首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the seasonal, diel, and vertical distribution of phytoplankton N2 fixation to understand the relative contributions of unicellular and filamentous nitrogen fixers (diazotrophs) to N2 fixation and nitrogen recycling in the northern South China Sea (SCS) and the neighboring upstream Kuroshio. N2-fixation rates were measured by the 15N2 tracer technique (addition by bubble) on unicellular (<10 or 20 µm) and the filamentous diazotrophs (>10 or 20 µm, mostly Trichodesmium and Richelia) fractionated by 10- or 20-µm mesh sizes. The mean depth-integrated total (unicellular+filamentous) N2-fixation rates in the SCS (51.7±6.2 µmol N m−2 d−1) averaged 1/3 of that in the Kuroshio (142.7±29.6 µmol N m−2 d−1), with higher rates in the winter than in other seasons in the SCS and the opposite seasonal pattern in the Kuroshio. Unicellular diazotrophs contributed 65% of the total N2 fixation in the SCS, which were negatively correlated with surface temperature and, as for total N2 fixation, were higher in the winter when Trichodesmium spp. were scarce. In comparison, the unicellular diazotrophs contributed 50% of total N2 fixation in the Kuroshio, and their contributions were not significantly correlated with surface temperature. In both the SCS and the Kuroshio, the unicellular N2 fixation was more important during the night than during the day, and in the deep euphotic layer than in the surface layer, even in the daytime. Our results show that the unicellular diazotrophs were important N2 fixers and contributed significantly to N2 fixation in the tropical marginal seas, more so in the SCS than the Kuroshio.  相似文献   

2.
Denitrification may play a major role in inorganic nitrogen removal from estuarine ecosystems, particularly in those subjected to increased nitrate and organic matter loads. The Douro estuary (NW Portugal) suffers from both problems: freshwater input of nitrate and organic load from untreated wastewater discharges. To assess how these factors might control sediment denitrification, a 12-month survey was designed. Denitrification potential and nitrous oxide (N2O) production were measured at different locations using the slurry acetylene blockage technique. Denitrification rate ranged from 0.4 to 38 nmol N g−1 h−1, increasing towards the river mouth following an urban pollution gradient. N2O production, a powerful greenhouse gas implicated on the destruction of the ozone layer, was significantly related with sediment organic matter and accounted for 0.5–47% of the N gases produced. Additional enrichment experiments were consistent with the results found in the environment, showing that sediments from the upper less urban stretch of the estuary, mostly sandy, respond positively to carbon and, inversely, in organic rich sediments from the lower estuary, the denitrification potential was limited by nitrate availability. The obtained results confirmed denitrification as an important process for the removal of nitrate in estuaries. The presence of wastewater discharges appears to stimulate nitrogen removal but also the production of N2O, a powerful greenhouse gas, exacerbating the N2O:N2 ratio and thus should be controlled.  相似文献   

3.
Atmospheric dry deposition of nitrogen (N) and dinitrogen (N2) fixation rates were assessed in 2004 at the time-series DYFAMED station (northwestern Mediterranean, 43°25′N, 7°52′E). The atmospheric input was monitored over the whole year. Dinitrogen fixation was measured during different seasonal trophic states (from mesotrophy to oligotrophy) sampled during nine cruises. The bioavailability of atmospherically deposited nutrients was estimated by apparent solubility after 96 h. The solubility of dry atmospheric N deposition was highly variable (from ∼18% to more than 96% of total N). New N supplied to surface waters by the dry atmospheric deposition was mainly nitrate (NO3) (∼57% of total N, compared to ∼6% released as ammonium (NH4+)). The mean bioavailable dry flux of total N was estimated to be ∼112 μmol m−2 d−1 over the whole year. The NO3 contribution (70 μmol NO3 m−2 d−1) was much higher than the NH4+ contribution (1.2 μmol NH4+ m−2 d−1). The N:P ratios in the bioavailable fraction of atmospheric inputs (122.5–1340) were always much higher than the Redfield N:P ratio (16). Insoluble N in atmospheric dry deposition (referred to as “organic” and believed to be strongly related to anthropogenic emissions) was ∼40 μmol m−2 d−1. N2 fixation rates ranged from 2 to 7.5 nmol L−1 d−1. The highest values were found in August, during the oligotrophic period (7.5 nmol L−1 at 10 m depth), and in April, during the productive period (4 nmol L−1 d−1 at 10 m depth). Daily integrated values of N2 fixation ranged from 22 to 100 μmol N m−2 d−1, with a maximum of 245 μmol N m−2 d−1 in August. No relationship was found between the availability of phosphorus or iron and the observed temporal variability of N2 fixation rates. The atmospheric dry deposition and N2 fixation represented 0.5–6% and 1–20% of the total biological nitrogen demand, respectively. Their contribution to new production was more significant: 1–28% and 2–55% for atmospheric dry deposition and N2 fixation, respectively. The dry atmospheric input was particularly significant in conditions of water column stratification (16–28% of new production), while N2 fixation reached its highest values in June (46% of new production) and in August (55%).  相似文献   

