首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the dynamical structure of a cooling dominated rotating accretion flow around a spinning black hole. We show that non-linear phenomena such as shock waves can be studied in terms of only three flow parameters, namely the specific energy     , the specific angular momentum (λ) and the accretion rate     of the flow. We present all possible accretion solutions. We find that a significant region of the parameter space in the     plane allows global accretion shock solutions. The effective area of the parameter space for which the Rankine–Hugoniot shocks are possible is maximum when the flow is dissipation-free. It decreases with the increase of cooling effects and finally disappears when the cooling is high enough. We show that shock forms further away when the black hole is rotating compared to the solution around a Schwarzschild black hole with identical flow parameters at a large distance. However, in a normalized sense, the flow parameters for which the shocks form around the rotating black holes are produced shocks closer to the black hole. The location of the shock is also dictated by the cooling efficiency in that higher the accretion rate     , the closer is the shock location. We believe that some of the high-frequency quasi-periodic oscillations may be due to the flows with higher accretion rate around the rotating black holes.  相似文献   

2.
This paper is devoted to the study of sonic points and shocks in stationary, axially symmetric, isothermal flows around a Kerr black hole. We first show the dependence of the location of the sonic point with the flow's angular momentum for different isothermal sound speeds. With our selected shock jump conditions, we then discuss the properties of the shock, including the location and the strength. The ambiguity regarding the shock locations is removed by stability analysis. We also find some differences between the shock in isothermal flows and that in adiabatic flows. Subject headings: accretion, accretion disks-black hole physics-hydrodynamics-relativity-shock waves.  相似文献   

3.
Using two-dimensional simulations of non-radiative viscous rotating black hole accretion flows, we show that the flows with α ∼0.1–0.3 self-organize to form stationary unipolar or bipolar outflows accompanied by global meridional circulations. The required energy comes, with efficiency ∼0.001–0.01, from the matter directly accreted on to the black hole. Observational implications are discussed.  相似文献   

4.
着重评述了含激波吸积理论的发展历史和研究现状, 介绍了在伪牛顿势以及严格广义相对论框架下, 对等温和绝热两种不同的流体模型中可能发生的R- H 激波、等温激波等各种不同激波的解析和数值模拟研究, 包括激波发生的参数空间、不同流体参数( 比能量和比角动量) 下激波发生的位置、强度以及耗散的能量。这些研究结果表明, 在理想流体近似下, 黑洞吸积流中必定会产生激波。此外, 还介绍了含激波吸积理论在活动星系核方面的应用。对黑洞吸积理论简单讨论, 评述了含激波吸积理论与ADAF 吸积理论的关系, 着重评述了目前对于ADAF 中是否会发生激波这一存在很大争议的问题。  相似文献   

5.
Standing, propagating or oscillating shock waves are common in accretion and winds around compact objects. We study the topology of all possible solutions using the pseudo-Kerr geometry. We present the parameter space spanned by the specific energy and angular momentum and compare it with that obtained from the full general relativity to show that the potential can work satisfactorily in fluid dynamics also, provided the polytropic index is suitably modified. We then divide the parameter space depending on the nature of the solution topology. We specifically study the nature of the standing Rankine–Hugoniot shocks. We also show that as the Kerr parameter is increased, the shock location generally moves closer to the black hole. In future, these solutions can be used as guidelines to test numerical simulations around compact objects.  相似文献   

6.
In the present communication of our series of papers dealing with the accretion flows in the pseudo-Kerr geometry, we discuss the effects of viscosity on the accretion flow around a rotating black hole. We find the solution topologies and give special attention to the solutions containing shocks. We draw the parameter space where standing shocks are possible and where the shocks could be oscillating and could produce quasi-periodic oscillations (QPOs) of X-rays observed from black hole candidates. In this model, the extreme locations of the shocks give the upper limits of the QPO frequencies  (νQPO)  which could be observed. We show that both the viscosity of the flow and the spin of the black hole a increase the QPO frequency while, as expected, the black hole mass reduces the QPO frequencies. Our major conclusion is that the highest observed frequency gives a strict lower limit of the spin. For instance, a black hole exhibiting  νQPO∼ 400  and  700 Hz  must have the spin parameters of   a > 0.25  and  >0.75  , respectively, provided viscosity of the flow is small. We discuss the implications of our results in the light of observations of QPOs from black hole candidates.  相似文献   

