首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
对东太平洋海隆9°~10°N(9°50.01'N, 104°17.44'W,水深2 200 m)热液硫化物的主要组成元素测试资料研究表明,硫化物具有高Ca、Cu、Co、Se含量,低Pb、Mn、As、Cd、Ba和Au含量的特点,为富Cu型热液硫化物。热液硫化物中Cu与Co、Se、Ag、Cd等元素呈显著的正相关关系(R2>0.8),而与Ca、Ba、Mn、Pb等元素呈负相关关系(R2>0.8)。热液硫化物烟囱体中不同圈层化学成分的变化较大,稀土元素(REE)的含量从内层到外层逐渐变高,可以反映出硫化物生长过程中的不均一性和矿化条件的不同。热液硫化物中REE含量较低,具有明显的Ce负异常和LREE富集的特征,与海水的REE配分曲线基本一致,表明热液硫化物中的REE主要来源于海水。  相似文献   

2.
用ICP-MS对TAG热液活动区表层热液沉积物中6个块状硫化物样品进行了稀土元素分析。所有样品均表现出正Eu异常(EuN/Eu*N=1.27~2.68)和LREE相对富集(LaN/YbN=15.79~47.62)的球粒陨石标准化配分模式,热液沉积物样品中稀土元素组成的变化是由于海底热液循环体系中热液流体和海水不同程度混合作用的结果,并且,海水与热液流体的混合作用是在热液沉积物形成以前发生的,与黑烟囱流体的稀土元素配分模式对比,表明热液沉积物的REE部分来自下伏的玄武岩基底,在热液沉积物的形成过程中,LREE得到了较高程度的富集,同时,海底热液沉积物的稀土元素中Eu的变化可以一定程度的反映出热液流体的演化特征。  相似文献   

3.
大西洋中脊TAG热液活动区中热液沉积物的稀土元素地球?…   总被引:15,自引:0,他引:15  
用ICP-MS对TAG热液活动区表层热液沉积物中6个块状硫化物样品进行了稀土元素分析。所有样品均表现出正Eu异常和LREE相对富集的球粒陨石标准化配分模式,热液沉积物样品中稀土元素组成的变化是由于海底热液循环体系中热液流体和涨水不同程度混合作用的结果,  相似文献   

4.
西南印度洋中脊海底热液活动   总被引:2,自引:0,他引:2  
在超慢速扩张的西南印度洋中脊(SWIR)发现现代海底热液活动改变了人们的传统观点,有助于进一步深化时全球热液活动系统的认识.对西南印度洋中脊地质构造背景、玄武岩和超镁铁质岩的地球化学特征,以及热液活动的特点进行较为系统地分析.指出:独特的地质构造环境使西南印度洋中脊成为研究现代海底热液活动、地球圈层问相互作用所导致的物...  相似文献   

5.
热液羽状流是海底热液活动的重要标志,海底多金属硫化物是热液活动的产物。现阶段洋中脊多金属硫化物勘探工作的第一步是开展热液羽状流的近底探测;综合各类异常信息,实现从发现热液活动喷口到发现矿床的突破。本文以热液羽状流为研究对象,从羽状流的近底探测、扩散机制和分布特征3个方面,概述了最新的研究进展和有待完善的方面,阐述了羽状流在洋中脊多金属硫化物找矿中的指示作用,最后总结性地指出时空连续性、参数多元化将是热液探测的发展趋势,有助于提升对热液羽状流分布特征的认识,将为热液区分布模式的研究提供更加精细的探测资料。  相似文献   

6.
与快速扩张的洋中脊相比,主要由超慢速-慢速扩张洋脊组成的印度洋中脊具有独特的热液硫化物成矿模式.运用高精度矿相显微镜、XRD、电子探针和ICP-AES/MS等测试手段,对印度洋中脊的热液硫化物矿床样品开展了矿物成分、结构构造、地球化学等各方面分析.结果表明,来自中印度洋脊(CIR)艾德蒙德(Edmond)热液区的硫化物A主要由黄铁矿、白铁矿以及黄铜矿构成,其成矿期次可划分为白铁矿-黄铁矿阶段(Ⅰ)、闪锌矿-黄铜矿阶段(Ⅱ)以及后期石英阶段(Ⅲ),成矿流体温度经历了低-高-低的变化;同样来自于艾德蒙德热液区的硫化物B主要矿物成分为黄铁矿、白铁矿和硬石膏,成矿期次划分为硬石膏-白铁矿-黄铁矿阶段(Ⅰ)和胶状黄铁矿-石英(Ⅱ) 2个阶段,流体温度经历了低-高的变化;与之相比,来自西南印度洋脊(SWIR)龙旂热液区的硫化物C主要由纤铁矿、黄铜矿、黄铁矿和白铁矿组成,成矿期次划分为纤铁矿-白铁矿-黄铁矿阶段(Ⅰ)和闪锌矿-黄铜矿(Ⅱ)阶段,后期闪锌矿、黄铜矿的出现反映热液流体温度发生了升高.地球化学特征表明,印度洋中脊的热液硫化物总体为富Fe型,并相对富集Co和Ni元素,而Zn和Cu元素的含量相对较低.此外,取自艾德蒙德热液区的硫化物与EPR 21°N热液硫化物组成非常相似,而与慢速扩张脊TAG相比,Pb、Zn、Ag和Sr元素含量较高,Cu和Fe元素含量则较低.  相似文献   