4.
5.
In order to test the hypothesis that the ambient iron concentrations could regulate sulfate reducing activity (SRA) in mangrove areas, 10 cm cores were examined from test and reference sites. The test site at Diwar mangrove ecosystem is highly influenced by iron released by the movement of barges carrying iron ore during the non-monsoon seasons and the reference site at Tuvem is relatively pristine. The average iron concentrations were 17.9% (±8.06) at Diwar and 6.3% (±1.5) at Tuvem. Sulfate reducing rates (SRR) ranged from 50.21 to 698.66 nM cm−3 d−1 at Tuvem, and from 23.32 to 294.49 nM cm−3d−1 in Diwar. Pearson’s correlation coefficients between SRR and environmental parameters showed that at Tuvem, the SRR was controlled by SO4−2 (r = 0.498, p < 0.001, n = 60) more than organic carbon (r = 0.316 p < 0.05, n = 60). At Diwar, the SRR was governed by the iron concentrations at an r-value of −0.761 (p < 0.001, n = 60), suggesting that ca.58% of the variation in SRR was influenced negatively by variations in ambient iron concentrations. This influence was more than the positive influence of TOC (r = 0.615, p < 0.001, n = 60). Laboratory experiments to check the influence of iron on SRR also supported our field observations. At an experimental manipulation of 50 ppm Fe3+ there was an increase in SRR but at 100 ppm an inhibitory effect was observed. At 1000 ppm Fe3+ there was a decrease in the SRR up to 93% of the control. Thus, our study showed that ambient iron concentrations influence SRR negatively at Diwar and counters the positive influence of organic carbon. Consequently, the influence could cascade to other biogeochemical processes in these mangrove swamps, especially the mineralization of organic matter to carbon dioxide by sulfate respiration.  相似文献   

6.
Community metabolism (respiration and production) and bacterial activity were assessed in the upper water column of the central Arctic Ocean during the SHEBA/JOIS ice camp experiment, October 1997–September 1998. In the upper 50 m, decrease in integrated dissolved oxygen (DO) stocks over a period of 124 d in mid-winter suggested a respiration rate of ∼3.3 nM O2 h−1 and a carbon demand of ∼4.5 gC m−2. Increase in 0–50 m integrated stocks of DO during summer implied a net community production of ∼20 gC m−2. Community respiration rates were directly measured via rate of decrease in DO in whole seawater during 72-h dark incubation experiments. Incubation-based respiration rates were on average 3-fold lower during winter (11.0±10.6 nM O2 h−1) compared to summer (35.3±24.8 nM O2 h−1). Bacterial heterotrophic activity responded strongly, without noticeable lag, to phytoplankton growth. Rate of leucine incorporation by bacteria (a proxy for protein synthesis and cell growth) increased ∼10-fold, and the cell-specific rate of leucine incorporation ∼5-fold, from winter to summer. Rates of production of bacterial biomass in the upper 50 m were, however, low compared to other oceanic regions, averaging 0.52±0.47 ngC l−1 h−1 during winter and 5.1±3.1 ngC l−1 h−1 during summer. Total carbon demand based on respiration experiments averaged 2.4±2.3 mgC m−3 d−1 in winter and 7.8±5.5 mgC m−3 d−1 in summer. Estimated bacterial carbon demand based on bacterial productivity and an assumed 10% gross growth efficiency was much lower, averaging about 0.12±0.12 mgC m−3 d−1 in winter and 1.3±0.7 mgC m−3 d−1 in summer. Our estimates of bacterial activity during summer were an order of magnitude less than rates reported from a summer 1994 study in the central Arctic Ocean, implying significant inter-annual variability of microbial processes in this region.  相似文献   

