首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dravite from Yemen of near end-member composition was treated in air and hydrogen atmospheres at 600–900 °C to reveal changes in Mg and Al order over the octahedrally coordinated Y and Z sites, and to explore related changes in the characteristic vibrational bands in the principal (OH)-stretching frequency. Relevant information was obtained using electron microprobe analysis (EMPA), structural refinement (SREF) and polarized infrared (IR) single-crystal spectroscopy. Overall, the EMPA, SREF and IR data show that only minor changes occur during thermal treatment up to at least 800 °C, including variations in structural parameters, Mg–Al order–disorder and (OH)-stretching bands, indicating limited hydrogen loss. Untreated and treated dravite samples have very similar long-range and short-range atomic structures, which may be related to the occurrence of stable Al–Mg extended clusters around the O1 (=W) and O3 (=V) sites: W(F)–Y(MgMgMg)–V(OH)3Z[AlAlAlAlAl(Al,Mg)]; W(OH)–Y(MgMgAl)–V(OH)3Z[AlAlAlAlAl(Al,Mg)]; W(O2–)–Y(AlAlAl)–V(OH)3Z[AlAlAlAlAl(Al,Mg)]. These extended clusters remain stable to temperatures close to the observed start of decomposition (~900 °C).  相似文献   

2.
The crystal structures of synthetic K-dravite [XKYMg 3 Z Al 6 T Si6O18(BO3) 3 V (OH) 3 W (OH)], dravite [XNaYMg 3 Z Al 6 T Si6O18(BO3) 3 V (OH) 3 W (OH)], oxy-uvite [XCaYMg 3 Z Al 6 T Si6O18(BO3) 3 V (OH) 3 W O], and magnesio-foitite [X?Y(Mg2Al)ZAl 6 T Si6O18(BO3) 3 V (OH) 3 W (OH)] are investigated by polarized Raman spectroscopy, single-crystal structure refinement (SREF), and powder X-ray diffraction. The use of compositionally simple tourmalines characterized by electron microprobe analysis facilitates the determination of site occupancy in the SREF and band assignment in the Raman spectra. The synthesized K-dravite, oxy-uvite, and magnesio-foitite have significant Mg–Al disorder between their octahedral sites indicated by their respective average 〈Y–O〉 and 〈Z–O〉 bond lengths. The Y- and Z-site compositions of oxy-uvite (YMg1.52Al1.48(10) and ZAl4.90Mg1.10(15)) and magnesio-foitite (YAl1.62Mg1.38(18) and ZAl4.92Mg1.08(24)) are refined from the electron densities at each site. The Mg–Al ratio of the Y and Z sites is also determined from the relative integrated peak intensities of the Raman bands in the O–H stretching vibrational range (3250–3850 cm?1), producing values in good agreement with the SREF data. The unit cell volume of tourmaline increases from magnesio-foitite (1558.4(3) Å3) to dravite (1569.5(4)–1571.7(3) Å3) to oxy-uvite (1572.4(2) Å3) to K-dravite (1588.1(2) Å3), mainly due to lengthening of the crystallographic c-axis. The increase in the size of the X-site coordination polyhedron from dravite (Na) to K-dravite (K) is accommodated locally in the crystal structure, resulting in the shortening of the neighboring O1H1 bond. In oxy-uvite, Ca2+ is locally associated with a deprotonated W (O1) site, whereas vacant X sites are neighbored by protonated W (O1) sites. Increasing the size of the X-site-occupying ion does not detectably affect bonding between the other sites; however, the higher charge of Ca and the deprotonated W (O1) site in oxy-uvite are correlated to changes in the lattice vibration Raman spectrum (100–1200 cm?1), particularly for bands assigned to the T 6O18 ring. The Raman spectrum of magnesio-foitite shows significant deviations from those of K-dravite, dravite, and oxy-uvite in both the lattice and O–H stretching vibrational ranges (100–1200 and 3250–3850 cm?1, respectively). The vacant X site is correlated with long- and short-range changes in the crystal structure, i.e., deformation of the T 6O18 ring and lengthening of the O1H1 and O3H3 bonds. However, X-site vacancies in K-dravite, dravite, and oxy-uvite result only in the lengthening of the neighboring O1H1 bond and do not result in identifiable changes in the lattice-bonding environment.  相似文献   

