首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A coupled ocean–atmosphere mesoscale ensemble prediction system has been developed by the Naval Research Laboratory. This paper describes the components and implementation of the system and presents baseline results from coupled ensemble simulations for two tropical cyclones. The system is designed to take into account major sources of uncertainty in: (1) non-deterministic dynamics, (2) model error, and (3) initial states. The purpose of the system is to provide mesoscale ensemble forecasts for use in probabilistic products, such as reliability and frequency of occurrence, and in risk management applications. The system components include COAMPS® (Coupled Ocean/Atmosphere Mesoscale Prediction System) and NCOM (Navy Coastal Ocean Model) for atmosphere and ocean forecasting and NAVDAS (NRL Atmospheric Variational Data Assimilation System) and NCODA (Navy Coupled Ocean Data Assimilation) for atmosphere and ocean data assimilation. NAVDAS and NCODA are 3D-variational (3DVAR) analysis schemes. The ensembles are generated using separate applications of the Ensemble Transform (ET) technique in both the atmosphere (for moving or non-moving nests) and the ocean. The atmospheric ET is computed using wind, temperature, and moisture variables, while the oceanographic ET is derived from ocean current, temperature, and salinity variables. Estimates of analysis error covariance, which is used as a constraint in the ET, are provided by the ocean and atmosphere 3DVAR assimilation systems. The newly developed system has been successfully tested for a variety of configurations, including differing model resolution, number of members, forecast length, and moving and fixed nest options. Results from relatively coarse resolution (~27-km) ensemble simulations of Hurricanes Hanna and Ike demonstrate that the ensemble can provide valuable uncertainty information about the storm track and intensity, though the ensemble mean provides only a small amount of improved predictive skill compared to the deterministic control member.  相似文献   

2.
The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).  相似文献   

3.
A wave–tide–circulation coupled model based on Princeton Ocean Model is established to study the seasonal circulation in the Malay Peninsula Eastern Continental Shelf region. The model successfully reconstructs the observed seasonal variation of the circulation in the region, as well as the main currents. The simulated tidal harmonic constants, sea surface temperature, and sea surface height anomaly agree with the observations well. The model results show that the upper-layer circulation in the region is mainly controlled by the monsoon winds, while there are two transitions in spring and fall. An anti-cyclonic eddy is present off the Peninsular Malaysia’s east coast in summer, centered at 5°N and 105.5°E, both in the TOPEX/Poseidon data and in the model. Numerical experiments show that the wind stress curl and bathymetry steering are responsible for its formation.  相似文献   

4.
Eastward-propagating patterns in anomalous potential temperature and salinity of the Southern Ocean are analyzed in the output of a 1000-year simulation of the global coupled atmosphere–ocean GCM ECHO-G. Such features can be associated with the so-called Antarctic Circumpolar Wave (ACW). It is found that time–longitude diagrams that have traditionally been used to aid the visualization of the ACW are strongly influenced by the width of the bandpass time filtering. This is due to the masking of considerable low-frequency variability that occurs over a broad range of time scales. Frequency–wavenumber analysis of the ACW shows that the eastward-propagating waves do have preferred spectral peaks, but that both the period and wavenumber change erratically when comparing different centuries throughout the simulation. The variability of the ACW on a variety of time scales from interannual to centennial suggests that the waiting time for a sufficient observational record to determine the time scale of variability of the real world ACW (and the associated decadal time scale predictability of climate for southern landmasses) will be a very long one.Responsible Editor: Dirk Olbers  相似文献   

