首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dominant foliation (S2) in the metapelites of the Southalpine basement, near the western side of the Tertiary Adamello intrusive stock, is a Variscan greenschist facies planar fabric, slightly reworked during thick-skin Alpine tectonics. S2 is defined by muscovite and chlorite and was formed by decrenulation of pre-existing foliations, which are confined to metre-size, less-deformed domains and defined by biotite and white mica. The pre-S2 fabric is composite (D1a & D1b) and defined by contrasting amphibolite facies metamorphic assemblages in different residual sites. Cld+BtI+Grt+MsI+Pl+Qtz and St+BtII+Grt+MsII+Pl+Qtz assemblages mark D1a and D1b fabrics respectively; these developed during successive steps of a single, temperature-prograde polyphase event, rather than during separate tectonometamorphic imprints affecting different tectonic units, later coupled during a D2 greenschist facies stage. Thermobarometric estimates of assemblages formed during D1a, D1b and D2 show a transition from T  =480–540  °C (during D1a) to T  =570–660  °C (during D1b), corresponding to a slight pressure-increase from 0.75–0.95  GPa to 0.85–1.15  GPa. D2 greenschist retrogression corresponds to a pressure and temperature decrease ( T  <400–550  °C and P <0.3–0.4  GPa). This P–T– deformation–time path is inferred to be the result of uplift from a depth of c. 35  km, after Palaeozoic subduction and continental collision; it is consistent with models postulated for other metamorphic units of the Variscan Belt in Europe. This is the first documented example in the Southern Alps of temperature-prograde metamorphism before Palaeozoic collision.  相似文献   

2.
Abstract The Hidaka metamorphic terrane in the Meguro-Shoya area, Hokkaido, Japan is divided into four progressive metamorphic zones: A—biotite zone; B—cordierite zone; C—cordierite–K-feldspar zone; and, D—sillimanite–K-feldspar zone of the andalusite–sillimanite facies series type of metamorphism. The metamorphic grade ranges from the higher temperature part of the greenschist facies (zone A) through the amphibolite facies (zones B and C) to the lower temperature part of the granulite facies (zone D). The zone boundaries intersect the bedding planes at high angles. P–T conditions estimated are 450–550°C and 2 kbar for zone A, 550–600°C and 2–2.5 kbar for zone B, 600–650°C and 2.5–3 kbar for zone C and 650–750°C and 3–4 kbar for zone D. The metapelites of zone D were partially melted.
At the later stage of the regional metamorphism which is early Oligocene to early Miocene in age, cordierite tonalite and biotite tonalite intrusives associated with segments of the highest grade rocks (zone D) were emplaced into the lower temperature part of the regional metamorphic rocks, giving rise to a contact metamorphic aureole. The thermally metamorphosed terrain (zone C') belongs to the amphibolite facies and its P–T conditions are estimated to have been 550–700°C and 2 kbar.
The P–T–t paths of the Hidaka metamorphism show a thickening–heating–uplifting process. The metamorphism is inferred to have taken place beneath an active island arc accompanied by partial melting of the crust.  相似文献   