7.
Fixed nitrogen is a key nutrient involved in regulating global marine productivity and hence the global oceanic carbon cycle. Oceanic nitrogen (N2) fixation is estimated to supply 8×1012 moles N y?1 to the ocean, approximately equal to current riverine and the atmospheric inputs of fixed N, and between 50 and 100% of current estimates of oceanic denitrification. However, the spatial and temporal variability of N2 fixation remains uncertain, mostly because of the normal low resolution sampling for diazotroph distribution and fixation rates. It is well established that N2 fixation, mediated by the enzyme nitrogenase, is a source of hydrogen (H2), but the extent to which it leads to supersaturation of H2 in oceanic waters is unresolved. Here, we present simultaneous measurements of upper ocean dissolved H2 concentration (nmol L?1), and rates of N2 fixation (μmol N m?3 d?1), determined using 15N2 tracer techniques (at 7 or 15 m), on a transect from Fiji to Hawaii. We find a significant correlation (r=0.98) between dissolved H2 and rates of N2 fixation, with the greatest supersaturation of H2 and highest rates of N2 fixation being observed in the subtropical gyres at the southern (~18°S) and northern (18°N) reaches of the transect. The lowest H2 saturation and N2 fixation were observed in the equatorial region between 8°S and 14°N. We propose that an empirical relationship between H2 supersaturations and N2 fixation measurements could be used to guide sampling for 15N fixation measurements or to aid the spatial interpolation of such measurements.  相似文献   

8.
N2O Production, Nitrification and Denitrification in an Estuarine Sediment   总被引:1,自引:0,他引:1  
The mechanisms regulating N2O production in an estuarine sediment (Tama Estuary, Japan) were studied by comparing the change in N2O production with those in nitrification and denitrification using an experimental continuous-flow sediment–water system with15N tracer (15N-NO−3 addition). From Feburary to May, both nitrification and denitrification in the sediment increased (246 to 716 μmol N m−2 h−1and 214 to 1260 μmol N m−2 h−1, respectively), while benthic N2O evolution decreased slightly (1560 to 1250 nmol N m−2 h−1). Apparent diffusion coefficients of inorganic nitrogen compounds and O2at the sediment–water interface, calculated from the respective concentration gradients and benthic fluxes, were close to the molecular diffusion coefficients (0·68–2·0 times) in February. However, they increased to 8·8–52 times in May except for that of NO−2, suggesting that the enhanced NO−3 and O2supply from the overlying water by benthic irrigation likely stimulated nitrification and denitrification. Since the progress of anoxic condition by the rise of temperature from February to May (9 to 16 °C) presumably accelerated N2O production through nitrification, the observed decrease in sedimentary N2O production seems to be attributed to the decrease in N2O production/occurrence of its consumption by denitrification. In addition to the activities of both nitrification and denitrification, the change in N2O metabolism during denitrification by the balance between total demand of the electron acceptor and supply of NO−3+NO−2 can be an important factor regulating N2O production in nearshore sediments.  相似文献   

