首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水产养殖中的环境胁迫及其预防--营养学途径   总被引:5,自引:1,他引:5  
环境胁迫强弱程度的不同对养殖动物的生理功能、免疫力、生长和繁殖有不同程度的负面影响。本文综述近10多年来关于水产养殖环境胁迫的最新研究成果,重点介绍如何通过营养调控提高养殖动物的抗胁迫能力,以缓解或减轻环境胁迫所带来的负面效应。并指出未来的重要研究方向是探讨提高养殖动物抗胁迫能力的途径和作用机制。  相似文献   

2.
Biological effects of petroleum hydrocarbons on marine organisms are dependent on their persistence and bioavailability, the ability of the organisms to accumulate and metabolize various hydrocarbons, the fate of metabolized products, and the interference of hydrocarbons with normal metabolic processes that may alter an organism's chances for survival and reproduction in the environment. In considering the long-term effects of petroleum hydrocarbons in the environment it is important to ascertain what biological effects may result in subtle ecological changes, changes in community structure and function, and possible impairment of fisheries resources. Although a wide range of stress indices have been proposed for monitoring pollutant impacts on marine organisms, no single index can provide the predictive capability to evaluate population or community changes. Understanding the relationship and integration of multiple stress indices should improve our capabilities of predicting long-term change at organismal and population levels before irreversible damage occurs at the community and ecosystem levels.  相似文献   

3.
卢科宇  裴炎沼  何晴  周斌 《海洋科学》2022,46(8):171-185
海草具有独特的进化地位和重要的生态价值,广泛分布于潮间带和潮下带浅海海域,易遭受多种环境因子变化的威胁,抗氧化系统在海草抵御逆境胁迫的过程中具有非常重要的作用。本文综述了海草抗氧化系统的组成、特征及其对主要逆境胁迫的响应特征研究进展,阐述了海草主要酶促抗氧化机制,并将北半球代表性海草物种——鳗草抗氧化系统相关酶基因归类分析。目前对于海草逆境胁迫的研究主要集中于单一胁迫下主要抗氧化酶(如SOD、CAT、GST)及其转录组的变化,对于多胁迫因子协同作用和非酶抗氧化物及其他抗氧化酶的响应特征研究较少;另外对于逆境胁迫下不同海草种类间抗氧化系统和关键基因的响应差异也有待深入研究。  相似文献   

4.
Generally, growth rates of living organisms are considered to be at steady state, varying only under environmental forcing factors. For example, these rates may be described as a function of light for plants or organic food resources for animals and these could be regulated (or not) by temperature or other conditions. But, what are the consequences for an individual's growth (and also for the population growth) if growth rate variations are themselves dynamic and not steady state? For organisms presenting phases of dormancy or long periods of stress, this is a crucial question. A dynamic perspective for quantifying short-term growth was explored using the daily growth record of the scallop Pecten maximus (L.). This species is a good biological model for ectotherm growth because the shell records growth striae daily. Independently, a generic mathematical function representing the dynamics of mean daily growth rate (MDGR) was implemented to simulate a diverse set of growth patterns. Once the function was calibrated with the striae patterns, the growth rate dynamics appeared as a forced damped oscillation during the growth period having a basic periodicity during two transitory phases (mean duration 43 days) and appearing at both growth start and growth end. This phase is most likely due to the internal dynamics of energy transfer within the organism rather than to external forcing factors. After growth restart, the transitory regime represents successive phases of over-growth and regulation. This pattern corresponds to a typical representation of compensatory growth, which from an evolutionary perspective can be interpreted as an adaptive strategy to coping with a fluctuating environment.  相似文献   

5.
Current development plans indicate that during the next decade there will be an increase in tidal stream and wave (TSW) power generation activity in Scottish Waters, together with the designation of additional offshore areas for seabird conservation. This paper summarises how TSW developments could affect seabirds, based on experience from other forms of disturbance, and explores the possible changes in behaviour and habitat that have the potential to increase a seabird's rate of energy acquisition (e.g. through enhancing prey abundance), or energy expenditure (e.g. through causing birds to commute further to find food, if they avoid foraging around developments placed in regular feeding areas). Changes to energy budgets could impact rates of reproduction and survival. Simulation modelling of seabird energetics and behaviour is one possible tool for predicting the direction and magnitude of population impacts caused by alterations to energy budgets, but is dependant on the availability and accuracy of necessary parameters. The later sections of the paper review the information needed for such models and shows that although some data are available regarding rates of energy expenditure during specific activities, more information is needed on seabird foraging rates. The paper also highlights how the susceptibility of a species to be impacted by future TSW development is likely to be related to their method of foraging, flight behaviour and ability to buffer against environmental fluctuations.  相似文献   

