首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal imbalance in theE-region heights is inescapable and an undisputed fact. The equatorial electrojet parameters are being evaluated for an Indian Equatorial station of Thumba, making use of the observed electron density, electron temperature, and current density profiles for two rocket flights on 3 March, 1973 and 7 April, 1972 around local noon, corresponding to low and medium solar active conditions. The computed Joule heating due to Equatorial Electrojet Current (EEC) does not account for the observed difference between the electron and neutral gas temperatures. The discrepancy of about 6 km in the peaks of the observed and computed current density profiles may be attributed to the presence of the Electromagnetic Drifts (EMD). In order to see whether or not EMD plays an important role, the photoionization balance between production and loss rates have been computed by making use of the latest available solar flux and cross sections and chemical reaction rate constants for the appropriate solar epoch conditions including the transport term due to EMD. There is an excellent agreement between the observed and computed electron density profiles indicating its relevance.  相似文献   

2.
Evolution of electron energy distributions have been studied by combining small-angle scattering with analytical treatment of large-angle collision using the Monte-Carlo technique. By use of these, the distributions and energy loss have been calculated as functions of column density, the heating functions have been calculated at different depths of the solar atmosphere. From the heating functions, an increase in temperature produced by the electrons at different column densities has been computed. It is found that rise in temperature increases with an increase in incident electron energy.  相似文献   

3.
Making use of the latest available semi-empirical atmospheric models, solar XUV radiations rates of photoionization and absorbed energy profiles have been graphically presented showing the latitudinal, seasonal and solar cycle variations. The photoionization limits of the major neutral constitutents of the terrestrial atmosphere O2, O, and N2 that occur at wavelengths 102.7, 91.2, and 79.6 nm, respectively have been quantified by showing the photoionization rates of O 2 + , O+, and N 2 + for different spectral groups both under quiet and different solar flare conditions. The variability of the photoionization efficiency parameter which is height-dependent, from winter to summer, for solar minimum to solar maximum for four significantly different latitudes under local noon conditions have been investigated during the solar cycle 21. More energy is required to produce an electron-ion pair in a denser atmosphere than in a thinner atmosphere and hence more energy is being deposited in the height range between 100–120 km which itself manifests in raising the electron gas temperatures higher than the neutral gas temperatures.  相似文献   

4.
封莉  甘为群 《天文学进展》2005,23(3):215-225
日冕加热是太阳物理中一个基本问题。随着一批高性能仪器(如TRACE、SOHO、Yohkoh)投入观测,作为太阳日冕中一种基本结构的冕环,其观测资料日益丰富。冕环加热是日冕加热的一个重要组成部分,越来越得到人们的重视。在简要介绍冕环最新观测和研究进展后,以其一维模型为基础,着重讨论了现有冕环加热结构和加热机制的研究进展。  相似文献   

5.
《Icarus》1986,67(3):484-514
Most of the solar energy absorbed by Venus is deposited in the atmosphere, at levels more than 60 km above the surface. This unusual flux distribution should have important consequences for the thermal structure and dynamical state of that atmosphere. Because there are few measurements of the solar flux at levels above 60 km, a radiative transfer model was used to derive the structure and amplitude of the solar fluxes and heating rates in the Venus mesosphere (60–100 km). This model accounts for all sources of extinction known to be important there, including absorption and scattering by CO2, H2O, SO2, H2SO4 aerosols and an unidentified UV absorber. The distributions of these substances in our model atmosphere were constrained by a broad range of spacecraft and ground-based observations. Above the cloud tops, (71 km), near-infrared CO2 bands absorb enough sunlight to produce globally averaged heating rates ranging from 4° K/day (24-hr period) at 71 km to more than 50° K/day at 100 km. The sulfuric acid aerosols that compose the Venus clouds are primarily scattering agents at solar wavelengths. These aerosols reflect about 75% of the incident solar flux before it can be absorbed by the atmosphere or surface. The unknown substance that causes the observed cloud-top ultraviolet contrasts is responsible for most of the absorption of sunlight within the upper cloud deck (57.5−71 km). This substance absorbs almost half of the sunlight deposited on Venus and contributes to solar heating rates as large as 6° K/day at levels near 65 km. With the exception of CO2, all of the important sources of solar extinction have concentrations that vary with position, and, in general, these concentrations are not well known. To determine the sensitivity of the model results to these uncertainties, the concentrations of these opacity sources were varied in the model atmosphere and solar fluxes were computed for each case. These tests indicate that CO2 dominates the solar absorption at levels above the cloud tops and that heating rates are relatively insensitive to the distribution of other sources of extinction there. Within the upper cloud deck, uncertainties in the distribution of the UV absorber and the H2SO4 aerosols can produce heating rate errors as large as 50% at some levels. Diurnally averaged solar heating rates for the nominal opacity distribution were computed as a function of latitude at altitudes between 55 and 100 km, where most of the solar flux is deposited. The zonal wavenumber 1 (diurnal) and zonal wavenumber 2 (semidiurnal) components of the diurnally varying solar heating rates were also computed in this domain. These results should be sufficiently reliable for use in numerical dynamical models of the Venus atmosphere.  相似文献   