9.
This study focuses on sediment exchange in the degraded Mwache mangrove forest wetland located in southern Kenya. It involved measurement of total and particulate organic suspended sediment concentrations (TSSC and POSC), tidal water elevation and current velocities. Results showed that in the heavily degraded backwater zone mangrove forest, the ebb and flood tide total sediment fluxes were of same order of magnitude, however, flood tide sediment fluxes were slightly higher than the ebb ones. In the moderately degraded frontwater zone mangrove forest, the flood tide sediment fluxes were more than 50% higher than the ebb tide fluxes. The peak net sedimentation in the highly degraded backwater zone was 4 g m−2 tide−1 but that in the moderately degraded frontwater zone was 63 g m−2 tide−1. In the frontwater zone of the mangrove forest, the peak instantaneous ebb tide sediment flux was 3206 kg tide−1 equivalent to 35.6 g m−2 tide−1 and the flood one 8574 kg tide−1 (95 g m−2 tide−1). The peak instantaneous flood and ebb tide particulate organic sediment (POS) fluxes in the frontwater zone mangrove forest were 1316 kg tide−1 (15 g m−2 tide−1) and 587 kg tide−1 (6.5 g m−2 tide−1), respectively. The peak ebb and flood tide sediment fluxes in the backwater mangrove forest were 3206 kg tide−1 (36 g m−2 tide−1) and 3305 kg tide−1 (36.7 g m−2 tide−1), respectively. In case of POS fluxes in the backwater zone mangrove forest, the peak flood period POS flux was 969 kg tide−1 (10.7 g m−2 tide−1) while the ebb period one was 484 kg tide−1 (5.4 g m−2 tide−1). In both highly degraded backwater and moderately degraded frontwater zone of the mangrove forest, there is net import of sediments. However, the net import is relatively lower in the backwater zone forest where the trapping efficiency is 27%. In the moderately degraded frontwater zone of the mangrove forest, the sediment trapping efficiency is 65%. The net sediment import occurs mainly in periods of high river discharge in both neap and spring tides, but occurs only in spring tides during dry season. The net accretion rates in the backwater and frontwater zone mangrove forests are 0.25 and 3.5 cm year−1, respectively.  相似文献   

10.
The bioavailability of nutrients is important in controlling ecological processes and nitrogen cycling in oligotrophic mangrove forests, yet the variation of diazotrophic community structure and activity with nutrient availability in sediments remains largely unexplored. To investigate for the first time how nutrients in sediments affect spatial and temporal patterns of diazotrophic community structure and activity, the sedimentary environment of Twin Cays, Belize, was examined with respect to the effects of long‐term fertilization [treatments: control (Ctrl), nitrogen (N), and phosphorus (P)] on N2 fixation rates and nifH gene community structure. We found that N2 fixation rates were significantly higher at the P‐treatment, intermediate at the Ctrl‐treatment and lower in the N‐treatment (P: 4.2 ± 0.5, Crtl: 0.8 ± 0.1, N: 0.4 ± 0.1 nmol·N·g?1·h?1; P < 0.001) with spatial (Ctrl‐ and P‐treatments) and temporal (only P‐treatment) variability positively correlated with live root abundance (r2 = 0.473, P < 0.001) and concentration (r2 = 0.458, P < 0.0001). The community structure of diazotrophs showed larger spatial and temporal variability in the fertilized treatments than in the Ctrl‐treatment, with the relative abundance of OTUs (nifH operational taxonomic units) at the fertilized treatments inversely related to live root abundance. Overall, long‐term fertilization (with either N or P) affects not only nutrient levels in mangrove sediments directly, but also spatial and temporal patterns of both community structure and activity and likely plant‐microbe interactions as well. Our findings suggest that the maintenance of natural nutrient conditions in mangrove sediments is important to ensure the stability of microbial functional groups like diazotrophs.  相似文献   

11.
In marine wetlands, nitrogen fixation is a potentially important nutrient source for nitrogen‐limited primary producers, but interactions between nitrogen fixers and different vascular plant species are not fully understood. Nitrogen fixation activity was compared in sediments vegetated by three plant species, Spartina foliosa, Salicornia virginica, and Salicornia bigelovii in the Kendall Frost Reserve salt marsh in Mission Bay (CA). This study addressed the effects of plant type, day and night conditions, and sediment depths on nitrogen fixation. Higher rates of nitrogen fixation were associated with S. foliosa than with either of the two Salicornia spp., which are known to compete more effectively than Spartina for exogenous nitrogen in the salt marsh environment. Rates of nitrogen fixation, determined by acetylene reduction, in sediments vegetated by S. virginica were low during the day (7.7 ± 1.2 μmol C2H4 m−2 h−1) but averaged 13 ± 6.6 μmol C2H4 m−2 h−1 at night, with particularly high rates in samples from locations with visible cyanobacterial mats. The opposite diel pattern was found for sediments containing S. foliosa plants, in which average daytime and nighttime rates of nitrogen fixation were 62 ± 23 and 21 ± 15 μmol C2H4 m−2 h−1, respectively. For S. foliosa, nitrogenase activity of rinsed roots and different sediment sections (0–1, or 4–5 cm depths) were measured. Although nitrogen fixation rates in vegetated sediment samples were substantial, all but one of rinsed S. foliosa root samples (n = 12) and subsurface sediments at 4–5 cm depths failed to show nitrogen fixation activity after 2 h, suggesting that the most active nitrogen fixers in these systems likely reside in surface sediments. Further, nitrogenase activity in shaded and unshaded S. foliosa samples did not differ, suggesting that nitrogen fixers may not rapidly respond to changes in plant photosynthetic activity. Average nitrogen fixation rates in S. foliosa‐vegetated samples from the Mission Bay salt marsh were on the same order as those of highly productive Atlantic coast marshes, and this microbially‐mediated nitrogen source may be similarly substantial in other Mediterranean wetlands. Sediment abiotic variables seem to exert greater control upon nitrogen fixation activity than the effects of particular plant species. Nonetheless, dominant plant species may differ substantially in their reliance on nitrogen fixation as a nutrient source, with potentially important consequences for wetland conservation and restoration.  相似文献   