5.
6.
First results are presented from a 3-D, time dependent, high resolution, nested grid model that has been developed to study mesoscale processes in the global, coupled thermosphere–ionosphere system. This new Thermosphere–Ionosphere Nested Grid (TING) model, which is an extension of the National Center for Atmospheric Researchs thermosphere–ionosphere general circulation model (NCAR–TIGCM), runs on a UNIX workstation. The TING model simultaneously calculates global (coarse resolution) and local (high resolution) distributions of neutral and plasma winds, temperature and composition. It is comprised of two coupled codes—a global TIGCM and an adjustable nested grid code which uses the same solvers as the TIGCM, but has higher spatial and temporal resolution. The size, location and level of nesting of the high resolution grid(s) are adjustable to suit the specific application. The coupling between the coarse (TIGCM) grid and the nested interior grids is via a one-way interaction scheme. In this scheme, the TIGCM output influences the nested grid model by providing initial conditions and temporally evolving boundary conditions, but the outputs from the nested grid are not permitted to influence the TIGCM. Diurnally-reproducible results of the TING model are presented for solar-maximum, winter solstice, geomagnetically-quiet conditions. The TING model successfully simulates well-known thermosphere–ionosphere features that are smeared or not modeled at the spatial resolutions used in standard TIGCMs. These include the sub-auroral electron density trough, the polar cap hole and the polar cap tongue of ionization.  相似文献   

7.
A three-dimensional finite volume unstructured mesh model of the west coast of Britain, with high resolution in the coastal regions, is used to investigate the role of wind wave turbulence and wind and tide forced currents in producing maximum bed stress in the eastern Irish Sea. The spatial distribution of the maximum bed stress, which is important in sediment transport problems, is determined, together with how it is modified by the direction of wind forced currents, tide–surge interaction and a surface source of wind wave turbulence associated with wave breaking. Initial calculations show that to first order the distribution of maximum bed stress is determined by the tide. However, since maximum sediment transport occurs at times of episodic events, such as storm surges, their effects upon maximum bed stresses are examined for the case of strong northerly, southerly and westerly wind forcing. Calculations show that due to tide–surge interaction both the tidal distribution and the surge are modified by non-linear effects. Consequently, the magnitude and spatial distribution of maximum bed stress during major wind events depends upon wind direction. In addition calculations show that a surface source of turbulence due to wind wave breaking in shallow water can influence the maximum bed stress. In turn, this influences the wind forced flow and hence the movement of suspended sediment. Calculations of the spatial variability of maximum bed stress indicate the level of measurements required for model validation.  相似文献   

8.
A new 3DVAR-based Ocean Variational Analysis System (OVALS) is developed. OVALS is capable of assimilating in situ sea water temperature and salinity observations and satellite altimetry data. As a component of OVALS, a new variational scheme is proposed to assimilate the sea surface height data. This scheme considers both the vertical correlation of background errors and the nonlinear temperature-salinity relationship which is derived from the generalization of the linear balance constraints to the nonlinear in the 3DVAR. By this scheme, the model temperature and salinity fields are directly adjusted from the altimetry data. Additionally, OVALS can assimilate the temperature and salinity profiles from the ARGO floats which have been implemented in recent years and some temperature and salinity data such as from expendable bathythermograph, moored ocean buoys, etc. A 21-year assimilation experiment is carried out by using OVALS and the Tropical Pacific circulation model. The results show that the assimilation system may effectively improve the estimations of temperature and salinity by assimilating all kinds of observations. Moreover, the root mean square errors of temperature and salinity in the upper depth less than 420 m reach 0.63℃ and 0.34 psu.  相似文献   

9.
Long-term trends in the ocean wave climate because of global warming are of major concern to many stakeholders within the maritime industries, and there is a need to take severe sea state conditions into account in design of marine structures and in marine operations. Various stochastic models of significant wave height are reported in the literature, but most are based on point measurements without exploiting the flexible framework of Bayesian hierarchical space–time models. This framework allows modelling of complex dependence structures in space and time and incorporation of physical features and prior knowledge, yet remains intuitive and easily interpreted. This paper presents a Bayesian hierarchical space–time model with a log-transform for significant wave height data for an area in the North Atlantic ocean. The different components of the model will be outlined, and the results from applying the model to data of different temporal resolutions will be discussed. Different model alternatives have been tried and long-term trends in the data have been identified for all model alternatives. Overall, these trends are in reasonable agreement and also agree fairly well with previous studies. The log-transform was included in order to account for observed heteroscedasticity in the data, and results are compared to previous results where a similar model was employed without a log-transform. Furthermore, a discussion of possible extensions to the model, e.g. incorporating regression terms with relevant meteorological data, will be presented.  相似文献   