3.
The Sesia zone (Italian Western Alps) offers one of the best preserved examples of pre-Alpine basement reactivated, under eclogite facies conditions, during the Alpine orogenesis. A detailed mineralogical study of eclogitized acid and basic granulites, and related amphibolites, is presented. In these rare weak to undeformed rocks microstructural investigations allow three main metamorphic stages to be distinguished.
(a) A medium- to low- P granulite stage giving rise to the development of orthopyroxene + garnet + plagioclase + brown amphibole + ilmenite ± biotite in basic granulites and garnet + K-feldspar + plagioclase + cordierite + sillimanite + biotite + ilmenite in acid granulites.
(b) A post-granulite re-equilibration, associated with the development of shear zones, producing discrete amphibolitization of the basic granulites and widespread development of biotite + sillimanite + cordierite + spinel in the acid rocks.
(c) An eo-Alpine eclogite stage giving rise to the crystallization of high- P and low- T assemblages.
In an effort to quantify this evolution, independent well-calibrated thermobarometers were applied to basic and acid rocks. For the granulite event, P-T estimates are 7–9 kbar and 700–800° C, and for subsequent retrograde evolution, P-T was 4–5 kbar and 600° C. For the eo-Alpine eclogite metamorphism, pressure and temperature conditions were 14–16 kbar and 550° C.
The inferred P-T path is consistent with an uplift of continental crust produced by crustal thinning prior to the subduction of the continental rocks. In the light of the available geochronological constraints we propose to relate the pre-Alpine granulite and post-granulite retrograde evolution to the Permo-Jurassic extensional regime. The complex granulite-eclogite transition is thus regarded as a record of the opening and of the closure of the Piedmont ocean.  相似文献   

4.
Metamorphic mineral assemblages and textures from Early Palaeozoic continental margin rocks in north-western Newfoundland indicate that different structural levels have contrasting metamorphic histories. Rocks of the East Pond Metamorphic Suite, which represent the older, structurally lower level of the margin, experienced an early high-pressure–low-temperature stage of metamorphism (10–12 kbar minimum, 450–500°C) which produced eclogite in mafic dykes and phengite–garnet assemblages in pelites. This was overprinted by higher temperature–lower pressure amphibolite facies metamorphism (700–750°C, 7–9 kbar minimum) which produced complex symplectic textures in rocks of all compositions. Rocks of the Fleur de Lys Supergroup, which were deposited in the stratigraphically higher levels of the rifted margin, reached pressures of 7–8.5 kbar at about 450°C during the early stages of metamorphism, overprinted by assemblages which indicate maximum temperatures of 550–600°C at about 6.5 kbar. The metamorphic history of both units is interpreted to be the result of thermal relaxation following initial burial of a continental margin by overriding thrust sheets. Since there is no evidence that maximum pressures or temperatures within the Fleur de Lys Supergroup were ever as high as those reached in the East Pond Metamorphic Suite, these rocks may have followed parallel, 'nested' P–T–t paths, with the more deeply buried East Pond Metamorphic Suite subjected to greater thermal relaxation effects. Quantitative modelling of P–T–t paths is not possible with the present data, owing to both large uncertainties in P–T estimates, and in the time of metamorphism.  相似文献   

5.
The Tormes Gneissic Dome (TGD, NW sector of the Iberian Massif, Spain) is a high-grade metamorphic complex affected by a major episode of extensional deformation (D2). The syn-D2 P–T  path of the Lower Unit of the TGD was deduced from the analysis of reaction textures related to superimposed fabrics developed during exhumation, analysis of mineral zoning and thermobarometric calculations. It comprises an initial phase of decompression, determined using the tweequ thermobarometric technique, from 6.4–8.1 kbar at 735–750 °C (upper structural levels) and 7.2 kbar at 770 °C (lower structural levels) to 3.3–3.9 kbar and 645–680 °C. This evolution is consistent with the observed sequence of melting reactions and the generation of garnet- and cordierite-bearing anatectic granitoids. The later part of the syn-D2 P–T  path consisted of almost isobaric cooling associated with the thermal re-equilibration of the unit in the new structural position. This segment of the P–T  path is recorded by assemblages with And +Bt+Ms and Ms+ Chl +Ab related to the later mylonitic S2 fabrics, which indicate retrogression to low-amphibolite and greenschist facies conditions.  相似文献   