6.
Mnemiopsis leidyi is an invasive comb jelly which has successfully established itself in European seas. The species is known to produce spectacular blooms yet it is holoplanktonic and not much is known about its population dynamics in between. One way to gain insight on how M. leidyi might survive between blooms and how it can bloom so fast is to study how the metabolism of this species actually responds to environmental changes in food and temperature over its different life-stages. To this end we combined modelling and data analysis to study the energy budget of M. leidyi over its full life-cycle using Dynamic Energy Budget (DEB) theory and literature data.An analysis of data obtained at temperatures ranging from 8 to 30 °C suggests that the optimum thermal tolerance range of M. leidyi is higher than 12 °C. Furthermore M. leidyi seems to undergo a so-called metabolic acceleration after hatching. Intriguingly, the onset of the acceleration appears to be delayed and the data do not yet exist which allows determining what actually triggers it. It is hypothesised that this delay confers a lot of metabolic flexibility by controlling generation time.We compared the DEB model parameters for this species with those of another holoplanktonic gelatinous zooplankton species (Pelagia noctiluca). After accounting for differences in water content, the comparison shows just how fundamentally different the two energy allocation strategies are. P. noctiluca has an extremely high reserve capacity, low turnover times of reserve compounds and high resistance to shrinking. M. leidyi adopts the opposite strategy: it has a low reserve capacity, high turnover rates of reserve compounds and fast shrinking.  相似文献   

7.
A bio-energetic model, based on the DEB theory exists for the Pacific oyster Crassostrea gigas. Pouvreau et al. [Pouvreau, S., Bourles, Y., Lefebvre, S., Gangnery, A., Alunno-Bruscia, M., 2006. Application of a dynamic energy budget model to the Pacific oyster, C. gigas, reared under various environmental conditions. J. Sea Res. 56, 156–167.] successfully applied this model to oysters reared in three environments with no tide and low turbidity, using chlorophyll a concentration as food quantifier. However, the robustness of the oyster-DEB model needs to be validated in varying environments where different food quantifiers reflect the food available for oysters, as is the case in estuaries and most coastal ecosystems. We therefore tested the oyster-DEB model on C. gigas reared in an Atlantic coastal pond from January 2006 to January 2007. The model relies on two forcing variables: seawater temperature and food density monitored through various food quantifiers. Based on the high temperature range measured in this oyster pond (3–30 °C), new boundary values of the temperature tolerance range were estimated both for ingestion and respiration rates. Several food quantifiers were then tested to select the most suitable for explaining the observed growth and reproduction of C. gigas reared in an oyster pond. These were: particulate organic matter and carbon, chlorophyll a concentration and phytoplankton enumeration (expressed in cell number per litre or in cumulative cell biovolume). We conclude that when phytoplankton enumeration was used as food quantifier, the new version of oyster-DEB model presented here reproduced the growth and reproduction of C. gigas very accurately. The next step will be to validate the model under contrasting coastal environmental conditions so as to confirm the accuracy of phytoplankton enumeration as a way of representing the available food that sustains oyster growth.  相似文献   

8.
The aim of this work was to evaluate the effects of parasitism and certain environmental factors on the shell size of Heleobia australis (Hydrobiidae, Cochliopinae). We report sporocysts and metacercariae of Microphallus simillimus (Microphallidae, Trematoda) parasitizing the gonad and digestive gland of H. australis specimens from two sites of Bahía Blanca estuary, Argentina. The prevalence of infection was significantly higher (34.17% in winter and 68.14% in late spring) in snails from the outer estuary at Site 2 than in those from the inner estuary at Site 1 (5.88% and 4.71% respectively). The only known definitive host for this digenean is the white-backed stilt Himantopus melanurus (Recurvirostridae, Aves), most abundant in the estuary during winter. Parasitism by M. simillimus causes variations in the shell dimensions of H. australis, the shells of infected snails being narrower than those of uninfected snails. Snails from Site 2 were found in general to be significantly smaller than those at Site 1, possibly as a result of differences in environmental factors such as the degree of exposure to wave energy, the allocation of energy to reproduction rather than growth (induced by predation and/or parasitic castrators) and anthropogenic stressors.  相似文献   