12.
Photochemical production rates of hydrogen peroxide (H2O2) were determined in Antarctic waters during two research cruises. The first cruise was from mid-October to mid-November, 1993, in the confluence of the Weddell and Scotia Seas, and the second cruise was in December, 1994, along the coast of the Antarctic Peninsula. During these cruises, midday sea-surface production rates ranged from 2.1 to 9.6 nM h−1, with an average rate of 4.5 nM h−1. Production rates were consistently smaller than rates determined at lower latitudes (>9 nM h−1), primarily due to the colder temperatures and lower ultraviolet irradiances in polar waters. In situ production rates were determined with a free-floating drifter that was deployed for 12–14 h. Production rates, averaged over the deployment time, were highest at or near the surface (ca. 2.4–3.5 nM h−1) and decreased rapidly with depth to 0.1–0.7 nM h−1 at 10–20 m. The decrease in production rates with depth generally paralleled the decrease in ultraviolet irradiance in the water column. Production rates of hydrogen peroxide in Antarctic seawater were largely controlled by the ultraviolet irradiance in the water column, although there was some evidence for production in the blue region of the solar spectrum. A laboratory study was conducted to determine the wavelength dependence of the apparent quantum yield for the photochemical formation of hydrogen peroxide in Antarctic waters. Apparent quantum yields determined at 0°C decreased from 0.74×10−3 mol einstein−1 at 290 nm to 1.0×10−5 mol einstein−1 410 nm. At 20°C, apparent quantum yields for the photochemical production of hydrogen peroxide were within a factor of two of apparent quantum yields determined in temperate waters at 20–25°C. Sunlight-normalized H2O2 production rates were determined as a function of wavelength using noontime irradiance data from Palmer Station, Antarctica. A decrease in stratospheric ozone from 336 to 151 Dobson units resulted in a predicted 19–42% increase in the photoproduction of H2O2 at the sea surface in Antarctic waters. The magnitude of this increase depends on the concentration and absorbance characteristics of dissolved organic matter in the photic zone, as well as on other factors such as cloudiness and decreasing solar zenith angle that tend to lower photochemical rates offsetting increases due to stratospheric ozone depletion.  相似文献   

13.
This study demonstrates reduced electron transfer system (ETS) activity of mixed copepods collected from 5,000 to 7,000 m depths [3.21 ± 1.25 μl O2 (mg protein)−1 h−1 at 10°C] as compared with mixed copepods from 0 to 200 m depths [5.93 ± 1.66 μl O2 (mg protein)−1 h−1 at 10°C] of the western subarctic Pacific. At the in situ temperature of 1.5°C, the 5,000–7,000 m ETS data, in terms of wet mass (WM)-specific respiration rates (R), is equivalent to [0.052 ± 0.021 μl O2 (mg WM)−1 h−1] which is similar to or greater than those reported for selected copepods or mixed mesozooplankton from <5,000 m depth by previous workers.  相似文献   