6.
Main features of high-frequency wave disturbances (periods ≤5 min), generated by the solar terminator passing through the Earth atmosphere in a speed-resonance mode, are theoretically investigated. With the troposphere model, formulated in this paper, and the solar terminator, considered as a wave source, the wave spectral density parameters have been computed. Both the terminator local speed, relating to the background, and the space-time lag of atmospheric heating are shown to essentially influence these features. Some possible methods for identification of high-frequency speed-resonant atmospheric waves are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Imaging and spectroscopy of the solar corona, coupled with polarimetry, are the only tools available at present to capture signatures of physical processes responsible for coronal heating and solar wind acceleration within the first few solar radii above the solar limb. With the recent advent of improved detector technology and image processing techniques, broad-band white light and narrow-band multi-wavelength observations of coronal forbidden lines, made during total solar eclipses, have started to yield new views about the thermodynamic and magnetic properties of coronal structures. This paper outlines these unique capabilities, which until present, have been feasible primarily with observations during natural total solar eclipses. This work also draws attention to the exciting possibility of greatly increasing the frequency and duration of solar eclipse observations with Moon orbiting observatories utilizing lunar limb occultation of the solar disk for coronal measurements.  相似文献   

8.
We present the single stellar population (SSP) synthesis results of our new synthetic stellar atmosphere models library with a spectral sampling of 0.3 Å, covering the wavelength range from 3000 to 7000 Å for a wide range of metallicities (twice solar, solar, half solar and 1/10 solar). The stellar library is composed of 1650 spectra computed with the latest improvements in stellar atmospheres. In particular, it incorporates non-local thermodynamic equilibrium (LTE) line-blanketed models for hot  ( T eff≥ 27 500 K)  , and LTE line-blanketed models (Phoenix) for cool  (3000 ≤ T eff≤ 4500 K)  stars. Because of the high spectral resolution of this library, evolutionary synthesis models can be used to predict the strength of numerous weak absorption lines and the evolution of the profiles of the strongest lines over a wide range of ages. The SSP results have been calculated for ages from 1 Myr to 17 Gyr using the stellar evolutionary tracks provided by the Geneva and Padova groups. For young stellar populations, our results have a very detailed coverage of high-temperature stars with similar results for the Padova and Geneva isochrones. For intermediate and old stellar populations, our results, once degraded to a lower resolution, are similar to the ones obtained by other groups (limitations imposed by the stellar evolutionary physics notwidthstanding). The limitations and advantages of our models for the analysis of integrated populations are described. The full set of the stellar library and the evolutionary models are available for retrieval at the websites http://www.iaa.csic.es/~rosa and http://www.iaa.csic.es/~mcs/sed@ , or on request from the first two authors.  相似文献   

9.
Various small scale photospheric processes are responsible for spatial and temporal variations of solar emergent intensity. The contribution to total irradiance fluctuations of such small scale features is the solar irradiance background. Here we examine the statistical properties of irradiance background computed via a n-body numerical scheme mimicking photospheric space-time correlations and calibrated by means of IBIS/DST spectro-polarimetric data. Such computed properties are compared with experimental results derived from the analysis of a VIRGO/SPM data. A future application of the model here presented could be the interpretation of stellar irradiance power spectra observed by new missions such as Kepler.  相似文献   

10.
It is suggested that the experimental data on the solar neutrino flux as measured by Davis and his collaborators from 1970 to 1982 vary with the solar activity cycle to a very high level of statistical significance for all the available tests of the hypothesis (e.g., (t-test, 2-test, run test, Wilcoxon-Mann-Whitney test) when the solar neutrino flux data are computed from the weighted moving averages of order 5. The above tests have also been applied to the data that have been generated by the Monte Carlo simulation with production rate and background rate parameters that are typical of those in the actual experiment. It is shown that the Monte Carlo simulated data do not indicate a variation within the solar cycle. Thus the moving average data strongly favours the variation within the solar activity cycle.  相似文献   

11.
Proper numerical simulation of the Earth’s climate change requires reliable knowledge of solar irradiance and its variability on different time scales, as well as the wavelength dependence of this variability. As new measurements of the solar spectral irradiance have become available, so too have new reconstructions of historical solar irradiance variations, based on different approaches. However, these various solar spectral irradiance reconstructions have not yet been compared in detail to quantify differences in their absolute values, variability, and implications for climate and atmospheric studies. In this paper we quantitatively compare five different reconstructions of solar spectral irradiance changes during the past four centuries, in order to document and analyze their differences. The impact on atmosphere and climate studies is discussed in terms of the calculation of short wave solar heating rates.  相似文献   