6.
Geothermometry and geobarometry of 10 garnet–oligoclase zone schists in the Franz Josef–Fox Glacier area, Southern Alps, New Zealand, give temperatures ranging from 415 to 625°C and pressures from 5.2 to 9.2 kbar, indicating a T–P array of about 50°C/kbar and inferred peak temperature conditions over a c. 15-km-thick section at depths between c. 20 and 34 km. The present-day distribution of the schist samples implies that only about one-third of the original crustal section is now exposed.
The garnet–oligoclase zone schists represent the deeper part of a metamorphosed and deformed accretionary complex that was associated with late Palaeozoic–early Mesozoic subduction along the Gondwana continental margin. Partial uplift ( c. 0.2 m/Ma) and erosion of the complex during Jurassic–Cretaceous times (Rangitata uplift) was synchronous with D2 deformation and recrystallization, as recorded by the P–T array. Cenozoic (Kaikoura) uplift and exhumation of the schist since c. 30 Ma to form the Southern Alps was associated with oblique-slip movement on the Alpine Fault. The present-day position and steep eastward dip of isograds and D2 structures suggest considerable clockwise rotation during uplift associated with ductile attenuation and tectonic thinning by over two-thirds of the original schist sequence, largely due to simple shear along schistosity planes. As the schist generally shows only incipient greenschist facies retrograde recrystallization, an apparently complete (although contracted) prograde mineral sequence has been preserved by rapid uplift (>5 km/Ma) of hot rock and the effects of limited shear heating near the Alpine Fault.  相似文献   

7.
The eastern Central Alps consist of several Pennine nappes with different tectonometamorphic histories. The tectonically uppermost units (oceanic Avers Bündnerschiefer, continental Suretta and Tambo nappes, oceanic Vals Bündnerschiefer) show Cretaceous/early Tertiary W-directed thrusting with associated blueschist facies metamorphism related to subduction of the Pennine units beneath the Austroalpine continental crust. This event caused eclogite facies metamorphism in the underlying continental Adula nappe. The gross effect was crustal thickening. The tectonically lower, continental Simano nappe is devoid of any imprint from this event. In the course of continent-continent collision, high- T metamorphism and N-directed movements occurred. Both affected the whole nappe pile more or less continuously from amphibolite to greenschist facies conditions. Crustal thinning commenced during the regional temperature peak. A final phase is related to differential uplift under retrograde P–T conditions. Further thinning of the crust was accommodated by E- to NE-directed extensional deformation.  相似文献   

8.
Mineral equilibria modelling and electron microprobe chemical dating of monazite in granulite facies metapelitic assemblages from the MacRobertson Land coastline, Rayner Complex, east Antarctica, are consistent with an 'anticlockwise' Neoproterozoic P–T–t path. Metamorphism occurred at c. 990–970 Ma, achieving peak conditions of 850 °C and 5.6–6.2 kbar at Cape Bruce, and 900 °C and 5.4–6.2 kbar at the Forbes Glacier ∼50 km to the east. These peak metamorphic conditions preceded the emplacement of regionally extensive syntectonic charnockite. High temperature conditions are likely to have been sustained for 80 Myr by lithospheric thinning and repeated pluton emplacement; advection was accompanied by crustal thickening to maximum pressures of 6–7 kbar, followed by near-isobaric cooling. This P–T–t path is distinct from that of rocks in adjacent Kemp Land, ∼50 km to the west, where a 'clockwise' P–T–t path from higher- P conditions at c. 940 Ma may reflect the response of a cratonic margin displaced from the main magma flux. In this scenario, crustal shortening was initially accommodated in younger, fertile crust (MacRobertson Land) involving metasediments and felsic plutons with the transfer of strain to adjacent older crust (Kemp Land) subsequent to charnockite emplacement.  相似文献   