14.
Interannual variability of nutrients and plankton cycles were studied at the time-series station KERFIX (50°40′S, 68°25′E) using a 1-D coupled physical-biogeochemical model that is descended from that of Pondaven et al. (1998). At KERFIX, a high half saturation constant for silicic acid uptake (KSi) and a high Si/N uptake ratio are required to reproduce the Si and N cycles. Although very high in comparison with most data from temperate systems, these values are consistent with KSi and Si/N uptake ratios measured in the Indian sector of the Southern Ocean. Past and recent finding on the role of light and iron limitation on nutrient consumption ratios might explain these “unusual” silicon uptake kinetic parameters. Comparison of model results with observations show that the model correctly reproduces the observed interannual variability of nutrients and plankton cycles at KERFIX between 1992 and 1995. Characteristic features of this region are a spring phytoplankton bloom of 1.0–1.5 mg Chlorophyll a m−3 and a net excess of silicic acid utilisation over that of nitrate. This high silicic acid utilisation leads to low Si concentrations in late summer and subsequent Si limitation of diatom growth. The interannual variability of production of silicon and nitrogen predicted by the model is 1.93±0.04 mol Si m−2 yr−1 and 1.35±0.07 mol N m−2 yr−1 (±SD). In parallel, the predicted export is 1.12±0.04 mol Si m−2 yr−1 and 0.06±0.01 mol N m−2 yr−1. It is shown that diatoms may contribute significantly to export if diatom sinking is taken into account. An interannual variability of the predicted Si and N cycles is detected. This variability is associated with changes in the mixed layer properties, which have been documented to be linked to the Pacific El Niño Southern Oscillation or displacement of the Polar Front.  相似文献   

15.
Hydrographic, geochemical, and direct velocity measurements along two zonal (7.5°N and 4.5°S) and two meridional (35°W and 4°W) lines occupied in January–March, 1993 in the Atlantic are combined in an inverse model to estimate the circulation. At 4.5°S, the Warm Water (potential temperature θ>4.5°C) originating from the South Atlantic enters the equatorial Atlantic, principally at the western boundary, in the thermocline-intensified North Brazil Undercurrent (33±2.7×106 m3 s−1 northward) and in the surface-intensified South Equatorial Current (8×106 m3 s−1 northward) located to the east of the North Brazil Undercurrent. The Ekman transport at 4.5°S is southward (10.7±1.5×106 m3 s−1). At 7.5°N, the Western Boundary Current (WBC) (17.9±2×106 m3 s−1) is weaker than at 4.5°S, and the northward flow of Warm Water in the WBC is complemented by the basin-wide Ekman flow (12.3±1.0×106 m3 s−1), the net contribution of the geostrophic interior flow of Warm Water being southward. The equatorial Ekman divergence drives a conversion of Thermocline Water (24.58⩽σ0<26.75) into Surface Water (σ0<24.58) of 7.5±0.5×106 m3 s−1, mostly occurring west of 35°W. The Deep Water of northern origin flows southward at 7.5°N in an energetic (48±3×106 m3 s−1) Deep Western Boundary Current (DWBC), whose transport is in part compensated by a northward recirculation (21±4.5×106 m3 s−1) in the Guiana Basin. At 4.5°S, the DWBC is much less energetic (27±7×106 m3 s−1 southward) than at 7.5°N. It is in part balanced by a deep northward recirculation east of which alternate circulation patterns suggest the existence of an anticyclonic gyre in the central Brazil Basin and a cyclonic gyre further east. The deep equatorial Atlantic is characterized by a convergence of Lower Deep Water (45.90⩽σ4<45.83), which creates an upward diapycnal transport of 11.0×106 m3 s−1 across σ4=45.83. The amplitude of this diapycnal transport is quite sensitive to the a priori hypotheses made in the inverse model. The amplitude of the meridional overturning cell is estimated to be 22×106 m3 s−1 at 7.5°N and 24×106 m3 s−1 at 4.5°S. Northward heat transports are in the range 1.26–1.50 PW at 7.5°N and 0.97–1.29 PW at 4.5°S with best estimates of 1.35 and 1.09 PW.  相似文献   

