首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We present near-infrared polarimetric images of the dusty circumstellar envelope (CSE) of IRAS 19306+1407, acquired at the United Kingdom Infrared Telescope (UKIRT) using the UKIRT 1–5 μm Imager Spectrometer (UIST) in conjunction with the half-waveplate module IRPOL2. We present additional 450- and 850-μm photometry data obtained with the Submillimetre Common-User Bolometer Array (SCUBA) at the James Clerk Maxwell Telescope (JCMT), as well as archived Hubble Space Telescope ( HST ) F606W - and F814W -filter images. The CSE structure in polarized flux at J and K bands shows an elongation north of north-east and south of south-west with two bright scattering shoulders north-west and south-east. These features are not perpendicular to each other and could signify a recent 'twist' in the outflow axis. We model the CSE using an axisymmetric light scattering ( als ) code to investigate the polarization produced by the CSE, and an axisymmetric radiation transport ( dart ) code to fit the spectral energy distribution. A good fit was achieved with the als and dart models using silicate grains, 0.1–0.4 μm with a power-law size distribution of a −3.5, and an axisymmetric shell geometry with an equator-to-pole ratio of 7:1. The spectral type of the central star is determined to be B1 i supporting previous suggestions that the object is an early planetary nebula. We have constrained the CSE and interstellar extinction as 2.0 and 4.2 mag, respectively, and have estimated a distance of 2.7 kpc. At this distance, the stellar luminosity is ∼4500 L and the mass of the CSE is ∼0.2 M. We also determine that the mass loss lasted for ∼5300 yr with a mass-loss rate of ∼3.4 × 10−5 M yr−1.  相似文献   

3.
Radiation pressure acts to accelerate dust grains and, by transfer of momentum through collisions with the gas, drives the outflows of late-type stars. Some of these dust–gas collisions may be energetic enough to remove atoms from the dust grains. From an assumed initial size distribution for the dust grains, the method of Krüger et al. is used to study the evolution of a sample of spherical amorphous carbon grains under conditions typical of a late-type star. The size distribution of dust grains is presented for various sets of model parameters. One set of models assumes an initial Mathis, Rumpl & Nordsieck (MRN) distribution for the dust grains. The high-luminosity ( L ∗), high-effective temperature ( T eff) set of parameters has a terminal velocity ( v term) that is near, but above , the upper limit of observed outflow velocities for carbon stars (∼30 km s−1 for the assumed ̇ of 5×10−6 M yr−1). The low L ∗, T eff model has a v term that lies near, but below , the upper limit of observed velocities. A significant amount of sputtering occurs in the high L ∗, T eff model with ∼40 per cent of the grain mass sputtered. About ∼1 per cent of the dust mass is sputtered in the low L ∗, T eff. Another set of models assumes that the dust forms with a log-normal distribution. Here, v term is nearly the same for the high L ∗, T eff model as for the low L ∗, T eff model. This is a result of the large amount of dust mass loss (∼75 per cent) by sputtering in the high L ∗, T eff model.  相似文献   

4.
We report the diminution of the 1667-MHz OH maser in the post-asymptotic giant branch star IRAS 17436+5003, by a factor of ≳17 over a period of ≲12 yr, from observations with MERLIN. This circumstellar maser was detected by Likkel in 1987, at the 13σ level of her observations with the Green Bank Telescope. We discuss a number of possible reasons for this phenomenon and conclude that it is most likely due to turbulence arising from interacting stellar winds.  相似文献   

5.
6.
We report on the light variations of the infrared stars that were discovered recently in the Magellanic clusters NGC 419, 1783 and 1978. Their periods, of 528, 458 and 491 days, are among the longest known for carbon-rich Mira variables in the Clouds. All three IR stars were found to lie on the extension of the period– M bol relation derived from the shorter-period C-rich Miras while they were 0.45–0.70 mag fainter than the extension of the period– M K relation. Their main sequence masses were determined by isochrone fitting to be 1.5–1.6 M, consistent with the prediction of the evolutionary models of Vassiliadis & Wood.  相似文献   

7.
Silicon carbide (SiC), a refractory material, condenses near the photospheres of C-rich asymptotic giant branch stars, giving rise to a conspicuous emission feature at 11.3 μm. In the presence of a stellar wind, the SiC grains are carried outwards to colder regions, where less-refractory carbonaceous material can condense, either by itself or in mantles upon SiC grains. Enough carbon can condense on the latter that their specific feature is completely veiled. Thus the following may be explained: (i) the coexistence of the SiC feature protruding above a carbonaceous continuum, with a range of contrasts, corresponding to various volume ratios of mantle to core; or (ii) the ultimate disappearance of the 11.3-μm feature from the interstellar medium, where the mantle has become completely opaque due to the much higher cosmic abundance of carbon.  相似文献   

8.
The 2.2–200 μm spectrum of OH32.8–0.3 has been modelled. Mie theory and radiative transfer models of the 3-μm band of H2O ice are consistent with a strongly crystalline structural phase. This is also confirmed by the presence of a 44/62-μm band complex analogous to that of laboratory crystalline H2O ice analogues. The highly ordered phase may be the result of direct crystallization upon deposition as has been theorized by Kouchi et al. At the large total optical depths typical of the radiative transfer models for this object (τ9.7∼ 40), we find no significant difference between the Mie theory and radiative transfer models of the 3-μm band. On the other hand, large differences are found for the 9.7-μm silicate band. In contrast to Mie theory extinction profiles, those computed via radiative transfer modelling indicate that the 12-μm H2O ice band (the so-called librational band) is substantially attenuated. This, in addition to the inherent broadness and weakness of the 12-μm ice band, may explain why this band has not been clearly identified in observational spectra of oxygen–rich evolved objects.  相似文献   