9.
Abstract CO2-bearing fluid inclusions in strongly lineated but weakly foliated late Precambrian gneisses within the Hope Valley Shear zone of Connecticut and Rhode Island are of mixed composition ( X co2± 0.1; 7 wt% NaCl equivalent) and variable density (0.59–0.86 g/ml) and occur mainly as isolated inclusions. Also present are dilute (3 wt% NaCl equivalent) aqueous inclusions which occur on healed fractures related to greenschist facies retrograde metamorphism. Isochores for dense isolated CO2-bearing inclusions indicate pressures of 7.5–9 kbar at 500–600° C, the estimated temperature conditions of peak metamorphism. Published 40Ar/39Ar hornblende plateau age spectra indicate cooling through about 500° C at 265 ± 5 Ma. Isochores for low-density CO2-bearing inclusions and aqueous inclusions intersect at the conditions of retrograde metamorphism (325–400° C) and indicate pressures of 3–4 kbar. Published 40Ar/39Ar biotite plateau ages indicate cooling through about 300° C at 250 ± 5 Ma. These data define a P–T uplift curve for the region which is convex towards the temperature axis and indicate uplift rates between 0.4 and 3.3 mm/year in Permian time. Exhumation of basement gneisses was coeval with normal (west-down) motion along the regional basement–cover contact (Honey Hill–Lake Char–Willimantic fault system), and is interpreted as due to post-orogenic extensional collapse of the Alleghanian orogeny.  相似文献   

10.
Abstract The Qinling–Dabie accretionary fold belt in east-central China represents the E–W trending suture zone between the Sino-Korean and Yangtze cratons. A portion of the accretionary complex exposed in northern Hubei Province contains a high-pressure/low-temperature metamorphic sequence progressively metamorphosed from the blueschist through greenschist to epidote–amphibolite/eclogite facies. The 'Hongan metamorphic belt'can be divided into three metamorphic zones, based on progressive changes in mineral assemblages: Zone I, in the south, is characterized by transitional blueschist–greenschist facies; Zone II is characterized by greenschist facies; Zone III, in the northernmost portion of the belt, is characterized by eclogite and epidote–amphibolite facies sequences. Changes in amphibole compositions from south to north as well as the appearance of increasingly higher pressure mineral assemblages toward the north document differences in metamorphic P–T conditions during formation of this belt. Preliminary P–T estimates for Zone I metamorphism are 5–7 kbar, 350–450°C; estimates for Zone III eclogites are 10–22 kbar, 500 ± 50°C.
The petrographic, chemical and structural characteristics of this metamorphic belt indicate its evolution in a northward-dipping subduction zone and subsequent uplift prior to and during the final collision between the Sino-Korean and Yangtze cratons.  相似文献   

11.
Bimodal metavolcanic rocks, granitic gneisses and metasediments are associated in the Frankenberg massif, Germany. These rocks are faulted against underlying very low-grade Palaeozoic sequences and adjacent metamorphic complexes of the Variscan basement. The granitic gneisses record an Rb–Sr whole-rock isochron age of 461±20  Ma that is taken as at least a minimum protolith age. The bimodal meta-igneous suites are interpreted to have formed during rifting of the Gondwana continental margin in the Cambro-Ordovician. The various metamorphic units have all experienced a common P–T  history. The peak-pressure stage is constrained to around 490–520  °C and 10–14  kbar (10–12  kbar being most realistic). The metamorphism proceeded along a clockwise P–T path towards conditions of around 580–610  °C and 7–8.5  kbar at the thermal peak followed by a final low-pressure overprint which spanned amphibolite facies to prehnite–actinolite facies temperatures. Owing to a secondary Rb–Sr whole-rock isochron age of 381±24  Ma, interpreted to date the retrograde stage, the whole metamorphic cycle in the Frankenberg massif is ascribed to the late Silurian–early Devonian high-pressure event widely recorded in the European Variscides. The antiformal complexes bordering the Frankenberg massif underwent a well-documented early Carboniferous metamorphism, suggesting that the Frankenberg massif constitutes a klippe which was overthrust towards the end of this second metamorphic cycle.  相似文献   