16.
An extended time series of particle fluxes at 3800 m was recorded using automated sediment traps moored at Ocean Station Papa (OSP, 50°N, 145°W) in the northeast Pacific Ocean for more than a decade (1982–1993). Time-series observations at 200 and 1000 m, and short-term measurements using surface-tethered free-drifting sediment traps also were made intermittently. We present data for fluxes of total mass (dry weight), particulate organic carbon (POC), particulate organic nitrogen (PON), biogenic Si (BSi), and particulate inorganic carbon (PIC) in calcium carbonate. Mean monthly fluxes at 3800 m showed distinct seasonality with an annual minimum during winter months (December–March), and maximum during summer and fall (April–November). Fluxes of total mass, POC, PIC and BSi showed 4-, 10-, 7- and 5-fold increases between extreme months, respectively. Mean monthly fluxes of PIC often showed two plateaus, one in May–August dominated by <63 μm particles and one in October–November, which was mainly >63 μm particles. Dominant components of the mass flux throughout the year were CaCO3 and opal in equal amounts. The mean annual fluxes at 3800 m were 32±9 g dry weight g m−2 yr−1, 1.1±0.5 g POC m−2 yr−1, 0.15±0.07 g PON m−2 yr−1, 5.9±2.0 g BSi m−2 yr−1 and 1.7±0.6 g PIC m−2 yr−1. These biogenic fluxes clearly decreased with depth, and increased during “warm” years (1983 and 1987) of the El Niño, Southern Oscillation cycle (ENSO). Enhancement of annual mass flux rates to 3800 m was 49% in 1983 and 36% in 1987 above the decadal average, and was especially rich in biogenic Si. Biological events allowed estimates of sinking rates of detritus that range from 175 to 300 m d−1, and demonstrate that, during periods of high productivity, particles sink quickly to deep ocean with less loss of organic components. Average POC flux into the deep ocean approximated the “canonical” 1% of the surface primary production.  相似文献   

17.
《Oceanologica Acta》1998,21(6):845-858
The impact of suspended oyster culture (Crassostrea gigas, Thunberg) on oxygen and nutrient fluxes has been studied in situ, in a coastal lagoon (Thau, France), during a seasonal cycle. On the first plan of the multiple factorial correspondences analysis (MCA), seasons were well discriminated. The fluxes were maximum in summer and minimum in winter. However, this seasonal pattern was not only linked to the water temperature, as autumn and spring (similar temperatures of about 12 °C) were distinct in the second factorial plan (2.3). Oxygen uptake by the oyster cultures varied between 0 μmol m−2 h−1 (January) and 11 823 ±377 μmol m−2 h−1 (July). Ammonia and nitrate-nitrites were released into the water column respectively at a rate of 2905 ± 327 μmol m−2h−1 and 891 ± 88 μmol m−2 h−1 in the summer and 0 μmol m−2 h−1 and 177 ± 97 μmol m−2 h−1 in the cold season. During the summer, the nitrate-nitrites flux was about 20 % of the total dissolved inorganic nitrogen production. Phosphate release was low except for two periods during which an important release was measured; in May (1686 ± 44 μmol m−2 h−1) and in November (2691 ± 800 μmol m−2 h−1). No linear relation between water temperature and phosphate flux was found. In Thau Lagoon, oyster cultures (oysters and epibiota) by producing 2 × 107 mol-N y−1 play a central role in nitrogen renewal in the water column.  相似文献   

18.
The giant diatom Ethmodiscus was examined along an east–west transect at 28–30°N during 2002 and 2003 to determine if abundance, chemical composition or physiological status of this largest of diatoms varied on the scale of 100's–1000's of km in North Pacific gyre. Abundance ranged from <0.1–>2.0 cells m−3 and supported the notion of an abundance mosaic reported previously. However, there was only minimal support for the relationship between abundance and nutrient concentration at 125 m reported previously. Cellular chlorophyll varied little along the transect (7.3–10.9 ng chl cell−1) except at the westernmost station. Cellular N and P quotas co-varied 3–4.5 fold (mean=50.8±3.7 and 3.7±0.8 nmol N and P cell−1) and yielded N:P ratios that closely clustered around the Redfield ratio (average=14.6±1.1). Only low levels of chlorophyll-normalized alkaline phosphatase (APase) activity were observed (0.4–2.5 nmol P μg chl−1 h−1) with APase activity lower than that in either the bulk water, or co-occurring Trichodesmium spp. and Pyrocystis noctiluca. The active fluorescence parameter Fv:Fm, a property sensitive to Fe stress, was uniformly high at all stations (average=0.73±0.04 for 2003, and 0.69±0.05 for 2002), indicating sufficient Fe for optimum photosynthetic competence. These results contrasted sharply with results from Rhizosolenia mats reported along the same transect where there was a significant decline westward in Fv:Fm. Both ferredoxin (Fd) and flavodoxin accumulated in cells of Ethmodiscus, resulting in Fd Index values of<0.6. Iron cell quotas ranged from 0.7–5.1 pmol Fe cell−1. When normalized to cytoplasmic volume, the Fe μm−3 was comparable to that of Escherichia coli. We note that the disproportionate contribution of the vacuole (with its high organic content) to total volume typical of large diatoms is a potentially significant source of error in Fe:C ratios and suggest that Fe should be normalized to cytoplasmic volume whenever possible to permit valid intercomparisons between studies. The composition, Fv:Fm data and Fe:C ratio suggest a relatively uniform population experiencing little N, P or Fe stress. The uncoupling of the Fd Index from these measures is consistent with previous findings showing that the expression of flavodoxin can be characterized as an early stress response and that its accumulation is not necessarily correlated with physiological deficit. Ethmodiscus appears to be well adapted to some of the most oligotrophic waters in the ocean. Because it is an important sedimentary marker, the biology of living Ethmodiscus provides insights into the source of extensive Ethmodiscus oozes. Mass sedimentation after frontal accumulation has been suggested as a source for these oozes. Our data contain no evidence that the flux is linked directly to Fe, N or P stress.  相似文献   

