   

3.
Data recorded by a seismic network deployed the day after the 2004 Mid Niigata Prefecture Earthquake (M6.8) in central Japan are used to determine the major source faults responsible for the mainshock and major aftershocks. Using this high-resolution seismic data, three major source faults are identified: two parallel faults dipping steeply to the west located 5 km apart, and the other dipping eastward and oriented perpendicular to the west-dipping faults. The analysis also reveals that the lateral variation in seismic velocity observed at the surface extends to a depth of 15 km, encompassing the source area of the mainshock. This strong heterogeneity of the crust, related to the complex geological and tectonic evolution of the area, is considered to be responsible for the prominent aftershock activity following the 2004 Niigata event.  相似文献   

4.
A sufficient knowledge on the kinematics and development of landslides helps to adopt proper measures that can be used to protect slopes and the environment in general. This can be achieved by adequate monitoring programs. This paper presents the findings of intensive monitoring activities carried out on Shiidomari and Katanoo landslides found in Sado Island of Japan. More than one year of observation of the two landslides allowed defining some peculiar futures of their kinematics and style of development. The problem of slope instability in the two areas is generally accredited to various factors. But, both landslides were triggered by heavy rainfalls and snowmelt. Because of the outline of the area and the presence of relict topographic features, the Shiidomari landslide is considered to be a large-scale reactivation of old slope failures. The Katanoo landslide is, however, a first-time case. Geophysical investigations and drilling activities in Shiidomari indicated the presence of two slip planes. The deepest (80–100 m) of these is controlled by existing lineaments. Monitoring data suggests that the body of the landslide has subsided as much as 1.16 m just below the main scarp, but a centimeter in the central region. The toe sector also experienced a significant amount of subsidence, but this was counter-balanced by an uplift on the opposite side of the landslide. Hence, the landslide seems not any more active along the deepest slip surface, although it may extend upward and define a series of shallow shear planes around the crown. In the case of Katanoo, the landform characteristics, differential weathering, the road cut and groundwater fluctuations appeared to contribute much to determine the exact location of the landslide. Extensional cracks that preceded the landslide can be related to heavy rainfalls and the cold and warm cycles thereafter. Subsurface investigations and monitoring works indicated that the landslide has two slide blocks with different slip planes. During the observation period, the upper part of the landslide responded more effectively to rainfall and snowmelt than the middle and lower sections. The corresponding movements, however, appeared to settle about three months after failure. There were also little strain transmissions in boreholes and no significant change in the characteristics of the landslide. The kinematics of deformation of many of the slopes in Sado Island resembles that of Shiidomari landslide. But mass movements along highways and mountain roads are usually similar to Katanoo. Landslides of the type like Shiidomari may not show sudden and drastic failures, but are usually long lasting and can reactivate repeatedly along new, shallow shear planes. Monitoring works and long-term supervisions in these types of landslides are useful to identify impending failures and take the right measures before they brought about large-scale destruction to the environment.  相似文献   

5.
H. Yoshimatsu  S. Abe 《Landslides》2006,3(2):149-158
In spite of its small size, Japan suffers many landslide disasters due to intense rainfall and earthquakes. This article describes the distribution and topography of these landslides, and a new method of evaluating the susceptibility, the analytical hierarchic process (AHP). The method assigns scores to each factor of micro-topography of landslide-prone areas identified in aerial photographs, and assesses the susceptibility of landslide from the total score. In addition, a method of simulating sliding mass runout is briefly presented for the designating sediment-related disaster warning areas.  相似文献   

6.
The Jinnosuke-dani landslide is a giant landslide 2,000 m long and 500 m wide in the Haku-san Mountain area, Japan. It was also the first landslide to be designated as a “Landslide Prevention Area” according to the “Japan Landslide Prevention Law.” This landslide consists of alternating layers of sandstone and shale in the Tedori Formation, which was deposited from the Jurassic period to the Early Cretaceous. Based on deformation monitoring results for more than 7 years, the landslide is divided into upper and lower blocks. The upper block has moved at a speed of 80 to 170 mm/year, while the lower block has moved more slowly (3 to 15 mm/year). Monitoring data show that the variation of the groundwater level has a great influence on the landslide movement. The deteriorating effect of the weathering of the alternating layers of sandstone and shale on the landslide deformation has been confirmed by borehole exploration and monitoring.  相似文献   