7.
We examine the behaviour of accretion flow around a rotating black hole in presence of cooling. We obtain global flow solutions for various accretion parameters that govern the accreting flow. We show that standing isothermal shock wave may develop in such an advective accretion flow in presence of cooling. This shocked solution has observational consequences as it successfully provides the possible explanations of energy spectra as well as generation of outflows/jets of various galactic and extra-galactic black hole candidates. We study the properties of isothermal shock wave and find that it strongly depends on the cooling efficiency. We identify the region in the parameter space spanned by the specific energy and specific angular momentum of the flow for standing isothermal shock as a function of cooling efficiencies and find that parameter space gradually shrinks with the increase of cooling rates. Our results imply that accretion flow ceases to contain isothermal shocks when cooling is beyond its critical value.  相似文献   

8.
9.
We investigate the behaviour of dissipative accreting matter close to a black hole, as this provides important observational features of galactic and extragalactic black hole candidates. We find a complete set of global solutions in the presence of viscosity and synchrotron cooling. We show that advective accretion flow can have a standing shock wave and the dynamics of the shock is controlled by the dissipation parameters (both viscosity and cooling). We study the effective region of the parameter space for standing as well as oscillating shock. We find that the shock front always moves towards the black hole as the dissipation parameters are increased. However, viscosity and cooling have opposite effects in deciding the solution topologies. We obtain two critical cooling parameters that separate the nature of the accretion solution.  相似文献   

10.
We numerically examine centrifugally supported shock waves in 2D rotating accretion flows around a stellar mass  (10 M)  and a supermassive  (106 M)  black holes over a wide range of input accretion rates of     . The resultant 2D shocks are unstable with time and the luminosities show quasi-periodic oscillations (QPOs) with modulations of a factor of 2–3 and with periods of a tenth of a second to several hours, depending on the black hole masses. The shock oscillation model may explain the intermediate frequency QPOs with 1–10 Hz observed in the stellar mass black hole candidates and also suggest the existence of QPOs with the period of hours in active galactic nuclei. When the accretion rate     is low, the luminosity increases in proportion to the accretion rate. However, when     greatly exceeds the Eddington critical rate     , the luminosity is insensitive to the accretion rate and is kept constantly around  ∼3 L E  . On the other hand, the mass-outflow rate     increases in proportion to     and it amounts to about a few per cent of the input mass-flow rate.  相似文献   

11.
We investigate the linear stability of a shocked accretion flow on to a black hole in the adiabatic limit. Our linear analyses and numerical calculations show that, despite the post-shock deceleration, the shock is generally unstable to non-axisymmetric perturbations. The simulation results of Molteni, Tóth & Kuznetsov can be well explained by our linear eigenmodes. The mechanism of this instability is confirmed to be based on the cycle of acoustic waves between the corotation radius and the shock. We obtain an analytical formula to calculate the oscillation period from the physical parameters of the flow. We argue that the quasi-periodic oscillation should be a common phenomenon in accretion flows with angular momentum.  相似文献   

12.
We discuss a special case of formation of axisymmetric shocks in the accretion flow of ideal gas on to a Schwarzschild black hole: when the total energy of the flow is negative. The result of our analysis enlarges the parameter space for which these steady shocks are exhibited in the accretion of gas rotating around relativistic stellar objects. Since Keplerian discs have negative total energy, we guess that, in this energy range, the production of the shock phenomenon might be easier than in the case of positive energy. So our outcome reinforces the view that sub-Keplerian flows of matter may significantly affect the physics of the high energy radiation emission from black hole candidates. We give a simple procedure to obtain analytically the position of the shocks. The comparison of the analytical results with the data of one-dimensional (1D) and two-dimensional (2D) axisymmetric numerical simulations confirms that the shocks form and are stable.  相似文献   

13.
The power of jets from black holes is expected to depend on both the spin of the black hole and the structure of the accretion disc in the region of the last stable orbit. We investigate these dependencies using two different physical models for the jet power: the classical Blandford–Znajek (BZ) model and a hybrid model developed by Meier. In the BZ case, the jets are powered by magnetic fields directly threading the spinning black hole while in the hybrid model, the jet energy is extracted from both the accretion disc as well as the black hole via magnetic fields anchored to the accretion flow inside and outside the hole's ergosphere. The hybrid model takes advantage of the strengths of both the Blandford–Payne and BZ mechanisms, while avoiding the more controversial features of the latter. We develop these models more fully to account for general relativistic effects and to focus on advection-dominated accretion flows (ADAFs) for which the jet power is expected to be a significant fraction of the accreted rest mass energy.
We apply the models to elliptical galaxies, in order to see if these models can explain the observed correlation between the Bondi accretion rates and the total jet powers. For typical values of the disc viscosity parameter  α∼ 0.04 –0.3  and mass accretion rates consistent with ADAF model expectations, we find that the observed correlation requires   j ≳ 0.9  ; that is, it implies that the black holes are rapidly spinning. Our results suggest that the central black holes in the cores of clusters of galaxies must be rapidly rotating in order to drive jets powerful enough to heat the intracluster medium and quench cooling flows.  相似文献   

