首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present numerical results of the so-called Sitnikov-problem, a special case of the three-dimensional elliptic restricted three-body problem. Here the two primaries have equal masses and the third body moves perpendicular to the plane of the primaries' orbit through their barycenter. The circular problem is integrable through elliptic integrals; the elliptic case offers a surprisingly great variety of motions which are until now not very well known. Very interesting work was done by J. Moser in connection with the original Sitnikov-paper itself, but the results are only valid for special types of orbits. As the perturbation approach needs to have small parameters in the system we took in our experiments as initial conditions for the work moderate eccentricities for the primaries' orbit (0.33e primaries 0.66) and also a range of initial conditions for the distance of the 3 rd body (= the planet) from very close to the primaries orbital plane of motion up to distance 2 times the semi-major axes of their orbit. To visualize the complexity of motions we present some special orbits and show also the development of Poincaré surfaces of section with the eccentricity as a parameter. Finally a table shows the structure of phase space for these moderately chosen eccentricities.  相似文献   

2.
The rectilinear elliptic restricted three-body problem (TBP) is the limiting case of the elliptic restricted TBP when the motion of the primaries is described by a Keplerian ellipse with eccentricity \(e'=1\), but the collision of the primaries is assumed to be a non-singular point. The rectilinear model has been proposed as a starting model for studying the dynamics of motion around highly eccentric binary systems. Broucke (AIAA J 7:1003–1009, 1969) explored the rectilinear problem and obtained isolated periodic orbits for mass parameter \(\mu =0.5\) (equal masses of the primaries). We found that all orbits obtained by Broucke are linearly unstable. We extend Broucke’s computations by using a finer search for symmetric periodic orbits and computing their linear stability. We found a large number of periodic orbits, but only eight of them were found to be linearly stable and are associated with particular mean motion resonances. These stable orbits are used as generating orbits for continuation with respect to \(\mu \) and \(e'<1\). Also, continuation of periodic solutions with respect to the mass of the small body can be applied by using the general TBP. FLI maps of dynamical stability show that stable periodic orbits are surrounded in phase space with regions of regular orbits indicating that systems of very highly eccentric orbits can be found in stable resonant configurations. As an application we present a stability study for the planetary system HD7449.  相似文献   

3.
The critical orbits, corresponding to bifurcations of the generating family and its branches, are considered more closely and the part off is investigated that has branches of very high order only. Three families of periodic solutions of the elliptic problem are also determined in an effort to follow the evolution of the stability region aroundf when the eccentricity of the primaries is increased to non-zero values.  相似文献   

4.
We locate and examine the stability of the ‘out of plane’ equilibrium points, L 6,7 of an infinitesimal body in the field of stellar-oblate binary systems moving in elliptic orbits around their common center of mass. Their positions and stability depend on the oblateness as well as radiation coefficients of the primaries and the eccentricity of their orbits. A numerical application of this problem for the systems: Gamma Leporis and Altair are given.  相似文献   

5.
Within the context of the restricted problem of three bodies, we wish to show the effects, caused by varying the mass ratio of the primaries and the eccentricity of their orbits, upon periodic orbits of the infinitesimal mass that are numerical continuations of circular orbits in the ordinary problem of two bodies. A recursive-power-series technique is used to integrate numerically the equations of motion as well as the first variational equations to generate a two-parameter family of periodic orbits and to identify the linear stability characteristics thereof. Seven such families (comprised of a total of more than 2000 orbits) with equally spaced mass ratios from 0.0 to 1.0 and eccentricities of the orbits of the primaries in a range 0.0 to 0.6 are investigated. Stable orbits are associated with large distances of the infinitesimal mass from the perturbing primary, with nearly circular motion of the primaries, and, to a slightly lesser extent, with small mass ratios of the primaries.Conversely, unstable orbits for the infinitesimal mass are associated with small distances from the perturbing primary, with highly elliptic orbits of the primaries, and with large mass ratios.  相似文献   

6.
The linear stability of the triangular equilibrium points in the photogravitational elliptic restricted three-body problem is examined and the stability regions are determined in the space of the parameters of mass, eccentricity, and radiation pressure, in the case of equal radiation factors of the two primaries. The full range of values of the common radiation factor is explored, from the gravitational caseq 1 =q 2 =q = 1 down to the critical value ofq = 1/8 at which the triangular equilibria disappear by coalescing on the rotating axis of the primaries. It is found that radiation pressure exerts a significant influence on the stability regions. For certain intervals of radiation values these regions become qualitatively different from the gravitational case as well as the solar system case considered in Paper I. There exist values of the common radiation factor, in the range considered, for which the triangular equilibrium points are stable for the entire range of mass distribution among the primaries and for large eccentricities of their orbits.  相似文献   