7.
洋中脊体系是地球表面最长的、连续的地形特征,也是地表最大的岩浆作用带。全球洋中脊系统总长约60 000 km,平均高2 000 m,宽2 000 m,占洋底总面积的33%。Macdonald 1982年将之分为3种类型:(1)慢速扩张脊(1~5 cm/a),如MAR;(2)中速扩张脊(5~9 cm/a),如EPR 21°N;(3)快速扩张脊  相似文献   

8.
评述了2003年10月27-30日在北京召开的“大洋中脊国际学术研讨会”,简要介绍了国际大洋中脊协会(InterRidge)的机构组成、任务和工作进展.以及今后大洋中脊地质研究的发展趋势。这次会议后,中国已成为InterRidge计划的参与成员国(Associate Members)以此为契机,尽快启动中国InterRidge计划,结合中国综合大洋钻探计划(IODP),以及大洋专项和其他深海调查研究工,有望实现我国在大洋中脊及相关研究领域的跨越式发展,提升我国深海研究领域的整体调查研究水平。  相似文献   

9.
大规模的火山大洋中脊系统绕地球延伸60 0 0 0 km长 ,几乎全部分布在世界大洋洋底。有的地方 ,大洋中脊火山的规模非常大 ,以致高出海面形成地球上最为壮观的岛屿。冰岛、亚速尔群岛及加拉帕戈斯等都属此类岛屿。因为它们是由深部地幔上升的异常热岩石在小区域内形成的 ,并散布在海底 ,所以称它们为“热点”。但是 ,热点并不是一种孤立的现象。卫星海洋学、地震学、地球化学和地球动力学的最令人激动的进展表明了热点对全球大部分洋中脊系统具有重要的意义和长远的影响。全球已经确认的热点大约有 44个。其中大多数都与洋中脊系统有关联 ,确…  相似文献   

10.
现代海底热液活动分布广泛,介绍了海底热液硫化物开采情况,阐述了目前硫化物矿区的申请和资源评价状况。综合研究表明,认识海底矿产资源的时空分布规律,提高对海底多金属矿集区的预测能力,可为我国在"区域"内的资源勘探提供支撑。加强海底热水矿床的三维结构分析,开展圈矿与矿床储量综合评价技术研究,建立海底热液硫化物资源地质模型,是未来发展的主要方向。  相似文献   

11.
Keeton  J. A.  Searle  R. C.  Peirce  C.  Parsons  B.  White  R. S.  Sinha  M. C.  Murton  B. J.  Parson  L. M. 《Marine Geophysical Researches》1997,19(1):55-64
We present a series of 1:200,000 scale maps of the bathymetry of the Reykjanes Ridge. The data are divided into four maps, extending 630 km along the ridge axis and between 30 and 100 km off-axis. This compilation of bathymetry data is extremely detailed, gridded at approximately 100 m resolution, and with almost no gaps. The Reykjanes Ridge is one of the best examples of a hotspot-dominated ridge, whose characteristics are influenced by its proximity to the Iceland plume. Many fundamental questions may be addressed at the Reykjanes Ridge, which is why the BRIDGE programme identified it as one of its four regional projects. These maps represent a BRIDGE contribution to the general scientific community.  相似文献   

12.
西南印度洋中脊热液产物稀土元素组成变化及其来源   总被引:1,自引:1,他引:0  
对西南印度洋中脊热液区不同热液产物稀土元素(REE)进行了分析,探讨了热液产物形成过程中稀土元素组成变化及其来源。研究结果表明:不同热液产物稀土元素总量变化范围从3.47×10-7到4.80×10-5,轻重稀土比值(LREE/HREE)从2.06到6.16,表明轻重稀土有较大程度分异,δEu异常(δEu=0.86~3.88)和δCe异常(δCe=0.40~0.86)显示热液产物中REE呈Eu富集和Ce亏损特征。稀土元素球粒陨石标准化模式呈现两种类型:(1)呈轻微富集LREE的平坦模式,REE大于2×10-5;(2)呈显著富集LREE和正Eu异常模式,REE小于5×10-7。模式1类似于洋壳火山岩REE配分模式,而模式2与西南印度洋中脊黑烟囱REE模式相似,也与典型洋中脊热液喷口流体和硫化物LREE富集和正Eu异常模式类似。热液产物中稀土元素含量变化和模式特征以及Mg与LREE极强正相关关系可能反映了西南印度洋中脊硫化物形成在热液流体与海水混合沉淀的初始阶段,后期经历了广泛的热液流体再循环和海水蚀变过程。  相似文献   