19.
By transforming fixed nitrogen (N) into nitrogen gas, the biochemical processes that support denitrification provide a function critical to maintaining the integrity of ecosystems subjected to increased loading of N from anthropogenic sources. The Louisiana coastal region receives high nitrate (NO3?) concentrations (> 100 µM) from the Mississippi–Ohio–Missouri River Basin and is also an area undergoing high rates of wetland loss. Ongoing and anticipated changes in the Louisiana coastal region promise to alter biogeochemical cycles including the net rate of denitrification by ecosystems. Projecting what these changes could mean for coastal water quality and natural resources requires an understanding of the magnitude and patterns of variation in denitrification rates and their connection to estuarine water quality at large temporal and spatial scales under current conditions. We compile and review denitrification rates reported in 32 studies conducted in a variety of habitats across coastal Louisiana during the period 1981– 2008. The acetylene inhibition and 15N flux were the preferred techniques (95%); most of the studies used sediment slurries rather than intact sediment cores. There are no estimates of denitrification rates using the N2/Ar ratio and isotope pairing techniques, which address some of the problems and limitations of the acetylene inhibition and 15N flux techniques. These studies have shown that sediments from estuaries, lakes, marshes, forested wetlands, and the coastal shelf region are capable of high potential denitrification rates when exposed to high NO3? concentrations (> 100 µM). Maximum potential denitrification rates in experimental and natural settings can reach values > 2500 µmol m2 h? 1. The lack of contemporary studies to understand the interactions among critical nitrogen transformations (e.g., organic matter mineralization, immobilization, aquatic plant assimilation, nitrification, nitrogen fixation, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (annamox) limits our understanding of nitrogen cycling in coastal Louisiana, particularly the role of respiratory and chemolithoautotrophic denitrification in areas undergoing wetland restoration.  相似文献   

20.
In this study we estimate diffusive nutrient fluxes in the northern region of Cape Ghir upwelling system (Northwest Africa) during autumn 2010. The contribution of two co-existing vertical mixing processes (turbulence and salt fingers) is estimated through micro- and fine-structure scale observations. The boundary between coastal upwelling and open ocean waters becomes apparent when nitrate is used as a tracer. Below the mixed layer (56.15±15.56 m), the water column is favorable to the occurrence of a salt finger regime. Vertical eddy diffusivity for salt (Ks) at the reference layer (57.86±8.51 m, CI 95%) was 3×10−5 (±1.89×10−9, CI 95%) m2 s−1. Average diapycnal fluxes indicate that there was a deficit in phosphate supply to the surface layer (6.61×10−4 mmol m−2 d−1), while these fluxes were 0.09 and 0.03 mmol m−2 d−1 for nitrate and silicate, respectively. There is a need to conduct more studies to obtain accurate estimations of vertical eddy diffusivity and nutrient supply in complex transitional zones, like Cape Ghir. This will provide us with information about salt and nutrients exchange in onshore–offshore zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号