10.
The Global Coupled Ionosphere–Thermosphere-Electrodynamics Model developed at Institute of Geology and Geophysics, Chinese Academy of Sciences (GCITEM-IGGCAS), is introduced in this paper. This new model self-consistently calculates the time-dependent three-dimensional (3-D) structures of the main thermospheric and ionospheric parameters in the height range from 90 to 600 km, including neutral number density of major species O2, N2, and O and minor species N(2D), N(4S), NO, He and Ar; ion number densities of O+ ,O2+, N2+, NO+, N+ and electron; neutral, electron and ion temperature; and neutral wind vectors. The mid- and low-latitude electric fields can also be self-consistently calculated. GCITEM-IGGCAS is a full 3-D code with 5° latitude by 7.5° longitude cells in a spherical geographical coordinate system, which bases on an altitude grid. We show two simulations in this paper: a March Equinox one and a June Solstice one, and compare their simulation results to MSIS00 and IRI2000 empirical model. GCITEM-IGGCAS can reproduce the main features of the thermosphere and ionosphere in both cases.  相似文献   

11.
Ocean Dynamics - The complicated pattern of the chaotic ocean surface depends strongly on the interaction between wind and waves. An accurate representation of momentum and energy exchange at...  相似文献   

12.
Sensitivity study of the airice drag coefficient C Dai is presented with an iceocean coupled model for the Sea of Okhotsk. The C Dai?×?103 value is varied from 2 to 5 based on the direct measurements in the region. The maximum volume transport of the East Sakhalin Current and the mean sea ice velocity were intensified as C Dai increased. The sensitivity experiment with the icewater drag coefficient C Diw showed that the East Sakhalin Current volume transport is hardly affected by C Diw but significantly intensified by C Dai. While the ice drift in the off-ice-edge direction was intensified by the increase in C Dai and the decrease in C Diw, the ice edge location was nearly unchanged. This was due to melting caused by the relatively warm water inflow from the North Pacific. That is, sea ice extent in the region is strongly influenced by melting caused by a large iceocean heat transfer. In the active melting regions, the iceocean heat transfer of more than 100 W/m2 occurred even in mid-winter. This is the same order as the cooling by air in winter, and a heat insulation capacity of sea ice is weakened in such regions.  相似文献   

13.
Potential sources are simplified as point sources or linear sources in current probabilistic seismic hazard analysis (PSHA) methods. Focus size of large earthquakes is considerable, and fault rupture attitudes may have great influ-ence upon the seismic hazard of a site which is near the source. Under this circumstance, it is unreasonable to use the simplified potential source models in the PSHA, so a potential rupture surface model is proposed in this paper. Adopting this model, we analyze the seismic hazard near the Chelungpu fault that generated the Chi-Chi (Jiji) earthquake with magnitude 7.6 and the following conclusions are reached. 1 This model is reasonable on the base of focal mechanism, especially for sites near potential earthquakes with large magnitude; 2 The attitudes of poten-tial rupture surfaces have great influence on the results of probabilistic seismic hazard analysis and seismic zoning.  相似文献   

14.
Little is known about the fate of subsurface hydrocarbon plumes from deep-sea oil well blowouts and their effects on processes and communities. As deepwater drilling expands in the Faroe–Shetland Channel (FSC), oil well blowouts are a possibility, and the unusual ocean circulation of this region presents challenges to understanding possible subsurface oil pathways in the event of a spill. Here, an ocean general circulation model was used with a particle tracking algorithm to assess temporal variability of the oil-plume distribution from a deep-sea oil well blowout in the FSC. The drift of particles was first tracked for one year following release. Then, ambient model temperatures were used to simulate temperature-mediated biodegradation, truncating the trajectories of particles accordingly. Release depth of the modeled subsurface plumes affected both their direction of transport and distance travelled from their release location, and there was considerable interannual variability in transport.  相似文献   

