首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Modern Guaymas Basin (Gulf of California, Mexico) is a region of high diatom productivity where exceptional preservation factors maintain biannually alternating sediment deposition as annual varves. New sediment cores from Guaymas Basin (MD02‐2512 and MD02‐2515) present the opportunity to construct climate records from below the last glacial period. A low‐resolution age model has been constructed from oxygen isotope analysis, correlation with other dated short piston cores from Guaymas Basin and an estimate of sedimentation rate. MD02‐2512 from eastern Guaymas Basin has an age range from the Holocene to late marine isotope stage 6 (MIS 6); MD02‐2515 from western Guaymas Basin has an age range from ~8000 to 40 000 yr. Shipboard analyses of colour reflectance, magnetic susceptibility and sediment density are combined with continuous X‐ray fluorescence scans to reconstruct a picture of glacial climate in the Gulf of California. Eastern Guaymas Basin is affected by glacial sea level fall, which results in a drastic change in productivity rates and sediment type. The laminated record of MIS 5 allows comparison with the Holocene, showing a similarity of sedimentation patterns during deglaciation and a series of very rapid variations just prior to the last glaciation. In western Guaymas Basin there are a series of Younger Dryas‐like events during the glacial, typified by low productivity and high terrigenous input. Long‐term climate and productivity changes appear to be caused by the southward displacement of the Subtropical High pressure zone. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
We combine environmental magnetism, geochemical measurements and colour reflectance to study two late Quaternary sediment cores: GeoB 4905‐4 at 2° 30′ N off Cameroon and GeoB 4906‐3 at 0° 44′ N off Gabon. This area is suitable for investigating precipitation changes over Central and West Africa because of its potential to record input of aeolian and fluvial sediments. Three magnetozones representing low and high degree of alteration of the primary rock magnetic signals were identified. The magnetic signature is dominated by fine‐grained magnetite, while residual haematite prevails in the reduced intervals, showing increase in concentration and fine grain size at wet intervals. Our records also show millennial‐scale changes in climate during the last glacial and interglacial cycles. At the northern location, the past 5.5 ka are marked by high‐frequency oscillations of Ti and colour reflectance, which suggests aeolian input and hence aridity. The southern location remains under the influence of the Intertropical Convergence Zone and thus did not register aeolian signals. The millennial‐scale climatic signals indicate that drier and/or colder conditions persisted during the late Holocene and are synchronous with the 900 a climatic cycles observed in Northern Hemisphere ice core records. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号