7.
The mechanism of creep movement of the Zentoku landslide in crystalline schist has not been studied in detail because of the steepness of the slope, very slow movement, low population density and complex topographic and geologic characteristics. Sassa et al. (1980: Proc. INTERPRAEVENT 1, 85–106) and Sassa (1984: Proc. 4th International Symp. on Landslides, Toronto, vol. 2, pp. 179–184; 1985. Geotechnical classification of landslides, Proc. 4th International Conference and Field Workshop on Landslides, Tokyo, pp. 31–40; 1989: Landslide News, Japan Landslide Society, No. 3, pp. 21–24) monitored landslide movement and groundwater level at the Zentoku landslide on Shikoku Island, southwestern Japan, and suggested that the mechanism may be caused by underground erosion. To study the influence of underground erosion at this site, continual monitoring of suspended sediment and water discharge from a groundwater outlet (i.e. a spring) was implemented. The locations of groundwater flow paths were determined, as were the amounts of discharged sediment. Slope deformation was monitored by means of a borehole inclinometer. The conclusions were as follows: (1) the flow paths were found to be on or above the shear zones in which underground erosion has occurred; (2) in addition to being a result of precipitation and groundwater discharge, sediment discharge is affected by landslide activity; and (3) the mechanism of creep movement is an interrelated chain process that combines underground erosion caused by landslide activity with landslide activity caused by underground erosion. Thus, landslide activity increases erosion susceptibility and transportation of soils within the mass, and underground erosion causes instability of the landslide mass, in turn.

This mechanism can explain the observed phenomenon that the Zentoku landslide not only moves actively during heavy rain, but also continues to creep throughout the year.  相似文献   


8.
The impact of calamitous meteoric events and their interaction with the geological and geomorphological environment represent a current problem of the Supersano-Ruffano-Nociglia Graben in southern Italy. Indeed, severe floods take place on a frequent basis not only in autumn and winter, but in summer also. These calamities are not only triggered by exceptional events, but are also amplified by peculiar geological and morpho-structural characteristics of the Graben. Flooding often affects vast agricultural areas and consequently, water-scooping machines cannot remove the rainwater. These events cause warnings and emergency states, involving people as well as socio–economic goods. This study represents an application of a vanguard technique for loss estimation and flood vulnerability analysis, integrating a geographic information system (GIS) with aerial photos and remote sensing methods. The analysis results clearly show that the Graben area is potentially at greatest flood vulnerability, while along the Horsts the flood vulnerability is lower.  相似文献   

9.
Formation and failure of the Tsatichhu landslide dam, Bhutan   总被引:1,自引:1,他引:1  
At 00:30 (local time) on the 10th September 2003 a joint and foliation defined wedge of material with an estimated volume of 7–12×106 m3 slid into the narrow Tsatichhu River Valley, in Jarrey Geog, Lhuentse, eastern Bhutan. The Tsatichhu River, a north–easterly flowing tributary of the Kurichuu River, was completely blocked by the landslide. During its movement, the landslide transitioned into a rock avalanche that travelled 580 m across the valley before colliding with the opposite valley wall. The flow then moved down valley, travelling a total distance of some 700 m. The rock avalanche was accompanied by an intense wind blast that caused substantial damage to the heavily forested valley slopes. The resulting geomorphologically-typical rock-avalanche dam deposit created a dam that impounded a water volume of 4–7×106 m3 at lake full level. This lake was released by catastrophic collapse of the landslide, which occurred at 16:20 (local time) on 10th July 2004, after reported smaller failures of the saturated downstream face. The dam failure released a flood wave that had a peak discharge of 5900 m3 s−1 at the Kurichhu Hydropower Plant 35 km downstream.  相似文献   