15.
Land surface process is of great importance in global climate change, moisture and heat exchange in the interface of the earth and atmosphere, human impacts on the environment and eco- system, etc. Soil freeze/thaw plays an important role in cold land surface processes. In this work the diurnal freeze/thaw effects on energy partition in the context of GAME/Tibet are studied. A sophisti- cated land surface model is developed, the particular aspect of which is its physical consideration of soil freeze/thaw and vapor flux. The simultaneous water and heat transfer soil sub-model not only reflects the water flow from unfrozen zone to frozen fringe in freezing/thawing soil, but also demon- strates the change of moisture and temperature field induced by vapor flux from high temperature zone to low temperature zone, which makes the model applicable for various circumstances. The modified Picard numerical method is employed to help with the water balance and convergence of the numerical scheme. Finally, the model is applied to analyze the diurnal energy and water cycle char- acteristics over the Tibetan Plateau using the Game/Tibet datasets observed in May and July of 1998. Heat and energy transfer simulation shows that: (i) There exists a negative feedback mechanism between soil freeze/thaw and soil temperature/ground heat flux; (ii) during freezing period all three heat fluxes do not vary apparently, in spite of the fact that the negative soil temperature is higher than that not considering soil freeze; (iii) during thawing period, ground heat flux increases, and sensible heat flux decreases, but latent heat flux does not change much; and (iv) during freezing period, soil temperature decreases, though ground heat flux increases.  相似文献   

16.
An implementation of the Ensemble Kalman filter (EnKF) with a coupled ice–ocean model is presented. The model system consists of a dynamic–thermodynamic ice model using the elastic-viscous-plastic (EVP) rheology coupled with the HYbrid Coordinate Ocean Model (HYCOM). The observed variable is ice concentration from passive microwave sensor data (SSM/I). The assimilation of ice concentration has the desired effect of reducing the difference between observations and model. Comparison of the assimilation experiment with a free-run experiment shows that there are large differences, especially in summer. In winter the differences are relatively small, partly because the atmospheric forcing used to run the model depends upon SSM/I data. The assimilation has the strongest impact close to the ice edge, where it ensures a correct location of the ice edge throughout the simulation. An inspection of the model ensemble statistics reveals that the error estimates of the model are too small in winter, partly a result of too low model ice-concentration variance in the central ice pack. It is found that the ensemble covariance between ice concentration and sea-surface temperature in the same grid cell is of the same sign (negative) throughout the year. The ensemble covariance between ice concentration and salinity is more dependent upon the physical mechanisms involved, with ice transport and freeze/melt giving different signs of the covariances. The ice-transport and ice-melt mechanisms also impact the ice-concentration variance and the covariance between ice concentration and ice thickness. The ensemble statistics show a high degree of complexity, which to some extent merits the use of computationally expensive assimilation methods, such as the Ensemble Kalman filter. The present study focuses on the assimilation of ice concentration, but it is understood that assimilation of other datasets, such as sea-surface temperature, would be beneficial.Responsible Editor: Jin-Song von Storch  相似文献   

17.
A distributed physically-based model describing coupled surface–subsurface flows is applied to an instrumented catchment to investigate the links between runoff generation processes and the dynamics of saturated areas. The spatial characterization of the system is obtained through geophysical measurements and in situ observations. The model is able to reproduce the dynamics of the system through the calibration of only few parameters with a clear physical interpretation, providing a solid basis for our numerical investigations. Such investigations demonstrate the important control exerted by surface topography on the time evolution of saturated area patterns, mainly mediated by topographic curvature, that dictates both the dominant streamflow generation process at the local scale and the connection-disconnection dynamics of saturated areas. The relation between hillslope water storage and streamflow, Q = f(V), is shown to be highly hysteretical and dependent on the mean saturation of the catchment: higher degrees of saturation tend to yield one-to-one relationships between streamflow and water storage. On the contrary, streamflow-water storage relations are importantly affected by the specific configuration of saturated areas connected to the outlet when the system is far from complete saturation. This observation contradicts common assumptions of a one-to-one relationship Q = f(V) often used to justify widely observed power-law Q vs. dQ/dt recession curves. Furthermore, even when Q = f(V) becomes unique at high degrees of saturation, no power-law form emerged in our runs, speculatively because of the small size of the catchment formed by a single incision and the corresponding hillslope.  相似文献   