9.
文章研究了温度升高对一种造礁石珊瑚——丛生盔形珊瑚(Galaxea fascicularis)的两种形态型(H和S型)代谢和共生藻光合生理的影响。研究显示H型和S型对升温的生理响应差异明显:在虫黄藻水平上, H型丢失了大量的虫黄藻,减轻了共生体呼吸代谢的负荷; S型中虫黄藻数目尚可维持共生体呼吸代谢的需求,同时提高叶绿素b含量增强光的吸收。在宿主水平上,H型充分利用虫黄藻输送的营养物质,并通过异养摄食补偿能量消耗;S型宿主所储存的营养物质可以协助共生体适应热环境。结果表明,丛生盔形珊瑚两种形态型通过不同的能量利用方式适应环境的变化, H型倾向于维持共生体的代谢平衡,而S型倾向于提高共生藻的能量分配。  相似文献   

10.
The bottom aquaculture of yesso scallop (Patinopecten yessoensis) has developed rapidly in the north of Yellow Sea, China, but not without accompanying productivity problems. We, therefore, conducted field surveys to investigate factors related to growth and mortality rates of bottom-cultured scallops after release. Specifically, we focused on the effects of total antioxidant capacity (TAOC) and three key enzymes involved in antioxidant and metabolic function:glutamic pyruvic transaminase (GPT), lactic dehydrogenase (LDH), and superoxide dismutase (SOD). Across summer and winter, we also measured the relative mRNA expression of GPT and SOD to understand their seasonal variation in the scallops, along with how such variation correlated to growth and mortality. Results show that bottom cultured scallops experienced mass mortality during the first six months post-release. During winter (December), scallops grew more rapidly and suffered less mortality than in summer (August). The observed lower performance probably resulted from less advantageous environmental factors during the summer seasons, such as high temperature and low dissolved oxygen. These environmental stressors enhance protein consumption while decreasing energetic resources in scallops. Furthermore, scallops in summer exhibited high antioxidant levels that probably competed for energy with process integral to growth and survival. These negative factors combined to elevate mortality rates. In conclusion, we provided evidence suggesting correlations between metabolic/antioxidant activity and growth and mortality of bottom-cultured yesso scallops. These correlations implied us an accurate method to estimate the performance of bottom culture system. Suggestions about innovative aquaculture techniques were also discussed in the study. Our results might provide a possible guideline to the improvement of bottom culture techniques for this commercially valuable seafood species.  相似文献   

11.
This study aimed to test the performance of the amphipod Gammarus locusta (L.) in chronic sediment toxicity tests. It constitutes part of a multi-level assessment of chronic toxicity of estuarine sediments, integrating organism and population-level endpoints with biochemical markers responses. Here we account for organism and population-level effects, while biomarker responses were reported in a companion article. Five moderately contaminated sediments from Sado and Tagus estuaries were tested, comprising 3 muddy and 2 sandy sediments. These sediments either did not show acute toxicity or were diluted with control sediment as much as required to remove acute toxicity. Subsequent chronic tests consisted of 28-day exposures with survival, individual growth and reproductive traits as endpoints. Two of the muddy sediments induced higher growth rates in the amphipods, and improved reproductive traits. This was understood to be a consequence of the amount of organic matter in the sediment, which was nutritionally beneficial to the amphipods, while concurrently decreasing contaminant bioavailability. Biomarker responses did not reveal toxicant-induced stress in amphipods exposed to these sediments. One of the sandy sediments was acutely toxic at 50% dilution, but in contrast stimulated amphipod growth when diluted 75%. This was presumed to be an indication of a hormetic response. Finally the two remaining contaminated sediments showed pronounced chronic toxicity, affecting survival and reproduction. The sex ratio of survivors was highly biased towards females, and offspring production was severely impaired. The particulars of the responses of this amphipod were examined, as well as strengths versus limitations of the sediment test. This study illustrates the utility of this chronic test for toxicity assessment of contaminated estuarine sediments, with potential application all along Atlantic Europe.  相似文献   

12.
缢蛏(Sinonovacula constricta)是我国重要的水产经济贝类,开展耐高盐新品种选育对平衡不同地区缢蛏良种养殖意义重大。本研究对不同家系缢蛏幼贝进行高盐胁迫,运用统计学方法和相关性分析探究了缢蛏耐高盐性能及其与生长性状的相关性。结果显示,缢蛏家系间壳长、壳高、壳宽和体质量表型值差异较大,体质量变异系数达15.53%。不同家系对高盐耐受性差异较大,家系间死亡率范围在0~100%。胁迫实验共持续9 d,各家系缢蛏首粒死亡时间在第1~9 d之间,而且死亡率较高的家系内缢蛏死亡时间离散程度较大,说明不同个体间高盐耐受性差异也较大。缢蛏开始出现大量死亡的时间主要在胁迫后第8 d,第9 d部分家系死亡率高于80%,说明缢蛏对高盐耐受存在一个阈值,超过该阈值会开始或大量死亡。皮尔逊和斯皮尔曼相关性分析显示,缢蛏存活时间和生长性状为正相关,其中存活时间与缢蛏壳长、体质量相关性均达到显著水平(P<0.05)。缢蛏存活率与体质量、生长速度均显著正相关(P<0.05)。整体而言,壳长较长和体质量较重的缢蛏个体耐高盐性能较强,在高盐环境中具有生长优势。本研究揭示了缢蛏的高盐耐受性及...  相似文献   