3.
Pale-blue to pale-green tourmalines from the contact zone of Permian pegmatites to mica schists and marbles from different localities of the Austroalpine basement units (Rappold Complex) in Styria, Austria, are characterized. All these Mg-rich tourmalines have small but significant Li contents, up to 0.29 wt% Li2O, and can be characterized as dravite, with FeO contents of ?~?0.9–2.7 wt%. Their chemical composition varies from X (Na0.67Ca0.19?K0.02?0.12) Y (Mg1.26Al0.97Fe2+ 0.36Li0.19Ti4+ 0.06Zn0.01?0.15) Z (Al5.31?Mg0.69) (BO3)3 Si6O18 V (OH)3? W [F0.66(OH)0.34], with a?=?15.9220(3), c?=?7.1732(2) Å to X (Na0.67Ca0.24?K0.02?0.07) Y (Mg1.83Al0.88Fe2+ 0.20Li0.08Zn0.01Ti4+ 0.01?0.09) Z (Al5.25?Mg0.75) (BO3)3 Si6O18 V (OH)3? W [F0.87(OH)0.13], with a?=?15.9354(4), c?=?7.1934(4) Å, and they show a significant Al-Mg disorder between the Y and the Z sites (R1?=?0.013–0.015). There is a positive correlation between the Ca content and?<?Y-O?>?distance for all investigated tourmalines (r?≈?1.00), which may reflect short-range order configurations including Ca and Fe2+, Mg, and Li. The tourmalines have XMg (XMg?=?Mg/Mg?+?Fetotal) values in the range 0.84–0.95. The REE patterns show more or less pronounced negative Eu and positive Yb anomalies. In comparison to tourmalines from highly-evolved pegmatites, the tourmaline samples from the border zone of the pegmatites of the Rappold Complex contain relatively low amounts of total REE (~8–36 ppm) and Th (0.1–1.8 ppm) and have low LaN/YbN ratios. There is a positive correlation (r?≈?0.91) between MgO of the tourmalines and the MgO contents of the surrounding mica schists. We conclude that the pegmatites formed by anatectic melting of mica schists and paragneisses in Permian time. The tourmalines crystallized from the pegmatitic melt, influenced by the metacarbonate and metapelitic host rocks.  相似文献   

4.
Two pumpellyites with the general formula W 8 X 4 Y 8 Z 12O56-n (OH) n were studied using 57Fe Mössbauer spectroscopic and X-ray Rietveld methods to investigate the relationship between the crystal chemical behavior of iron and structural change. The samples are ferrian pumpellyite-(Al) collected from Mitsu and Kouragahana, Shimane Peninsula, Japan. Rietveld refinements gave Fe(X):Fe(Y) ratios (%) of 41.5(4):58.5(4) for the Mitsu pumpellyite and 46(1):54(1) for the Kouragahana pumpellyite, where Fe(X) and Fe(Y) represent Fe content at the X and Y sites, respectively. The Mössbauer spectra consisted of two Fe2+ and two Fe3+ doublets for the Mitsu pumpellyite, and one Fe2+ and two Fe3+ doublets for the Kouragahana pumpellyite. In terms of the area ratios of the Mössbauer doublets and the Fe(X):Fe(Y) ratios determined by the Rietveld refinements, Fe2+(X):Fe3+(X):Fe3+(Y) ratios are determined to be 22:14:64 for the Mitsu pumpellyite and 27:8:65 for the Kouragahana pumpellyite. By applying the Fe2+:Fe3+-ratio determined by the Mössbauer analysis and the site occupancies of Fe at the X and Y sites given by the Rietveld method together with chemical analysis, the resulting formula of the Mitsu and Kouragahana pumpellyites are established as Ca8(Fe 0.88 2+ Mg0.68Fe 0.77 3+ Al1.66)Σ3.99(Al5.67Fe 2.34 3+ )Σ8.01Si12O42.41(OH)13.59 and Ca8(Mg1.24Fe 0.65 2+ Fe 0.46 3+ Al1.66)Σ4.01(Al6.71Fe 1.29 3+ )Σ8.00Si12O42.14(OH)13.86, respectively. Mean Y–O distances and volumes of the YO6 octahedra increase with increasing mean ionic radii, i.e., the Fe3+→Al substitution at the Y site. However, change of the sizes of XO6 octahedra against the mean ionic radii at the X site is not distinct, and tends to depend on the volume change of the YO6 octahedra. Thus, the geometrical change of the YO6 octahedra with Fe3+→Al substitution at the Y site is essential for the structural changes of pumpellyite. The expansion of the YO6 octahedra by the ionic substitution of Fe3+ for Al causes gradual change of the octahedra to more symmetrical and regular forms.  相似文献   