12.
The Feiran–Solaf metamorphic complex of Sinai, Egypt, is one of the highest grade metamorphic complexes of a series of basement domes that crop out throughout the Arabian-Nubian Shield. In the Eastern Desert of Egypt these basement domes have been interpreted as metamorphic core complexes exhumed in extensional settings. For the Feiran–Solaf complex an interpretation of the exhumation mechanism is difficult to obtain with structural arguments as all of its margins are obliterated by post-tectonic granites. Here, metamorphic methods are used to investigate its tectonic history and show that the complex was characterized by a single metamorphic cycle experiencing peak metamorphism at ∼700–750 °C and 7–8 kbar and subsequent isothermal decompression to ∼4–5 kbar, followed by near isobaric cooling to 450 °C. Correlation of this metamorphic evolution with the deformation history shows that peak metamorphism occurred prior to the compressive deformation phase D 2, while the compressive D 2 and D 3 deformation occurred during the near isothermal decompression phase of the P–T loop. We interpret the concurrence of decompression of the P–T path and compression by structural shortening as evidence for the Najd fault system exhuming the complex in an oblique transpressive regime. However, final exhumation from ∼15 km depth must have occurred due to an unrelated mechanism.  相似文献   

13.
Distinctive lithological associations and geological relationships, and initial geochronological results indicate the presence of an areally extensive region of reworked Archaean basement containing polymetamorphic granulites in the Rauer Group, East Antarctica.
Structurally early metapelites from within this reworked region preserve complex and varied metamorphic histories which largely pre-date and bear no relation to a Late Proterozoic metamorphism generally recognized in this part of East Antarctica. In particular, magnesian metapelite rafts from Long Point record extreme peak P–T conditions of 10–12 kbar and 100–1050°C, and an initial decompression to 8 kbar at temperatures of greater than 900°C. Initial garnet–orthopyroxene–sillimanite assemblages contain the most magnesian (and pyrope-rich) garnets ( X Mg= 0.71) yet found in granulite facies rocks. A high-temperature decompressional P–T history is consistent with reaction textures in which the phase assemblages produced through garnet breakdown vary systematically with the initial garnet X Mg composition, reflecting the intersection of different divariant reactions in rocks of varied composition as pressures decreased. This history is thought to relate to Archaean events, whereas a lower-temperature ( c. 750–800°C) decompression to 5 kbar reflects Late Proterozoic reworking of these relict assemblages.
The major Late Proterozoic ( c. 1000 Ma) granulite facies metamorphism is recorded in a suite of younger Fe-rich metapelites and associated paragneisses in which syn- to post-deformational decompression, through 2–4 kbar from maximum recorded P–T conditions of 7–9 kbar and 800–850°C, is constrained by geothermobarometry and reaction textures. This P–T evolution is thought to reflect rapid tectonic collapse of crust previously thickened through collision.  相似文献   

14.
A series of regional deformation phases is described for the metamorphic basement and the Permian cover in an area in the central Orobic Alps, northern Italy. In the basement deformation under low-grade amphibolite metamorphic conditions is followed by a second phase during retrograde greenschist conditions. These two phases predate the deposition of the Permian cover and are of probable Variscan age. An extensional basin formed on the eroded basement during the Late Carboniferous, filled with fan conglomerates and sandstones, and rhyolitic volcanic rocks. Well-preserved brittle extensional faults bound these basins. Further extension deformed basement and cover before the onset of Alpine compressional tectonics. Cover and basement were deformed together during two phases of compressional deformation of post-Triassic age, the first giving rise to tectonic inversion of the older extensional faults, the second to new thrust faults, both associated with south-directed nappe emplacement and regional folding. Foliations develop in the cover only during the first phase of deformation as part of the activity on “shortening faults”. Main activity on the Orobic thrust actually postdates the first phase of thrusting and foliation development in the cover.  相似文献   