13.
西南印度洋脊(SWIR)是当前洋底超慢速扩张洋脊的典型代表, 具有独特的热液硫化物矿床形成机理, 对位于该洋脊的龙旂热液场硫化物样品进行了系统的矿物学分析, 结果表明:该区硫化物为高温热液喷溢活动所形成的富Fe型硫化物, 目前已经历了一定程度的氧化蚀变; 硫化物矿物组合以磁黄铁矿、黄铁矿为主, 其次是少量黄铜矿、白铁矿和(铁)闪锌矿; 黄铜矿出溶等轴古巴矿现象普遍, 部分样品中可见自然金颗粒。经综合分析, 该区热液成矿作用可划分为3个成矿阶段和1个后期海底风化阶段: (1)高温的黄铁矿+黄铜矿(等轴古巴矿) +磁黄铁矿阶段, (2)中高温的黄铁矿+闪锌矿阶段, (3)低温的胶状或莓球状黄铁矿+白铁矿+自然金阶段, (4)后期硫化物海底氧化性蚀变阶段主要是形成Fe的氧/羟化物。在整个成矿期间, 流体温度有不同程度的波动, 主要硫化物矿物形成时端元流体的温度应在335℃以上, 瞬间(短时)或局部热液的最高温度推测超过400℃。本区的磁黄铁矿属于富钴型磁黄铁矿亚类, 经历了六方磁黄铁矿+黄铁矿→单斜磁黄铁矿+黄铁矿的变化, 表明该区热液流体发生了快速降温的演化过程。  相似文献   

14.
A seismic refraction profile was shot along the axis of the Northern Symmetrical Segment of the Juan de Fuca Ridge system. Three models of the along-axis crustal structure fit the observed data equally well. One model includes a low-velocity zone, the top of which is at a depth below the seafloor of approximately 3 km, that is continuous along-axis for at least 30 km. A second model includes a low-Q layer, the top of which is also at a depth of approximately 3 km below the seafloor and is continuous along-axis for at least 30 km. Both the low-Q layer and low-velocity zone can be explained geologically by a region of elevated temperatures. The third model is characterized by a homogeneous seismic layer 3. All models contain an ~1 km s–1 discontinuity at the seismic layer 2/3 boundary; a wide-angle reflection from this boundary is seen on all record sections. Kappel and Ryan (1986) had previously proposed that the Northern Symmetrical Segment was in a stage of volcanic inactivity, and this theory is supported by the seismic observations. Two-dimensional modelling of travel times to ocean bottom hydrophone instruments shows that the amplitude variations in the along-axis depth to intracrustal seismic layers (a few hundred meters) is on the order of the lateral changes in topographic relief. It is suggested that the crustal emplacement processes reflect the deeper style of 3-D mantle upwelling beneath the ridge.  相似文献   

15.
The newly discovered East Longjing-2 hydrothermal field (ELHF-2) is located on the Dragon Horn oceanic core complex of the ultraslow-spreading Southwest Indian Ridge, approximately 12 km from the ridge axis. This study measured the chemical compositions of pyrite from ELHF-2 using a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to investigate the genesis of the field. Three generations of pyrite were classified, and found that: Py1 and Py2, rich in V, Mn, U, and Se, occur in altered basalt debris and the silica alteration matrix, respectively. Py3 was mainly intergrown with chalcopyrite in quartz veins and had higher Cu, In, Ag, Sb, and Au contents than Py1 and Py2. Some elements, such as Au, Se, and Pb, are likely presented as direct substitution with Fe2+ in pyrite, while Cu, Zn, Co, Ni, and Ag probably occur both as direct substitution with Fe and as distributed micro- to nanoparticle-sized sulfides. Meanwhile, the occurrence of V, Mn, and U is likely presented as oxide inclusions. Trace element geochemistry suggested that the pyrite was formed under high-temperature conditions, and the ore forming elements were likely derived from ultramafic rocks. In addition, Py1 and Py2 were formed under higher water/rock ratio and higher temperature conditions, with more seawater involvement compared with Py3. The formation of ELHF-2 was probably driven by exothermic serpentinization reactions with an additional magmatic heat. This study shows that high-temperature hydrothermal circulation driven by magmatic activity can be developed on distal rift flank areas of magma-starved ultraslow-spreading ridges.  相似文献   