5.
Thaumasite, Ca3Si(OH)6(CO3)(SO4)12H2O, occurs as a low-temperature secondary alteration phase in mafic igneous and metamorphic rocks, and is recognized as a product and indicator of sulfate attack in Portland cement. It is also the only mineral known to contain silicon in six-coordination with hydroxyl (OH)? that is stable at ambient PT conditions. Thermal expansion of the various components of this unusual structure has been determined from single-crystal X-ray structure refinements of natural thaumasite at 130 and 298 K. No phase transitions were observed over this temperature range. Cell parameters at room temperature are: a= 11.0538(6) Å, c=10.4111(8) Å and V=1101.67(10) Å3, and were measured at intervals of about 50 K between 130 and 298 K, resulting in mean axial and volumetric coefficients of thermal expansion (×10?5K?1); α a =1.7(1), α c =2.1(2), and α V =5.6(2). Although the unit cell and VIIICaO8 polyhedra show significant positive thermal expansion over this temperature range, the silicate octahedron, sulfate tetrahedron, and carbonate group show zero or negative thermal expansion, with α V (VISiO6) = ?0.6 ± 1.1, α V (IVSO4)=?5.8 ± 1.4, and α R (C–O)= 0.0 ± 1.8 (×10?5 K?1). Most of the thermal expansion is accommodated by lengthening of the R(O...O) hydrogen bond distances by on average 5σ, although the hydrogen bonds involving hydroxyl sites on VISi expand twice as much as those on molecular water, causing the [Ca3Si(OH)6(H2O)12]4+ columns to expand in diameter more than they move apart over this temperature range. The average Si–OH bond length of the six-coordinated Si atom 〈R(VISi–OH)〉 in thaumasite is 1.783(1) Å, being about 0.02 Å (?20σ) shorter than VISi–OH in the dense hydrous magnesium silicate, phase D, MgSi2H2O6.  相似文献   

6.
Summary This study reports foggite and churchite-(Y) from two spatially separate locations in the guano-related phosphate deposit from the Cioclovina Cave, Romania. Optical microscope observations, powder X-ray diffraction, electron microprobe analyses, and FTIR were used in the analysis of the two minerals. The chemical composition of foggite was determined to be Ca0.925(Al0.91Fe2+0.016)Σ0.926(P0.991Si0.043)Σ1.034O3.74(OH)2.26 · H2O and churchite-(Y) [(Y0.830Dy0.043Er0.033Gd0.029Yb0.022)Σ0.957Ca0.009]P1.023O4.00 · 2H2O. Chemical analyses of Cioclovina churchite-(Y) clearly revealed enrichment in lanthanides of even atomic number. The refined unit-cell parameters are for foggite (orthorhombic) a = 9.264(1) ?, b = 21.334(8) ?, c = 5.197(7) ?, and V = 1027.13(8) ?3 (Z = 8); for churchite-(Y) (monoclinic): a = 5.578(8) ?, b = 15.013(6) ?, c = 6.277(8) ?, β = 117.94(4)°, and V = 464.38(5) ?3 (Z = 4). FTIR spectrum of churchite-(Y) exhibits all the bands assigned to the vibrations of PO4, OH, and water groups. Unlike other documented occurrences of foggite and churchite-(Y), in Cioclovina Cave, the occurrence of these minerals are related to a process that phosphatized subjacent limestone and various cave sediments (sand, clay, and limy mud) to form a complex phosphate assemblage. The minerals are presumably derived from phosphate-rich solutions that reacted with clay earth while moving downward through the sediments. Foggite was formed at the expense of the originally precipitated crandallite. Locally concentrated yttrium, REE, and dissolved phosphate are probably responsible for the precipitation of churchite-(Y). Present address: Department of Geology, University of South Florida, Tampa, FL, USA  相似文献   