13.
Digestive metabolism is considered key to resilience of fish populations as it determines energy and nutrient availability for growth and survival. In cleaner fishes, digestion performance also influences the amount and the rate at which parasites can be removed from co‐operating fishes, called hosts. Therefore, understanding the effect of temperature on digestive metabolic scope (i.e. the energy allocated to digestive processes) is crucial to predicting responses of fish communities to ocean warming. Body size can affect many physiologic processes and is thought to decrease with increasing temperature; therefore, we examined the effect of body mass and warming on digestive metabolic scopes in two sister species of cleaner gobies of the genus Elacatinus that reach different adult sizes. The dwarf‐size Elacatinus lobeli increased digestive metabolic rates and scope while the larger Elacatinus oceanops decreased digestive metabolic scope with warming. Intra‐specifically, larger E. lobeli also showed a decreased scope when compared to smaller individuals. Results from this study suggest that perhaps smaller fishes may have a digestive and metabolic advantage at higher temperatures and may be more resilient under warming temperatures.  相似文献   

14.
磷酸精氨酸是无脊椎动物体内一种重要的磷酸原,它能够给机体提供一个ATP的缓冲库,从而保证机体的能量供应处于平衡状态,并进而提高机体的抗应激能力。本文综述了无脊椎动物体内磷酸精氨酸的功能、其含量在应激状态下的变化、在运动中的作用以及动物体内的磷酸精氨酸含量等的研究进展。  相似文献   

15.
Marine renewable energy is seen as an important component of the UK's future energy strategy and contribution to reducing the greenhouse gas emissions responsible for climate change. The UK aims to generate a total of 33 GW (gigawatts) of offshore wind energy. Its implementation strategy includes the development of ten offshore wind farms within Scottish territorial waters. In addition, between 1000 MW (megawatts) and 2600 MW of marine renewable energy generating capacity could be achieved in Scotland using wave and tidal power devices. However, there are negative environmental impacts associated with marine renewable energy. Intense noise is produced during pile driving, drilling and dredging operations with potential consequences for cetaceans. There are also increases in vessel activities during exploration, maintenance and construction with association risks of disturbance and collisions. Some underwater devices will be large and may be positioned in arrays across the habitats that cetaceans frequent. The consequences of encounters between cetaceans and such devices are as yet unknown. It is recommended that the Scottish Government complete full and transparent Marine Spatial Planning, including consideration of cumulative impacts, before moving to license appropriate sites.  相似文献   

16.
化学污染,气候变化和养殖导致的遗传变化是影响水生生物的重要环境胁迫因素,会使生物种群的适应和竞争能力等健康指数降低。生物体发育的稳定性作为环境胁迫对生物健康指数的标志之一,在过去几十年的研究中得到了广泛的关注。生物发育的稳定性通常以生物不对称变异(即:与生物对称性的偏差)表示。与不对称的生物相比,具有对称性的生物个体通常生长较快、繁殖力强、存活率也高;不适宜环境往往导致生物体不对称性变异程度增加。主要就生物不对称性变异的原理、实际测定中的问题及该方法在水生生物研究中的适用范围进行了论述。  相似文献   

17.
In recent years, extreme heat events have occurred worldwide and the ocean temperature has been rising, causing stress on the photosynthesis and growth of seagrass. Metabolomics enables detection of metabolic changes under environmental stress. In this study, the photosynthetic physiology and metabolic changes of the eelgrass Zostera marina L. in response to 48 h exposure to 32°C were investigated. The results showed that high temperature induced signi?cant inhibition of photosynthetic effciency(Δ F/F′ m)(23.9%lower than the control), enhanced respiration(58.3% higher), and decreased carbohydrate decomposition products and tricarboxylic acid(TCA) cycle intermediate products, indicating that the energy supply of the eelgrass may be insuffcient at high temperature. In addition, high temperature decreased stearic acid and linoleic acid in eelgrass, suggesting the composition of the membrane system of eelgrass may change at high temperature and implying that high temperature may cause the membrane system to be unstable.  相似文献   