10.
Resistivity Image Profiling (RIP) surveys was used to develop a lithological and hydrogeological model of the subsurface in the southeastern part of Lishan landslide area of central Taiwan. The bedrock consists of slate in the study area. Based on RIP and rock samples collected from boreholes results, three electrical strata are recognized: colluvium, the shear zone composed of shear gouges and shattered slate, and the undisturbed slate formation. The steep shear zone with resistivity ranging between 100 ~ 260 Ω-m, plays a crucial role in the local hydrogeological environment, because it forms a natural barrier which blocks and retains groundwater flowing down the slope. Groundwater will brim over the barrier when the water level is high. Thus the inclined groundwater table remains stable from long-term monitoring. It strongly indicates that the groundwater recharge is greater than that of discharge. Therefore, the shear zone can provide information about the optimum locations for draining the excess groundwater in-situ for slope stability consideration.

The curved basal surface of the colluvium and the weathered slate can also be discerned from the resistivity variations and boreholes data. A series of circular patterns may associate with the main slope failure which migrated upwards from the lower slope.  相似文献   


11.
The purpose of this study is the development, application, and assessment of probability and artificial neural network methods for assessing landslide susceptibility in a chosen study area. As the basic analysis tool, a Geographic Information System (GIS) was used for spatial data management and manipulation. Landslide locations and landslide-related factors such as slope, curvature, soil texture, soil drainage, effective thickness, wood type, and wood diameter were used for analyzing landslide susceptibility. A probability method was used for calculating the rating of the relative importance of each factor class to landslide occurrence. For calculating the weight of the relative importance of each factor to landslide occurrence, an artificial neural network method was developed. Using these methods, the landslide susceptibility index (LSI) was calculated using the rating and weight, and a landslide susceptibility map was produced using the index. The results of the landslide susceptibility analysis, with and without weights, were confirmed from comparison with the landslide location data. The comparison result with weighting was better than the results without weighting. The calculated weight and rating can be used to landslide susceptibility mapping.  相似文献   

12.
A numerical–cartographical method has been developed to create landslide hazard maps. This method allows the assigning of a rating to the various parameters which contribute to landslides. The parameters considered are: (1) erodibility and degradability of the rocks and Quaternary deposits; (2) permeability of the ground to identify areas prone to hydraulic overpressure; (3) the geometric ratio between discontinuities and slope, and thickness of Quaternary deposits; (4) angle of the slopes; and (5) land use. A thematic map is constructed for each factor considered which defines different areas through ratings, after which all the thematic maps are overlaid and the ratings added up (or multiplied). The map which is thus obtained is reclassified in order to create the final map of landslide hazard. This method, which has already been tested in various areas, has produced excellent results in this case too, allowing a map to be constructed which corresponds to the actual instability problems.  相似文献   

13.
Gas hydrate is exposed on the sea floor and is buried in shallow sediments in the off-Joetsu area at the eastern margin of the Sea of Japan. Sediment cores recovered from topographic highs of the Joetsu Knoll and Umitaka Spur show pockmarks and mounds formed by gas hydrate dissociation, but those from the Un-named ridge have no such topographic features. All topographic highs and pockmarks mainly comprise bioturbated layers interbedded with thinly laminated (TL) layers, which are common Sea of Japan sediments. Recovered sediments are, however, mostly disturbed by submarine landslides, showing tilted horizons, faults, slump folds, and breccia, except that from the Un-named ridge. The timing of events is well constrained by identification of the number of TL layers in some sediment cores. Landslides occurred both during the cold glacial period of the late MIS3 to the last glacial maximum (LGM) and during the warm interglacial period of the post-LGM. All were caused by the explosive rise of gas hydrate formed at very shallow depths of the sea bottom by the supply of gas from the depth of the gas hydrate stability zone through gas chimney passages developed under the pockmarks. Seismic activity demands consideration as a factor because the off-Joetsu area is tectonically active.  相似文献   