7.
The phase state of fluid in the system H3BO3–NaF–SiO2–H2O was studied at 350–800 °C and 1–2 kbar by the method of synthetic fluid inclusions. The increase in the solubility of quartz and the high reciprocal solubility of H3BO3 and NaF in water fluid at high temperatures are due to the formation of complexes containing B, F, Si, and Na. At 800 °C and 2 kbar, both liquid and gas immiscible phases (viscous silicate-water-salt liquid and three water fluids with different contents of B and F) are dispersed within each other. The Raman spectra of aqueous solutions and viscous liquid show not only a peak of [B(OH)3]0 but also peaks of complexes [B(OH)4], polyborates [B4O5(OH)4]2–, [B3O3(OH)4], and [B5O6(OH)4], and/or fluoroborates [B3F6O3]3–, [BF2(OH)2], [BF3(OH)], and [BF4]. The high viscosity of nonfreezing fluid is due to the polymerization of complexes of polyborates and fluorine-substituted polyborates containing Si and Na. Solutions in fluid inclusions belong to P–Q type complicated by a metastable or stable immiscibility region. Metastable fluid equilibria transform into stable ones owing to the formation of new complexes at 800 ºC and 2 kbar as a result of the interaction of quartz with B-F-containing fluid. At high concentrations of F and B in natural fluids, complexes containing B, F, Si, and alkaline metals and silicate-water-salt dispersed phases might be produced and concentrate many elements, including ore-forming ones. Their transformation into vitreous masses or viscous liquids (gels, jellies) during cooling and the subsequent crystallization of these products at low temperatures (300–400 °C) should lead to the release of fluid enriched in the above elements.  相似文献   

8.
《Chemical Geology》2006,225(3-4):360-372
Powder IR absorption spectroscopy has been used to characterise cation substitutions in three garnet solid solutions: grossular–andradite, skiagite–andradite and skiagite–almandine. The wavenumber shift of the highest energy mode associated with tetrahedral vibrations depends on the type of cation occupying the adjacent sites in the structure. The wavenumber shifts exhibit positive deviations from linearity that correlate closely with the variations of the Si–O bond distances for all three garnet solid solutions. The autocorrelation function has been used to determine an effective line width (Δcorr) of the absorption bands over a given spectral region. Non-linear behaviour of Δcorr was found for all three solid solutions. An empirical calibration between Δcorr excess and calorimetric enthalpy of mixing data gives an estimate for the symmetric Margules parameters WspecH of the three solid solutions. Comparison with the systematics of aluminosilicate garnets in terms of WspecH vs. ΔV2, where ΔV represents the difference in molar volume between the end members in a binary system, reveals that such a relationship is not generally applicable to garnet solid solutions with an octahedral cation other than Al.  相似文献   

9.
Polarized infrared (IR) spectroscopy of olivine crystals from Zabargad, Red Sea shows the existence of four pleochroic absorption bands at 3,590, 3,570, 3,520 and 3,230 cm?1, and of one non pleochroic band at 3,400 cm?1. The bands are assigned to OH stretching frequencies. Transmission electron microscopy (TEM) shows no oriented intergrowths in this olivine; it is concluded that OH is structural. On the basis of the pleochroic scheme of the absorption spectra it is proposed that [□O(OH)3] and [□O2(OH)2] tetrahedra occur as structural elements, assuming that the vacancies are on Si sites. If M2 site vacancies were assumed [SiO3(OH)] and [SiO2(OH)2] tetrahedra occur as structural elements.  相似文献   