9.
10.
Radiative transfer modelling of the Infrared Space Observatory ( ISO ) spectrum of IRAS 22036+5306 has shown that its unusual 11-μm band can be suitably modelled with an alumina-olivine mixture substantially dominated by the former. The results of this work add further credence to recent findings that significant amounts of Al  2O3  dust grains are present in the dust shells of stars near or beyond the tip of the asymptotic giant branch. Indeed, in the case of IRAS 22036+5306, Al  2O3  dominates the dust composition to the extent that it shifts the 9.8-μm band due to amorphous silicates to 11 μm. IRAS 22036+5306 may be an unusual case in that the inner dust torus is maintained at a sufficiently high temperature for Al  2O3  condensation, but not silicate.  相似文献   

11.
12.
We analyse the differences in infrared circumstellar dust emission between oxygen-rich Mira and non-Mira stars, and find that they are statistically significant. In particular, we find that these stars segregate in the K–[12] versus [12]–[25] colour–colour diagram, and have distinct properties of the IRAS LRS spectra, including the peak position of the silicate emission feature. We show that the infrared emission from the majority of non-Mira stars cannot be explained within the context of standard steady-state outflow models.
The models can be altered to fit the data for non-Mira stars by postulating non-standard optical properties for silicate grains, or by assuming that the dust temperature at the inner envelope radius is significantly lower (300–400 K) than typical silicate grain condensation temperatures (800–1000 K) . We argue that the latter is more probable and provide detailed model fits to the IRAS LRS spectra for 342 stars. These fits imply that two-thirds of non-Mira stars and one-third of Mira stars do not have hot dust (>500 K) in their envelopes.
The absence of hot dust can be interpreted as a recent (∼100 yr) decrease in the mass-loss rate. The distribution of best-fitting model parameters agrees with this interpretation and strongly suggests that the mass loss resumes on similar time-scales. Such a possibility appears to be supported by a number of spatially resolved observations (e.g. recent Hubble Space Telescope images of the multiple shells in the Egg Nebula) and is consistent with new dynamical models for mass loss on the asymptotic giant branch.  相似文献   

13.
14.
15.
16.
JHKL observations of the mass-losing carbon Mira variable IRAS 15194–5115 (II Lup) extending over about 18 yr are presented and discussed. The pulsation period is 575 d and has remained essentially constant over this time span. The star has undergone an extensive obscuration minimum during this time. This is complex and, like such minima in similar objects (e.g. R For), does not fit the model predictions of a simple long-term periodicity. Together with the high-resolution observations of Lopez et al., the results suggest that the obscuration changes are caused by the formation of dust clouds of limited extent in the line of sight. This is an R Coronae Borealis-type (RCB-type) model. The effective reddening law at J and H is similar to that found for R For.  相似文献   

17.
18.
The optical spectrum of the carbon star IRAS 12311−3509 is dominated by the Merrill–Sanford emission bands of SiC2, by absorption and emission in the Swan system of C2, and by resonance emission lines of neutral metals. The infrared energy distribution is flat from 1 to 60 μm. These observations are interpreted as arising from a star with a cool dusty disc which is edge-on to the observer and obscures direct starlight. The infrared continuum is caused predominantly by absorption of stellar light by dust in the disc and re-emission at longer wavelengths. The optical stellar spectrum is seen by reflection off dusty material which lies out of the plane of the disc, and the molecular and atomic emission arises in the same geometry through resonance fluorescence. The object has similarities to the J-silicate stars, but may have a carbon-rich rather than oxygen-rich disc. A full spectroscopic assignment and discussion of the SiC2 bands and their intensities are given. Modelling of the rotational contours of the     band yields a rotational temperature of 250 K, indicating very cool gas.  相似文献   

19.
We have investigated the optical properties of the carbon dust grains in the envelopes around carbon-rich asymptotic giant branch stars, paying close attention to the infrared observations of the stars and the laboratory-measured optical data of the candidate dust grain materials. We have compared the radiative transfer model results with the observed spectral energy distributions of the stars including IRAS Point Source Catalog and IRAS Low Resolution Spectrograph data. We have deduced an opacity function of amorphous carbon dust grains from model fitting with infrared carbon stars. From the opacity function, we have derived the optical constants of the AMC grains. The optical constants satisfy the Kramers–Kronig relation and produce the opacity function that fits the observations of infrared carbon stars better than previous works in the wide wavelength range 1–1000 μm. We have used simple mixtures of the AMC and silicon carbide grains for modelling. We have compared the contributions that AMC and SiC grains make to the opacity for the cases of simple mixtures of them and spherical core–mantle type grains consisting of a SiC core and an AMC mantle .  相似文献   

20.
The mysterious 21 μm emission feature seen in sixteen C-rich proto-planetary nebulae (PPNe) remains unidentified since its discovery in 1989. Over a dozen of materials are suggested as the carrier candidates. In this work, we quantitatively investigate eight inorganic and one organic carrier candidates in terms of elemental abundance constraints, while previous studies mostly focus on their spectral profiles (which could be largely affected by grain size, shape and clustering effects). It is found that: (1) five candidates (TiC nanoclusters, fullerenes coordinated with Ti atoms, SiS2, doped-SiC and SiO2-coated SiC dust) violate the abundance constraints (i.e. they require too much Ti, S or Si to account for the emission power of the 21 μm band, (2) three candidates (carbon and silicon mixtures, Fe2O3 and Fe3O4), while satisfying the abundance constraints, exhibit secondary features which are not detected in the 21 μm sources and (3) nano FeO, neither exceeding the abundance budget nor producing undetected secondary features, seems to be a viable candidate, supporting the suggestions of Posch, Mutschke & Andersen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号