14.
We report BeppoSAX and optical observations of the black hole candidate GX 339–4 during its X-ray 'off' state in 1999. The broad-band (0.8–50 keV) X-ray emission can be fitted by a single power law with spectral index, α ∼1.6. The observed luminosity is 6.6×1033 erg s−1 in the 0.5–10 keV band, which is at the higher end of the flux distribution of black hole soft X-ray transients in quiescence, comparable to that seen in GS 2023+338 and 4U 1630–47. An optical observation just before the BeppoSAX observation shows the source to be very faint at these wavelengths as well ( B =20.1, V =19.2). By comparing with previously reported 'off' and low states (LS), we conclude that the 'off' state is actually an extension of the LS, i.e. an LS at lower intensities. We propose that accretion models such as the advection-dominated accretion flows are able to explain the observed properties in such a state.  相似文献   

15.
黑洞的吸积是天体物理学中最重要的基础理论之一。近年来该理论取得了引人瞩目的重大进展,具体表现在两个方面。其一是根据黑洞吸积必定跨声速这一特性,提出在一定条件下吸积流中会出现激波,这可称为含激波的吸积理论;其二是基于对一种局域致冷机制-贮导(advection)致冷的作用的重新认识而建立的,称为ADAF理论。在吸积盘的光学厚度很小或很大两种情况下,粘滞产生的大部分热量没有像在标准薄盘模型中那样辐射出去,而是贮存在流体中随流体的径向运动进入黑洞。与标准薄盘模型相比,贮导吸积盘具有高得多的温度和大得多的径向速度,但角动量小于开普勒角动量,吸积致能的效率要低得多。  相似文献   

16.
Accretion disks orbiting black holes power high-energy systems such as X-ray binaries and Active Galactic Nuclei. Observations are providing increasingly detailed quantitative information about such systems. This data has been interpreted using standard toy-models that rely on simplifying assumptions such as regular flow geometry and a parameterized stress. Global numerical simulations offer a way to investigate the basic physical dynamics of accretion flows without these assumptions and, in principle, lead to a genuinely predictive theory. In recent years we have developed a fully three-dimensional general relativistic magnetohydrodynamic simulation code that evolves time-dependent inflows into Kerr black holes. Although the resulting global simulations of black hole accretion are still somewhat simplified, they have brought to light a number of interesting results. These include the formation of electro-magnetically dominated jets powered by the black hole’s rotation, and the presence of strong stresses in the plunging region of the accretion flow. The observational consequences of these features are gradually being examined. Increasing computer power and increasingly sophisticated algorithms promise a bright future for the computational approach to black hole accretion.  相似文献   

17.
18.
19.
We calculate the structure of the accretion disc around a rapidly rotating black hole with a super-Eddington accretion rate. The luminosity and height of the disc are reduced by the advection effect. In the case of large viscosity parameter, α>0.03, the accretion flow deviates strongly from thermodynamic equilibrium and overheats in the central region. With increasing accretion rate, the flow temperature steeply increases, reaches maximum, and then falls off. The maximum is achieved in the advection-dominated regime of accretion. The maximum temperature in the disc around a massive black hole of M =108 M⊙ with α=0.3 is of order 3×108 K. The discs with large accretion rates can emit X-rays in quasars as well as in galactic black hole candidates.  相似文献   

20.
We propose a model of magnetic connection (MC) of a black hole with its surrounding accretion disc based on large-scale magnetic field. The MC gives rise to transport of energy and angular momentum between the black hole and the disc, and the closed field lines pipe the hot matter evaporated from the disc, and shape it in the corona above the disc to form a magnetically induced disc–corona system, in which the corona has the same configuration as the large-scale magnetic field. We numerically solve the dynamic equations in the context of the Kerr metric, in which the large-scale magnetic field is determined by dynamo process and equipartition between magnetic pressure and gas pressure. Thus we can obtain a global solution rather than assuming the distribution of large-scale magnetic field beforehand. The main MC effects lie in three aspects. (1) The rotational energy of a fast-spinning black hole can be extracted, enhancing the dissipation in the accretion disc, (2) the closed field lines provide a natural channel for corona matter escaping from disc and finally falling into black hole and (3) the scope of the corona can be bounded by the conservation of magnetic flux. We simulate the high-energy spectra of this system by using Monte Carlo method, and find that the relative hardness of the spectra decreases as accretion rate or black hole spin a * increases. We fit the typical X-ray spectra of three black hole binaries  (GRO J1655−40, XTE 1118+480 and GX 339−4)  in the low/hard or very high state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号