10.
A novel complex continuous system of solid solutions involving vauquelinite Pb2Cu(CrO4)(PO4)(OH), bushmakinite Pb2Al(VO4)(PO4)(OH), ferribushmakinite Pb2Fe3+(VO4)(PO4)(OH), and a phase with the endmember formula Pb2Cu(VO4)(PO4)(H2O) or Pb2Cu(VO4)(РО3ОН)(ОН) is studied based on samples from the oxidation zone of the Berezovskoe, Trebiat, and Pervomaisko-Zverevsky deposits in the Urals, Russia. This is the first natural system in which chromate and vanadate anions show a wide range of substitutions and the most extensive solid solution system involving (CrO4)2– found in nature. The major couple substitution is Cr6+ + Cu2+ ? V5+ + M3+, where M = Fe, Al. The correlation coefficients calculated from 125 point analyses are: 0.96 between V and (Fe + Al), 0.96 between Cr and (Cu + Zn),–0.96 between V and (Cu + Zn),–0.97 between Cr and (Fe + Al), and–0.97 between (Fe + Al) and (Cu + Zn). The substitutions V5+ ? Cr6+ (correlation coefficient–0.98) and to a lesser extent P5+ ? As5+ (correlation coefficient–0.86) occur at two types of tetrahedral sites, whereas the metal–nonmetal/metalloid substitutions, i.e., V or Cr for P or As, are minor. The substitution Fe3+ ? Al3+ is also negligible in this solid solution system.  相似文献   

11.
Single-crystal electron paramagnetic resonance spectra of electron-irradiated stishovite, measured at temperatures from 3.5 to 294?K, reveal three S?=?1/2 radiation-induced defects: an aluminum-associated oxygen hole center and two nd 1 centers (Ti3+ and W5+). The aluminum-associated oxygen hole center, characterized by an orthorhombic site symmetry, coaxial matrices of the electronic Zeeman g, nuclear hyperfine A(27Al) and nuclear quadrupole P(27Al), and the orientation of the g-minimum axis along an O–O direction and those of the unique A(27Al) and P(27Al) axes perpendicular to the O–O direction, is an Al–O2 3? center, with the unpaired electron equally distributed on two equatorial oxygen atoms of a substitutional Al3+ ion at the octahedral Si site. Fully optimized Al-doped structure, theoretical 27Al nuclear hyperfine and quadrupole coupling constants and directions, and 3D spin densities from periodic hybrid density functional theory calculations provide further support for this structural model. Spin Hamiltonian parameters of the Ti3+ and W5+ centers, which are confirmed by their diagnostic 47Ti, 49Ti and 183W hyperfine structures, arise from electron trapping on substitutional Ti4+ and W6+ ions at the octahedral Si site.  相似文献   

12.
A new mineral kobyashevite, Cu5(SO4)2(OH)6·4H2O (IMA 2011–066), was found at the Kapital’naya mine, Vishnevye Mountains, South Urals, Russia. It is a supergene mineral that occurs in cavities of a calcite-quartz vein with pyrite and chalcopyrite. Kobyashevite forms elongated crystals up to 0.2 mm typically curved or split and combined into thin crusts up to 1?×?2 mm. Kobyashevite is bluish-green to turquoise-coloured. Lustre is vitreous. Mohs hardness is 2½. Cleavage is {010} distinct. D(calc.) is 3.16 g/cm3. Kobyashevite is optically biaxial (?), α 1.602(4), β 1.666(5), γ 1.679(5), 2 V(meas.) 50(10)°. The chemical composition (wt%, electron-microprobe data) is: CuO 57.72, ZnO 0.09, FeO 0.28, SO3 23.52, H2O(calc.) 18.39, total 100.00. The empirical formula, calculated based on 18 O, is: Cu4.96Fe0.03Zn0.01S2.01O8.04(OH)5.96·4H2O. Kobyashevite is triclinic, $ P\overline{\,1 } $ , a 6.0731(6), b 11.0597(13), c 5.5094(6)?Å, α 102.883(9)°, β 92.348(8)°, γ 92.597(9)°, V 359.87(7)?Å3, Z?=?1. Strong reflections of the X-ray powder pattern [d,Å-I(hkl)] are: 10.84–100(010); 5.399–40(020); 5.178–12(110); 3.590–16(030); 2.691–16(20–1, 040, 002), 2.653–12(04–1, 02–2), 2.583–12(2–11, 201, 2–1–1), 2.425–12(03–2, 211, 131). The crystal structure (single-crystal X-ray data, R?=?0.0399) сontains [Cu4(SO4)2(OH)6] corrugated layers linked via isolated [CuO2(H2O)4] octahedra; the structural formula is CuCu4(SO4)2(OH)6·4H2O. Kobyashevite is a devilline-group member. It is named in memory of the Russian mineralogist Yuriy Stepanovich Kobyashev (1935–2009), a specialist on mineralogy of the Urals.  相似文献   