18.
Five weeks of hourly, 10-min time-exposure video images were used to analyze the meso–macro-tidal double-barred Truc Vert Beach, SW France, under intense wave forcing. The four storms experienced, one of which with an offshore significant wave height over 8 m, induced dramatic changes in the double sandbar system. The subtidal outer bar migrated offshore rapidly (up to 30–50 m/day) and its pre-existing crescentic pattern was wiped out. The seaward-protruding parts of the outer bar barely migrated offshore during the most intense storm, whereas a landward-protruding part was shed off. Over the entire study period, the outer-bar dynamics was dominated by alongshore-averaged changes rather than alongshore non-uniform changes, while the opposite was observed for the inner bar. In addition, the outer-bar dynamics was predominantly controlled by the time-varying offshore wave conditions, whereas the inner-bar dynamics was influenced largely by the tide-range variations. Our observations put forward the key role of morphological settings (the presence of a subtidal bar and its shape) and tidal range in governing inner-bar behaviour within a double sandbar dynamics, and provide strong support for previous suggestions that sandbars cannot be studied in isolation.  相似文献   

19.
Ocean–atmosphere coupling in the Humboldt Current System (HCS) of the Southeast Pacific is studied using the Scripps Coupled Ocean–atmosphere Regional (SCOAR) model, which is used to downscale the National Center for Environmental Prediction (NCEP) Reanalysis-2 (RA2) product for the period 2000–2007 at 20-km resolution. An interactive 2-D spatial smoother within the sea-surface temperature (SST)–flux coupler is invoked in a separate run to isolate the impact of the mesoscale (~50–200 km, in the oceanic sense) SST field felt by the atmosphere in the fully coupled run. For the HCS, SCOAR produces seasonal wind stress and wind stress curl patterns that agree better with QuikSCAT winds than those from RA2. The SCOAR downscaled wind stress distribution has substantially different impacts on the magnitude and structure of wind-driven upwelling processes along the coast compared to RA2. Along coastal locations such as Arica and Taltal, SCOAR and RA2 produce seasonally opposite signs in the total wind-driven upwelling transport. At San Juan, SCOAR shows that upwelling is mainly due to coastal Ekman upwelling transport, while in RA2 upwelling is mostly attributed to Ekman pumping. Fully coupled SCOAR shows significant SST–wind stress coupling during fall and winter, while smoothed SCOAR shows insignificant coupling throughout, indicating the important role of ocean mesoscale eddies on air–sea coupling in HCS. Coupling between SST, wind speed, and latent heat flux is incoherent in large-scale coupling and full coupling mode. In contrast, coupling between these three variables is clearly identified for oceanic mesoscales, which suggests that mesoscale SST affects latent heat directly through the bulk formulation, as well as indirectly through stability changes on the overlying atmosphere, which affects surface wind speeds. The SST–wind stress and SST–heat-flux couplings, however, fail to produce a strong change in the ocean eddy statistics. No rectified effects of ocean–atmosphere coupling were identified for either the atmospheric or oceanic mean conditions, suggesting that mesoscale coupling is too weak in this region to strongly alter the basic climate state.  相似文献   

20.
In order to clarify the mechanism of carbon transport in an ice-covered ecosystem in Lake Saroma (44°N44°N, 143°E143°E, Hokkaido, Japan), a three-dimensional numerical calculation using a coupled ice–ocean ecosystem model was conducted. This model comprises an ocean ecosystem model, an ice ecosystem model, and equations for the coupling between ice and ocean. Comparisons of calculated results with observational data confirm that the calculation well reproduced the in situ phenomena with respect to tides, tidal currents, concentrations of POC and chlorophyll a in ice and in water, and sinking fluxes beneath the ice. The analysis of the organic carbon budget based on the calculation reveals that tide-induced transport, the enhancement of biological production in a pelagic system, and the physical release of organic matter from ice associated with ice-melting are important factors affecting the carbon transport during the ice-melting season. The carbon transport has a one-day time cycle. This is because principal driving forces are sunlight, and diurnal tides. The described mechanism of “sunlight and tidal pumping” is one of the most important features of carbon transport in a coupled ice–water ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号