14.
Koyulhisar located in a slope of hilly region and constructed in the side of a mountain along the North Anatolian Fault Zone is frequently subject to landslides. A catastrophic landslide occurred on the morning of 17 March 2005 in the North of the Kuzulu district of Koyulhisar (Sivas, Turkey). This landslide caused widespread loss of life, and damage to buildings, and lifelines. Fifteen people were dead and five were injured, 21 houses and a minaret were covered and damaged severely. The case study presented in this paper describes and analyses the results of the detailed surveys of an interesting landslide in Kuzulu district of Koyulhisar (Sivas, Turkey), based on field and laboratory measurements and monitoring of the slide area. Landslide initiated as a collapse, and developed into debris avalanches in the valley. This phenomenon caused a disaster in the Kuzulu district. The importance of this landslide in particular has been recognized both in terms of its consequence for the people and structures and in terms of its role in allowing an understanding of process and properties of landslide triggered by a collapse in limestone karst. In view of the potential for such events to occur again in this area and environs, understanding of the failure mechanism is very crucial.  相似文献   

15.
Debris flows and debris avalanches are the most widespread and hazardous types of landslides on the British Columbia north coast. Triggered by heavy rain, they pose risks to forestry workers in sparsely developed regions. The scarcity of long-term quality rain gauges and the lack of weather radar information create significant challenge in predicting the timing of landslides, which could be used to warn and, when necessary, evacuate forestry personnel. Traditional methods to relate rainfall antecedents and rainfall intensity to known landslide dates have proven to be unsatisfactory in this study due to extreme spatial variability of rainfall, enhanced by the orographic effect and the scarcity of rain gauges in a very large area. This has led to an integration of meteorological variables in a landslide advisory system that classifies three types of approaching storms by the 850-mbar wind speed and direction, the occurrence of subtropical moisture flow, and the existence of a warm layer characterized by high thickness values of the 500- to 1,000-mbar pressure levels. The storm classification was combined with a 4-week antecedent rainfall and the 24-h rainfall measured near or in the watershed where logging operations are taking place. This system, once implemented, is thought to reduce loss of life, injury, and economic losses associated with forestry works in the study area.  相似文献   

16.
An airborne laser scanner can identify shallow landslides even when they are only several meters in diameter and are hidden by vegetation, if the vegetation is coniferous or deciduous trees in a season with fewer leaves. We used an airborne laser scanner to survey an area of the 1998 Fukushima disaster, during which more than 1,000 shallow landslides occurred on slopes of vapor-phase crystallized ignimbrite overlain by permeable pyroclastics. We identified landslides that have occurred at the 1998 event and also previous landslides that were hidden by vegetation. The landslide density of slopes steeper than 20° was 117 landslides/km2 before the 1998 disaster. This event increased the density by 233 landslides/km2 indicating that this area is highly susceptible to shallow landsliding.  相似文献   

17.
The Tsaoling landslide, one of the largest landslide areas in Taiwan, has been affected by catastrophic events triggered by rain or earthquakes six times since 1862. These landslides, including that caused by the 1999 earthquake, have essentially not been reactivated old slides, but were sequential new ones that developed upslope, retrogressively. The landslide area is underlain by Pliocene sandstone and shale to form a dip slope with a bedding plane, dipping uniformly at 14°. The slip surface of the 1999 landslide was smooth and planar, parallel to the bedding plane with a slightly stepped profile; it formed within thinly alternated beds of fine sandstone and shale with ripple lamination or in a shale bed. The shale is weathered by slaking and probably by sulfuric acid, which is inferred to be one of the major causes of the intermittent retrogressive development of the landslides. The weathering was likely accelerated by the removal of overlying beds during earlier landslides in 1941 and 1942. The top margin of the 1999 landslide, in plan view, coincided with a V-shaped scarplet, which can be clearly recognized on aerial photographs taken before the landslide. This geomorphological feature indicates that this landslide had already moved slightly before its 1999 occurrence, providing precursory evidences.  相似文献   