13.
A new mineral, tatarinovite, ideally Са3Аl(SO4)[В(ОН)4](ОН)6 · 12Н2O, has been found in cavities of rhodingites at the Bazhenovskoe chrysotile asbestos deposit, Middle Urals, Russia. It occurs (1) colorless, with vitreous luster, bipyramidal crystals up to 1 mm across in cavities within massive diopside, in association with xonotlite, clinochlore, pectolite and calcite, and (2) as white granular aggregates up to 5 mm in size on grossular with pectolite, diopside, calcite, and xonotlite. The Mohs hardness is 3; perfect cleavage on (100) is observed. D meas = 1.79(1), D calc = 1.777 g/cm3. Tatarinovite is optically uniaxial (+), ω = 1.475(2), ε = 1.496(2). The IR spectrum contains characteristic bands of SO4 2?, CO3 2?, B(OH)4 ?, B(OH)3, Al(OH)6 3-, Si(OH)6 2-, OH, and H2O. The chemical composition of tatarinovite (wt %; ICP-AES; H2O was determined by the Alimarin method; CO2 was determined by selective sorption on askarite) is as follows: 27.40 CaO, 4.06 B2O3, 6.34 A12O3, 0.03 Fe2O3, 2.43 SiO2, 8.48 SO3, 4.2 CO2, 46.1 H2O, total is 99.04. The empirical formula (calculated on the basis of 3Ca apfu) is H31.41Ca3.00(Al0.76Si0.25)Σ1.01 · (B0.72S0.65C0.591.96O24.55. Tatarinovite is hexagonal, space gr. P63, a = 11.1110(4) Å, c = 10.6294(6) Å, V = 1136.44(9) A3, Z = 2. Its crystal chemical formula is Са3(Аl0.70Si0.30) · {[SO4]0.34[В(ОН)4]0.33[СO3]0.24}{[SO4]0.30[В(ОН)4]0.34[СО3]0.30[В(ОН)3]0.06}(ОН5·73О0.27) · 12Н2O. The strongest reflections of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are 9.63 (100) (100), 5.556 (30) (110), 4.654 (14) (102), 3.841 (21) (112), 3.441 (12) (211), 2.746 (10) (302), 2.538 (12) (213). Tatarinovite was named in memory of the Russian geologist and petrologist Pavel Mikhailovich Tatarinov (1895–1976), a well-known specialist in chrysotile asbestos deposits. Type specimens have been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow.  相似文献   

14.
The paper reports new findings of avdoninite from deposits of active fumaroles in the Second Scoria Cone at the Northern Breach of the Great Fissure Tolbachik Eruption, Tolbachik Volcano, Kamchatka Peninsula, Russia. The crystal structure of the mineral has been determined for the first time, which has allowed reliable determination of its space group and unit cell dimensions, refinement of its formula K2Cu5-Cl8(OH)4 · 2H2O, and correct indexing of its X-ray powder diffraction pattern. Avdoninite is monoclinic, space group P21/c, a = 11.592(2), b = 6.5509(11), c = 11.745(2) Å, β = 91.104(6)°, V = 891.8(3) Å3, Z = 2. The crystal structure of this mineral has been determined on a single crystal R 1 [F > 4σ (F)] = 0.063. It is based on sheets of copper–oxo-chloride complexes [Cu5Cl8(OH)4]2– parallel to (100). The K+ cation and H2O molecules are interlayers.  相似文献   