15.
Metamorphic field gradients in the Central Alps   总被引:8,自引:0,他引:8  
Metamorphic field gradients were determined across the entire amphibolite grade Central Alps ( c . 50×100 km). P – T  were calculated from 116 samples acquired from our own field work, from samples provided to us by others, and from rocks with mineral compositions described in the literature. Only fluid-conserved equilibria were used to determine P – T  . The use of an internally consistent thermodynamic database and mineral solid solution models makes the results robust and reduces relative errors. The results are presented in contour maps. Temperature increases from 500 to 550 °C along the limit of amphibolite grade metamorphism in the north and west, to c . 675 °C toward the south at the Insubric line near the town of Bellinzona. Maximum recorded pressures of c . 7 kbar are in a central region c . 20 km north of the Insubric line, and decrease both to the north (5.5 kbar) and south (4.5 kbar). The P–T  results indicate that there is a relatively large area that reached conditions in the sillimanite stability field but developed neither sillimanite nor fibrolite; this is interpreted as a result of kinetic constraints on nucleation and growth because of the small amounts of thermal overstep (<40 °C) of the kyanite-sillimanite phase boundary. Comparison of P–T  conditions with carbonate isograds in the region indicate that fluids present during metamorphism were not dominated by a homogeneous external source. Examination of the two-dimensional distribution of pressure and temperature in the context of thermal and tectonic models indicates that two thermal pulses affected the Central Alps during the Tertiary. In the second, heat affected only the southern parts of the area and overprinted the previously established P–T  gradients.  相似文献   

16.
A suite of metapelites, charnockites, calc-silicate rocks, quartzo-feldspathic gneisses and mafic granulites is exposed at Garbham, a part of the Eastern Ghats granulite belt of India. Reaction textures and mineral compositional data have been used to determine the P–T–X evolutionary history of the granulites. In metapelites and charnockites, dehydration melting reactions involving biotite produced quartzofeldspathic segregations during peak metamorphism. However, migration of melt from the site of generation was limited. Subsequent to peak metamorphism at c . 860° C and 8 kbar, the complex evolved through nearly isothermal decompression to 530–650° C and 4–5 kbar. During this phase, coronal garnet grew in the calc-silicates, while garnet in the presence of quartz broke down in charnockite and mafic granulite. Fluid activities during metamorphism were internally buffered in different lithologies in the presence of a melt phase. The P–T path of the granulites at Garbham contrasts sharply with the other parts of the Eastern Ghats granulite belt where the rocks show dominantly near-isobaric cooling subsequent to peak metamorphism.  相似文献   

17.
Abstract Ganguvarpatti is part of a Precambrian terrane characterized by granulite facies rocks, including charnockites, mafic granulites, sapphirine-bearing granulites, leptynites and gneisses. A sequence of reactions deduced from the multiphase reaction textures provide information on the metamorphic history of this area, as they formed in response to decompression during uplift. Geothermobarometry and constraints from reaction textures define a segment of a P–T path traversed by the granulites of Ganguvarpatti. Near-peak metamorphic conditions of c. 800°C and 8 kbar were succeeded by a symplectitic stage at a significantly lower pressure ( c. 700°C and 4.5 kbar), documenting a nearly isothermal decompression P–T path and rapid uplift ( c. 12 km) followed by cooling. The presence of many fluid inclusions of extremely low density in the charnockites is consistent with a nearly isothermal uplift path. Attainment of a maximum pressure of c. 8 kbar indicates c. 27 km depth of burial during metamorphism. This would imply a total crustal thickness of c. 65–70 km at 2.6–2.5 Ga. Such a profound crustal thickness and a clockwise decompressive P–T path is interpreted as a consequence of tectonic thickening of crust, accomplished by collision tectonics of the southern granulite terrane against the Dharwar craton along the Palghat–Cauvery shear zone via northward subduction.  相似文献   