18.
For those working in the field of landslide prevention, the estimation of hazard levels and the consequent production of thematic maps are principal objectives. They are achieved through careful analytical studies of the characteristics of landslide prone areas, thus, providing useful information regarding possible future phenomena. Such maps represent a fundamental step in the drawing up of adequate measures of landslide hazard mitigation. However, for a complete estimation of landslide hazard, meant as the degree of probability that a landslide occurs in a given area, within a given space of time, detailed and uniformly distributed data regarding their incidence and causes are required. This information, while obtainable through laborious historical research, is usually partial, incomplete and uneven, and hence, unsatisfactory for zoning on a regional scale. In order to carry this out effectively, the utilization of spatial estimation of the relative levels of landslide hazard in the various areas was considered opportune. These areas were classified according to their levels of proneness to landslide activity without taking recurrence periods into account. Various techniques were developed in order to obtain upheaval numerical estimates. The method used in this study, which was applied in the area of Potenza, is based on techniques derived from artificial intelligence (Artificial Neural Network—ANN). This method requires the definition of appropriate thematic layers, which parameterize the area under study. These are recognized by means of specific analyses in a functional relationship to the event itself. The parameters adopted are: slope gradient, slope aspect, topographical index, topographical shape, elevation, land use and lithology.  相似文献   

19.
Landslides are common natural hazards in the seismically active North Anatolian Fault Zone of Turkey. Although seismic activity, heavy rainfall, channel incisions, and anthropogenic effects are commonly the main triggers of landslides, on March 17, 2005, a catastrophic large landslide in Sivas, northeastern of Turkey, the Kuzulu landslide, was triggered by snowmelt without any other precursor. The initial failure of the Kuzulu landslide was rotational. Following the rotational failure, the earth material in the zone of accumulation exhibited an extremely rapid flow caused by steep gradient and high water content. The Agnus Creek valley, where Kuzulu village is located, was filled by the earth-flow material and a landslide dam was formed on the upper part of Agnus Creek. The distance from the toe of the rotational failure down to the toe of the earth flow measured more than 1800 m, with about 12.5 million m3 of displaced earth material. The velocity of the Kuzulu landslide was extremely fast, approximately 6 m/s. The main purposes of this study are to describe the mechanism and the factors conditioning the Kuzulu landslide, to present its environmental impacts, and to produce landslide-susceptibility maps of the Kuzulu landslide area and its near vicinity. For this purpose, a detailed landslide inventory map was prepared and geology, slope, aspect, elevation, topographic-wetness index and stream-power index were considered as conditioning factors. During the susceptibility analyses, the conditional probability approach was used and a landslide-susceptibility map was produced. The landslide-susceptibility map will help decision makers in site selection and the site-planning process. The map may also be accepted as a basis for landslide risk-management studies to be applied in the study area.  相似文献   

20.
Mass movements such as landslides in mountainous terrains are natural degradation processes and one of the most important landscape-building factors. Varunawat Parbat overlooking Uttarkashi town witnessed a series of landslides on 23 September 2003 and the debris slides and rock falls continued for 2 weeks. This landslide complex was triggered due to the incessant rainfall prior to the event, and its occurrence led to the blockage of the pilgrim route to Gangotri (source of the Ganges river) and evacuation of thousands of people to safer places. Though there was no loss of lives due to timely evacuation, heavy losses to the property were reported. High-resolution stereoscopic earth observation data were acquired after the incidence to study the landslide in detail with emphasis on the cause of the landslide and mode of failure. Areas along the road and below the Varunawat foothill region are mapped for landslide risk. It was found that the foothill region of the Varunawat Parbat was highly disturbed by man-made activities and houses are dangerously located below steep slopes. The potential zones for landslides along with the existing active and old landslides are mapped. These areas are critical and their treatment with priority is required in order to minimise further landslide occurrences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号