18.
This paper presents an original size-structured mathematical model of the energy flow through marine ecosystems, based on established ecological and physiological processes and mass conservation principles. The model is based on a nonlocal partial differential equation which represents the transfer of energy in both time and body weight (size) in marine ecosystems. The processes taken into account include size-based opportunistic trophic interactions, competition for food, allocation of energy between growth and reproduction, somatic and maturity maintenance, predatory and starvation mortality. All the physiological rates are temperature-dependent. The physiological bases of the model are derived from the dynamic energy budget theory. The model outputs the dynamic size-spectrum of marine ecosystems in term of energy content per weight class as well as many other size-dependent diagnostic variables such as growth rate, egg production or predation mortality.In stable environmental conditions and using a reference set of parameters derived from empirical studies, the model converges toward a stationary linear log–log size-spectrum with a slope equal to −1.06, which is consistent with the values reported in empirical studies. In some cases, the distribution of the largest sizes departs from the stationary linear solution and is slightly curved downward. A sensitivity analysis to the parameters is conducted systematically. It shows that the stationary size-spectrum is not very sensitive to the parameters of the model. Numerical simulations of the effects of temperature and primary production variability on marine ecosystems size-spectra are provided in a companion paper [Maury, O., Shin, Y.-J., Faugeras, B., Ben Ari, T., Marsac, F., 2007. Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 2: simulations. Progress in Oceanography, doi:10.1016/j.pocean.2007.05.001].  相似文献   

19.
Jumbo squid (Dosidicus gigas) is a large oceanic squid endemic off the Eastern Tropical Pacific that undertakes diel vertical migrations into mesopelagic oxygen minimum zones. One of the expected physiological effects of such migration is the generation of reactive oxygen species (ROS) at the surface, promoted by the transition between hypoxia and reoxygenation states. The aim of this study was to investigate the energy expenditure rates and the antioxidant stress strategies of juvenile D. gigas under normoxia and hypoxia, namely by quantifying oxygen consumption rates, antioxidant enzyme activities [including superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST)], heat shock protein expression (Hsp70/Hsc70), and lipid peroxidation [malondialdehyde (MDA) levels]. A high significant decrease (68%) in squid’s metabolic rates was observed during hypoxia (p<0.05). This process of metabolic suppression was followed by a significant increase in Hsp70/Hsc70 expression (p<0.05), which may be interpreted as a strategy to prevent post-hypoxic oxidative damage during the squid’s night upwards migration to the surface ocean. On the other hand, in normoxia, the higher SOD and CAT activities seemed to be a strategy to cope with the reoxygenation process, and may constitute an integrated stress response at shallower depths. GST activity and MDA concentrations did not change significantly from normoxia to hypoxia (p>0.05), with the latter indicating no enhancement of lipid peroxidation (i.e. cellular damage) at the warmer and normoxic surface waters. The understanding of such physiological strategies that are linked to oxygen deprivation and reoxygenation phases may provide valuable information about how this species is quickly responding to the impacts of environmental stressors coupled with global climate change.  相似文献   

20.
高温胁迫下坛紫菜的数字基因表达谱研究   总被引:1,自引:0,他引:1  
坛紫菜是潮间带重要的经济藻种,对高温、渗透压等逆境具有独特的调控机制。本文采用基于高通量测序的数字基因表达谱(DGE)技术研究了坛紫菜在高温胁迫下的基因表达差异,并分析其相应的响应方式;利用实时定量PCR技术对DGE部分数据进行验证;检测了其中较有代表性的应答基因hsp70的差异表达。结果显示,高温胁迫下坛紫菜中有256个unigene上调表达,以HSP、核糖体蛋白L12、延伸因子EF-Tu及部分光合作用相关基因为代表,3 820个unigene下调表达,主要为核酸、蛋白以及糖类等合成代谢相关基因。Gene Ontology分析表明,差异表达基因主要定位于质体等有膜细胞器,参与繁殖和发育过程,行使催化和连接酶活性的功能。Pathway分析显示,这些基因分布于107条pathway中。其中,下调表达基因最显著富集于mRNA监督和RNA转运途径,而上调表达基因部分富集于内质网的蛋白加工、RNA降解及光合作用途径。验证表明此次DGE结果具有较高准确性,hsp70基因对高温响应积极。综上所述,DGE结果反应出,在高温胁迫时,坛紫菜出现基础代谢减慢、合成速度下降、能量合成受阻、碳同化降低等现象,但光合作用前期未受影响,同时补救途径启动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号