18.
The retrograde P-T trajectory of the eclogitic Fe-Ti-gabbros from the Ligurian Alps is constrained by the appearance of mineral parageneses post-dating the Na-clinopyroxene + garnet eclogitic assemblage and indicating the following sequence of metamorphic events: (1) amphibolitic stage— edenite/katophorite + plagioclase (An33–43) + oxides in symplectitic aggregates; (2) glaucophanic stage— a porphyroblastic glaucophanic amphibole has overgrown the symplectite, winchite also occurs as thin rims around glaucophane and both amphiboles are, sometimes, armoured by atoll garnets; (3) albite-amphibolite stage—barroisite/katophorite + albite + epidote + oxides ± chlorite overprint the glaucophanic stage minerals; (4) greenschist stage—represented by actinolite + albite + epidote + oxide paragenesis.
The metamorphic evolution is complex and the decompression path, on a P–T diagram, is significantly different from those defined in the literature for the Voltri eclogites. The main features inferred from the P–T path are the following: (1) the pressure climax does not match the thermal climax, the maximum temperature conditions are in fact achieved during the early stage of uplift; (2) a decrease in temperature, suggested by the appearance of glaucophane after the amphibolitic symplectite; (3) successive uplift, probably accompanied by an increase in temperature. The complexity of the P-T path drawn for the Voltri eclogites can be explained with a mechanism of successive underthrusts propagating from the innermost to the outermost sector of the Ligurian Alps.  相似文献   

19.
We investigated the metamorphic cooling history of underplated magmatic rocks at midcrustal depth. Granulites and amphibolites occur within the Jurassic magmatic belt of the Coast Range south of Antofagasta in northern Chile between 23°25' and 24°20' S. The protoliths of the metamorphic rocks are basic intrusions of Early Mesozoic age. They are part of the magmatically formed crust, and the essentially dry magmas were emplaced in an extensional regime. The granulites (clinopyroxene–orthopyroxene–plagioclase) show all stages of fabric development from magmatic to granoblastic fabrics. Pyroxene compositions were reset at temperatures around 800°  C independent of the stage of textural equilibration. The granulites were partially amphibolitized at upper amphibolite facies temperatures of 600–700°  C. Following cooling, a possible reheating to greenschist facies temperatures around 500°  C is indicated by prograde zoning in magnetite–ilmenite pairs. Mineral assemblages are not suitable for barometry, but a conservative estimation of the garnet-in reaction at given whole-rock compositions suggests maximum pressures in the granulite facies of around 5 kbar, and similar pressures are indicated by phengite barometry for the greenschist facies. The P–T  path of granulite–amphibolite metamorphism is one of slow cooling from magmatic temperatures with heterogeneous deformation. The thinning of the pre-Andean (Precambrian–Triassic) crust was apparently compensated by the magmatic underplating and this special tectonomagmatic setting caused the prolonged residence of the accreted rocks at midcrustal levels.  相似文献   

20.
The Mallee Bore area in the northern Harts Range of central Australia underwent high-temperature, medium- to high-pressure granulite facies metamorphism. Individual geothermometers and geobarometers and average P–T  calculations using the program Thermocalc suggest that peak metamorphic conditions were 705–810 °C and 8–12 kbar. Partial melting of both metasedimentary and meta-igneous rocks, forming garnet-bearing restites, occurred under peak metamorphic conditions. Comparison with partial melting experiments suggests that vapour-absent melting in metabasic and metapelitic rocks with compositions close to those of rocks in the Mallee Bore area occurs at 800–875 °C and >9–10 kbar. The lower temperatures obtained from geothermometry imply that mineral compositions were reset during cooling. Following the metamorphic peak, the rocks underwent local mylonitization at 680–730 °C and 5.8–7.7 kbar. After mylonitization ceased, garnet retrogressed locally to biotite, which was probably caused by fluids exsolving from crystallizing melts. These three events are interpreted as different stages of a single, continuous, clockwise P–T  path. The metamorphism at Mallee Bore probably occurred during the 1745–1730 Ma Late Strangways Orogeny, and the area escaped significant crustal reworking during the Anmatjira and Alice Springs events that locally reached amphibolite facies conditions elsewhere in the Harts Ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号