15.
Tourmaline with the general formula XY3Z6(BO3)3Si6O18(OH,O)3(OH,F) and the trigonal space group R3m (C3v5) is known as a gemstone with great variety of colors. Some color centers are related to transition metal ions, and others to electron or hole traps. In this paper we report on a combined study using electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and the optical detection of EPR (ODEPR) on a yellow color center produced by -irradiation in colorless Li-bearing elbaite tourmaline from Brazil. The color center is an O hole trap center, which is stabilized within the plane spanned by three Y sites, and is located in the structural channels formed by Si6O18. We suggest that two of the Y sites are substituted by 27Al and the other by 6,7Li. During the irradiation process atomic hydrogen H0 is also produced, which shows the same thermal stability as the hole center (250 °C). Therefore, we assign H0 to be the local charge compensator for the hole trap. From the ODEPR measurements we conclude that the yellow color is caused by the O hole center. The large negative isotropic Al superhyperfine interaction of the O hole trap center is consistent with a calculation of the transferred hyperfine interactions by exchange polarization supporting the proposed defect model of an O at the O1 sites, whereby the O is relaxed into the plane formed by three Y ions.  相似文献   

16.
Single-crystal study of the structure (R = 0.0268) was performed for garyansellite from Rapid Creek, Yukon, Canada. The mineral is orthorhombic, Pbna, a = 9.44738(18), b = 9.85976(19), c = 8.14154(18) Å, V = 758.38(3) Å3, Z = 4. An idealized formula of garyansellite is Mg2Fe3+(PO4)2(OH) · 2H2O. Structurally the mineral is close to other members of the phosphoferrite–reddingite group. The structure contains layers of chains of M(2)O4(OH)(H2O) octahedra which share edges to form dimers and connected by common edges with isolated from each other M(1)O4(H2O)2 octahedra. The neighboring chains are connected to the layer through the common vertices of M(2) octahedra and octaahedral layers are linked through PO4 tetrahedra.  相似文献   

17.
A new mineral, yegorovite, has been identified in the late hydrothermal, low-temperature assemblage of the Palitra hyperalkaline pegmatite at Mt. Kedykverpakhk, Lovozero alkaline pluton, Kola Peninsula, Russia. The mineral is intimately associated with revdite and megacyclite, earlier natrosilite, microcline, and villiaumite. Yegorovite occurs as coarse, usually split prismatic (up to 0.05 × 0.15 × 1 mm) or lamellar (up to 0.05 × 0.7 × 0.8 mm) crystals. Polysynthetic twins and parallel intergrowths are typical. Mineral individuals are combined in bunches or chaotic groups (up to 2 mm); radial-lamellar clusters are less frequent. Yegorovite is colorless, transparent with vitreous luster. Cleavage is perfect parallel to (010) and (001). Fracture is splintery; crystals are readily split into acicular fragments. The Mohs hardness is ~2. Density is 1.90(2) g/cm3 (meas) and 1.92 g/cm3 (calc). Yegorovite is biaxial (?), with α = 1.474(2), β = 1.479(2), and γ = 1.482(2), 2V meas > 70°, 2V calc = 75°. The optical orientation is Xa ~ 15°, Y = c, Z = b. The IR spectrum is given. The chemical composition determined using an electron microprobe (H2O determined from total deficiency) is (wt %): 23.28 Na2O, 45.45 SiO2, 31.27 H2Ocalc; the total is 100.00. The empirical formula is Na3.98Si4.01O8.02(OH)3.98 · 7.205H2O. The idealized formula is Na4[Si4O8(OH)4] · 7H2O. Yegorovite is monoclinic, space group P21/c. The unit-cell dimensions are a = 9.874, b= 12.398, c = 14.897 Å, β = 104.68°, V = 1764.3 Å3, Z = 4. The strongest reflections in the X-ray powder pattern (d, Å (I, %)([hkl]) are 7.21(70)[002], 6.21(72)[012, 020], 4.696(44)[022], 4.003(49)[211], 3.734(46)[\(\bar 2\) 13], 3.116(100)[024, 040], 2.463(38)[\(\bar 4\)02, \(\bar 2\)43]. The crystal structure was studied by single-crystal method, R hkl = 0.0745. Yegorovite is a representative of a new structural type. Its structure consists of single chains of Si tetrahedrons [Si4O8(OH)4]∞ and sixfold polyhedrons of two types: [NaO(OH)2(H2O)3] and [NaO(OH)(H2O)4] centered by Na. The mineral was named in memory of Yu. K. Yegorov-Tismenko (1938–2007), outstanding Russian crystallographer and crystallochemist. The type material of yegorovite has been deposited at the Fersman Mineralogical Museum of Russian Academy of Sciences, Moscow.  相似文献   