7.
We consider an elliptic restricted four-body system including three primaries and a massless particle. The orbits of the primaries are elliptic, and the massless particle moves under the mutual gravitational attraction. From the dynamic equations, a quasi-integral is obtained, which is similar to the Jacobi integral in the circular restricted three-body problem (CRTBP). The energy constant \(C\) determines the topology of zero velocity surfaces, which bifurcate at the equilibrium point. We define the concept of Hill stability in this problem, and a criterion for stability is deduced. If the actual energy constant \(C_{\mathrm{ac}}\ ( {>} 0 ) \) is bigger than or equal to the critical energy constant \(C_{\mathrm{cr}}\), the particle will be Hill stable. The critical energy constant is determined by the mass and orbits of the primaries. The criterion provides a way to capture an asteroid into the Earth–Moon system.  相似文献   

8.
This work considers periodic solutions, arc-solutions (solutions with consecutive collisions) and double collision orbits of the plane elliptic restricted problem of three bodies for =0 when the eccentricity of the primaries,e p , varies from 0 to 1. Characteristic curves of these three kinds of solutions are given.  相似文献   

9.
This paper deals with the stability analysis of the triangular equilibrium points for the generalized problem of the photogravitational restricted three body where both the primaries are radiating. The problem is generalized in the sense that the eccentricity of the orbits and the oblateness due to both the primaries and infinitesimal are considered. The stability in the case of linear resonance are analyzed based on the Floquet’s theory for finding the characteristic exponent for a system containing periodic coefficients. It was found that the critical value of μ for the stability boundary for parametric excitation is dependent on the oblateness of the primaries as well as infinitesimal.  相似文献   

10.
We study two and three-dimensional resonant periodic orbits, usingthe model of the restricted three-body problem with the Sun andNeptune as primaries. The position and the stability character ofthe periodic orbits determine the structure of the phase space andthis will provide useful information on the stability and longterm evolution of trans-Neptunian objects. The circular planarmodel is used as the starting point. Families of periodic orbitsare computed at the exterior resonances 1/2, 2/3 and 3/4 withNeptune and these are used as a guide to select the energy levelsfor the computation of the Poincaré maps, so that all basicresonances are included in the study. Using the circular planarmodel as the basic model, we extend our study to more realisticmodels by considering an elliptic orbit of Neptune and introducingthe inclination of the orbit. Families of symmetric periodicorbits of the planar elliptic restricted three-body problem andthe three-dimensional problem are found. All these orbitsbifurcate from the families of periodic orbits of the planarcircular problem. The stability of all orbits is studied. Althoughthe resonant structure in the circular problem is similar for allresonances, the situation changes if the eccentricity of Neptuneor the inclination of the orbit is taken into account. All theseresults are combined to explain why in some resonances there aremany bodies and other resonances are empty.  相似文献   

11.
The objective of the present work is to develope explicit analytical expressions for the small amplitude orbits of the infinitesimal mass about the equilibrium points in the elliptic restricted three body problem. To handle this dynamical problem, the Hamiltonian for the elliptic problem is formed with the true anomaly and then with the eccentric anomaly as independent variables. The origin is then transformed to a fixed point and the Hamiltonian is developed up to O(4) in the eccentricity, e, (which plays the role of the small parameter of the problem) of the primaries. The integration of the model problem under consideration is undertaken by means of a perturbation technique based on Lie series developments, which leads to the solution of the canonical equations of motion.  相似文献   

12.
The planetary dynamics of 4/3, 3/2, 5/2, 3/1 and 4/1 mean motion resonances is studied by using the model of the general three body problem in a rotating frame and by determining families of periodic orbits for each resonance. Both planar and spatial cases are examined. In the spatial problem, families of periodic orbits are obtained after analytical continuation of vertical critical orbits. The linear stability of orbits is also examined. Concerning initial conditions nearby stable periodic orbits, we obtain long-term planetary stability, while unstable orbits are associated with chaotic evolution that destabilizes the planetary system. Stable periodic orbits are of particular importance in planetary dynamics, since they can host real planetary systems. We found stable orbits up to 60° of mutual planetary inclination, but in most families, the stability does not exceed 20°–30°, depending on the planetary mass ratio. Most of these orbits are very eccentric. Stable inclined circular orbits or orbits of low eccentricity were found in the 4/3 and 5/2 resonance, respectively.  相似文献   