16.
The present morphology and tectonic evolution of more than 1500 kilometres of the Central Indian Ridge are described and discussed following the integration of GLORIA side-scan sonographs with conventional geophysical datasets. Segmentation of the ridge occurs by a series of ridge axis discontinuities ranging in periodicity along strike from 275 km to less than 30 km. These segment boundaries we have classified into two types: first order fracture zones of offsets greater than 50 km which bound five major (mega-) segments, and smaller scale structures of a variety of offset styles and amplitudes which cut four of these segments. We refer to these as ridge-axis discontinuities. The frequent opposite sense of offset identified between the first order structures and the subordinate discontinuities between these major structures is interpreted as resulting from the adjustment to new kinematic parameters after magnetic anomaly 20. As far as our data allows us to determine, the central major segment is not subdivided by minor ridge axis discontinuities, which we suggest is a result of its proximity to the Rodriguez hotspot.  相似文献   

17.
In 2008-2009, hydrothermal barnacle and sediment samples were collected from the Southwest Indian Ridge during a survey of the China Ocean Mineral Resources R&D Association (COMRA). Samples were ana- lyzed by gas chromatography-mass spectrometer (GC-MS), revealing the main organic constituents of hy- drothermal barnacle and sediment to be fatty acids and alkylbenzenes. N-alkanes which possessed obvious even carbon advantage were also detected in hydrothermal sediment. The high concentrations of aromatic compounds might be the result of macromolecular thermal alteration. Microorganism in the submarine hydrothermal ecosystem, especially those related to sulfur metabolism, might be the source of the high con- centrations of fatty acids detected in these samples. In high temperature and high pressure hydrothermal environments, n-alkanes which possessed obvious even carbon advantage might originate from thermal alteration of carboxylic acids and other lipid compounds.  相似文献   

18.
慢速−超慢速扩张洋脊的海底热液活动区多出露类型多样的蚀变岩石,记录了地壳深部的流体与围岩的相互作用,为研究深部热液流体特征以及循环过程提供了样本。本研究选取了中国大洋第30、34和40航次在超慢速扩张西南印度洋脊龙旂热液区(A区、B区和C区)利用电视抓斗采集的蚀变玄武岩、蚀变辉长岩、蚀变辉石岩和蛇纹岩等蚀变岩样品,利用光学显微镜、电子探针开展了岩相学和矿物化学分析。岩相学结果表明,龙旂热液区蚀变岩石样品约95%发生了地壳浅部的脆性变形作用,靠近龙旂1号热液区(A区)约有5%的蚀变岩石混合发育了脆性变形及脆性−塑性变形特征。研究区岩石蚀变属于中−低温变质作用,变质相近似绿片岩相,变质矿物组合为绿泥石−绿帘石−钠长石−阳起石−榍石。其中,A区的蚀变岩中的绿泥石形成温度(201~341℃)以及蛇纹石、阳起石、绿泥石等蚀变矿物的Fe元素含量(17.5%~27.5%)都高于龙旂3号热液区(B区和C区)的绿泥石形成温度(239~303℃)和Fe元素含量(16.8%~26.5%),这也与在该区观测到高温的热液喷口相符合。本研究认为龙旂热液区所在洋脊段发育的拆离断层为热液流体的向上运移提供了通道,洋壳扩张后期轴部的岩浆熔体在轴侧区域的岩浆侵入或喷发活动可能为热液循环提供了热源。  相似文献   

19.
The rift valley at three widely separated sites along the Mid-Atlantic Ridge is characterized using geological and geophysical data. An analysis of bottom photographs and fine-scale bathymetry indicates that each study area has a unique detailed geology and structure. Spreading rates are apparently asymmetric at each site. Relationships between tectonic and volcanic structure and hydrothermal activity show that various stages in the evolution of the rift valley are most favorable for seafloor expression of hydrothermal activity. In a stage found at 26°08 N, site 1 (TAG), the rift valley is narrow, consisting of both a narrow volcanically active valley floor and inner walls with small overall slopes. High-temperature hydrothermal venting occurs along the faster spreading eastern inner wall of this U-shaped rift valley. Site 2 (16°46 N) has a narrow valley floor and wide block faulted walls and is at a stage where the rift valley is characterized by a V-shape. No neovolcanic zone is observed within the marginally faulted, predominantly sedimented floor and hydrothermal activity is not observed. The rift valley at site 3 (14°54 N), with postulated extrusive volcanic activity and a stage in valley evolution tending toward a U-shape, shows evidence of hydrothermal activity within the slightly faster spreading eastern inner wall. Evidence for tectonic activity (inward- and outward-facing faults and pervasive fissuring) exists throughout the wide inner wall. Hydrothermal activity appears to be favored within a U-shaped rift valley characterized by a narrow neovolcanic zone and secondarily faulted inner walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号