18.
Pumpellyite of the general formula W8X4Y8-Z12O56-n(OH)n contains Fe, Al and Mg in two crystallographically different octahedral sites. Three different pumpellyite samples covering the known compositional field from Al- to Fe-rich have been studied to determine the valence state and intracrystalline partitioning of the Fe cations between the two independent octahedral sites. Fe+2 and Fe+3 cation partitioning is interpreted on the basis of results obtained by 57Fe Mössbauer spectroscopy at 293 and 77 K and from Rietveld structure analysis performed on powder X-ray diffraction data. Pumpellyite from low-grade metamorphic rocks typically contains a majority of iron in the Fe+3 oxidation state, which is found in the smaller and less symmetrical octahedral Y-site. Fe+2 was also present in all pumpellyite samples studied and it is located in the larger and more symmetrical octahedral X-site.  相似文献   

19.
Zusammenfassung Die Kristallstruktur des Minerals Teschemacherit, NH4CO2(OH), (a=7,255,b=10,709,c=8,746 Å;Z=8, Raumgruppe:Pccn) wurde an synthetischem Material mit 3-dimensionalen Röntgendaten verfeinert. Die Struktur wird aus parallel [001] verlaufenden [CO2(OH)]-Ketten aufgebaut. Wasserstoffbrücken zu [NH4]+-Gruppen verbinden diese Ketten zu einem 3-dimensionalen Gerüst.
Refinement of the crystal structure of teschemacherite, NH4CO2(OH)
Summary The crystal structure of the mineral teschemacherite, NH4CO2(OH), (a=7.255,b=10.709,c=8.746 Å,Z=8, space group:Pccn) was refined with 3-dimensional X-ray data using synthetic material. The structure is built up by [CO2(OH)-chains parallel to [001]. Hydrogen bridges of the [NH4]+-group connect these chains to a 3-dimensional network.


Mit 1 Abbildung  相似文献   

20.
《Applied Geochemistry》2000,15(8):1203-1218
Ca6[Al(OH)6]2(CrO4)3·26H2O, the chromate analog of the sulfate mineral ettringite, was synthesized and characterized by X-ray diffraction, Fourier transform infra-red spectroscopy, thermogravimetric analyses, energy dispersive X-ray spectrometry, and bulk chemical analyses. The solubility of the synthesized solid was measured in a series of dissolution and precipitation experiments conducted at 5–75°C and at initial pH values between 10.5 and 12.5. The ion activity product (IAP) for the reaction Ca6[Al(OH)6]2(CrO4)3·26H2O⇌6Ca2++2Al(OH)4+3CrO2−4+4OH+26H2O varies with pH unless a CaCrO4(aq) complex is included in the speciation model. The log K for the formation of this complex by the reaction Ca2++CrO2−4=CaCrO4(aq) was obtained by minimizing the variance in the IAP for Ca6[Al(OH)6]2(CrO4)3·26H2O. There is no significant trend in the formation constant with temperature and the average log K is 2.77±0.16 over the temperature range 5–75°C. The log solubility product (log KSP) of Ca6[Al(OH)6]2(CrO4)3·26H2O at 25°C is −41.46±0.30. The temperature dependence of the log KSP is log KSP=AB/T+D log(T) where A=498.94±48.99, B=27,499±2257, and D=−181.11±16.74. The values of ΔG0r,298 and ΔH0r,298 for the dissolution reaction are 236.6±3.9 and 77.5±2.4 kJ mol−1. the values of ΔC0P,r,298 and ΔS0r,298 are −1506±140 and −534±83 J mol−1 K−1. Using these values and published standard state partial molal quantities for constituent ions, ΔG0f,298=−15,131±19 kJ mol−1, ΔH0f,298=−17,330±8.6 kJ mol−1, ΔS0298=2.19±0.10 kJ mol−1 K−1, and ΔC0Pf,298=2.12±0.53 kJ mol−1 K−1, were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号