13.
Results of families of periodic orbits in the elliptic restricted problem are shown. They are calculated for the mass ratios =0.5 and =0.1 for the primary bodies and for different values of the eccentricity of the orbit of the primaries which is the second parameter. The case =0.5 is also a good model for planetary orbits in binaries. Finally we show detailed stability diagrams and give results according to the stability classification of Contopoulos.  相似文献   

14.
A systematic approach to generate periodic orbits in the elliptic restricted problem of three bodies in introduced. The approach is based on (numerical) continuation from periodic orbits of the first and second kind in the circular restricted problem to periodic orbits in the elliptic restricted problem. Two families of periodic orbits of the elliptic restricted problem are found by this approach. The mass ratio of the primaries of these orbits is equal to that of the Sun-Jupiter system. The sidereal mean motions between the infinitesimal body and the smaller primary are in a 2:5 resonance, so as to approximate the Sun-Jupiter-Saturn system. The linear stability of these periodic orbits are studied as functions of the eccentricities of the primaries and of the infinitesimal body. The results show that both stable and unstable periodic orbits exist in the elliptic restricted problem that are close to the actual Sun-Jupiter-Saturn system. However, the periodic orbit closest to the actual Sun-Jupiter-Saturn system is (linearly) stable.  相似文献   

15.
Transition from elliptic to hyperbolic orbits in the two-body problem with slowly decreasing mass is investigated by means of asymptotic approximations.Analytical results by Verhulst and Eckhaus are extended to construct approximate solutions for the true anomaly and the eccentricity of the osculating orbit if the initial conditions are nearly-parabolic. It becomes clear that the eccentricity will monotonously increase with time for all mass functions satisfying a Jeans-Eddington relation and even for a larger set of functions. To illustrate these results quantitatively we calculate the eccentricity as a function of time for Jeans-Eddington functionsn=0(1) 5 and 18 nearly-parabolic initial conditions to find that 93 out of 108 elliptic orbits become hyperbolic.  相似文献   

16.
The elliptic restricted problem of three bodies with unit eccentricity of the primaries is used to generate a family of periodic orbits in the general problem of three bodies. The parameter of the family is the mass of one of the participating bodies. This varies from zero to a termination value. The mass ratio of the primaries of the unperturbed problem (three to five) is maintained throughout the generation of the family. In this way an asymmetry is introduced generalizing the Copenhagen elliptic problem as the generating model. All members of the family experience a close approach and a collision between the primaries during half of the period of the orbit, therefore, the family is classified as Class Two.  相似文献   

17.
This paper investigates the stability of triangular equilibrium points (L 4,5) in the elliptic restricted three-body problem (ER3BP), when both oblate primaries emit light energy simultaneously. The positions of the triangular points are seen to shift away from the line joining the primaries than in the classical case on account of the introduction of the eccentricity, semi-major axis, radiation and oblateness factors of both primaries. This is shown for the binary systems Achird, Luyten 726-8, Kruger 60, Alpha Centauri AB and Xi Bootis. We found that motion around these points is conditionally stable with respect to the parameters involved in the system dynamics. The region of stability increases and decreases with variability in eccentricity, oblateness and radiation pressures.  相似文献   

18.
Special solutions of the planar rectilinear elliptic restricted 3-body problem are investigated for the limiting case e=1. Numerical integration is performed for primaries of equal masses. Starting values which define circular orbit solutions lead to bounded solutions if the initial radius a0 is larger than 3.74 in units of the primaries' semimajor axis a. A comparison with the Eulerian two-fixedcentre problem is presented in order to understand qualitatively the characteristic features of bounded orbits and the transition to escape orbits.  相似文献   

19.
The isosceles rectilinear restricted three-body problem can be considered as the Sitnikov's problem with eccentricity one or, as the isosceles problem when the central mass is zero and the primaries move having consecutive elliptic collisions. We compactify the phase space and analyze the flow on their boundary. This allows us to separate the phase space into different regions depending on the kind of orbits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We study the motions of an infinitesimal mass in the Sitnikov four-body problem in which three equal oblate spheroids (called primaries) symmetrical in all respect, are placed at the vertices of an equilateral triangle. These primaries are moving in circular orbits around their common center of mass. The fourth infinitesimal mass is moving along a line perpendicular to the plane of motion of the primaries and passing through the center of mass of the primaries. A relation between the oblateness-parameter ‘A’ and the increased sides ‘ε’ of the equilateral triangle during the motion is established. We confine our attention to one particular value of oblateness-parameter A=0.003. Only one stability region and 12 critical periodic orbits are found from which new three-dimensional families of symmetric periodic orbits bifurcate. 3-D families of symmetric periodic orbits, bifurcating from the 12 corresponding critical periodic orbits are determined. For A=0.005, observation shows that the stability region is wider than for A=0.003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号