12.
We consider the adequacy of various solar coronal heating models. We show that the correlation between the intensity of the coronal Fe XIV 530.5 nm green line and the calculated magnetic field strength in the solar corona can be a useful tool for this purpose. We have established this correlation for coronal structures and magnetic fields of large spatial and temporal scales. The correlation found exhibits a strong dependence on both solar cycle phase and heliolatitude. The efficiency of a particular coronal heating mechanism is probably determined by the relative area occupied by low and high loops (including open structures). The direct current models based on slow field dissipation (DC) and the wave models based on Alfvén and magnetosonic wave dissipation (AC) are more efficient in the equatorial and polar zones, respectively.  相似文献   

13.
M.G. Heaps 《Icarus》1976,29(2):273-281
Order of magnitude calculations have been carried out to compare particle precipitation and Joule heating with solar radiation as sources of energy in the Jovian thermosphere. Calculations based on a detailed atomic cross section approach to energy deposition show that the efficiency of conversion of energetic particle precipitation energy into thermal energy is 0.33, larger than on Earth. This emphasizes the role of particle precipitation heating, which may serve as a source for gravity waves. In contrast to the terrestrial case, Joule heating is found to be of only minor significance in the Jovian atmosphere.  相似文献   

14.
The transfer of energy from an ionizing photon to the atoms and molecules of the neutral gas in the F-region of the atmosphere is investigated. It is found that photoionization heating should be divided into two parts: (1) photoelectron heating associated with the slowing down of the fast photoelectrons formed by photoionization; and (2) reaction heating associated with the chemical reactions undergone by the ions formed in the photoionization process. The photoelectron heating will take place near the time and place of photoionization while the reaction heating will occur at the time and place of the ionic reactions.

Photoelectron and reaction heating rates per unit column are computed for the daytime, and reaction heating rates per unit column are computed for the nighttime. It is concluded that: (1) chemical reactions at night lead to a small but significant amount of F-region heating; and (2) reaction heating during the day is nearly proportional to the cosine of the solar zenith angle except near sunrise and sunset.  相似文献   


15.
16.
Coronal heating is one of the unresolved puzzles in solar physics from decades. In the present paper we have investigated the dynamics of vortices to apprehend coronal heating problem. A three dimensional (3d) model has been developed to study propagation of dispersive Alfvén waves (DAWs) in presence of ion acoustic waves which results in excitation of DAW and evolution of vortices. Taking ponderomotive nonlinearity into account, development of these vortices has been studied. There are observations of such vortices in the chromosphere, transition region and also in the lower solar corona. These structures may play an important role in transferring energy from lower solar atmosphere to corona and result in coronal heating. Nonlinear interaction of these waves is studied in view of recent simulation work and observations of giant magnetic tornadoes in solar corona and lower atmosphere of sun by solar dynamical observatory (SDO).  相似文献   

17.
18.
The secular Love and the secular tidal numbers have been computed for eight synchronously orbiting satellites in the solar system for which the triaxiality parameters and satellite-centric gravitational constant are available. Excepting Deimos the total mass of which should be first refined, the secular Love and tidal numbers are rather close to unity, as a rule. That is why, the centrifugal and tidal distortions can be assumed responsible for the actual figures of the synchronously orbiting satellites resulting from the primordial spheres, as well as, their static equilibrium nearly satisfied. The hypothesis of the origin of synchronously orbiting satellites by accretion in orbits is supported by the results obtained.  相似文献   

19.
A new technique for the measurement of the sublimation rate of individual ice particles is described. With this technique experimental data obtained under simulated space conditions agree with the values computed from scattering theory. It is shown that under solar illumination the sublimation rate of water ice particles is most sensitively influenced by the absorption properties of ice in the near-infrared region. A comparison of experimental results and results calculated with the use of different choices for the complex index of refraction establishes a preference for the published data by J. E. Bertie, H. J. Labbe, and E. Whalley [J. Chem. Phys. 50, 4501–4520 (1969)]. Using these data the lifetimes of ice particles have been computed as a function of particle radius for solar distances of 0.5, 0.75, and 1.0 AU. If these results are applied to ice particle distributions, the distributions become drastically compressed and a quasi-stable particle radius of the order of 15 μm can be predicted for any solar distance.  相似文献   

20.
Reviews of long-term predictions of solar cycles have shown that a precise prediction with a lead time of 2 years or more of a solar cycle remains an unsolved problem. We used a simple method, the method of similar cycles, to make long-term predictions of not only the maximum amplitude but also the smoothed monthly mean sunspot number for every month of Solar Cycle 23. We verify and compare our prediction with the latest available observational results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号