首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mantle-derived xenoliths from the Marsabit shield volcano (easternflank of the Kenya rift) include porphyroclastic spinel peridotitescharacterized by variable styles of metasomatism. The petrographyof the xenoliths indicates a transition from primary clinopyroxene-bearingcryptically metasomatized harzburgite (light rare earth element,U, and Th enrichment in clinopyroxene) to modally metasomatizedclinopyroxene-free harzburgite and dunite. The metasomatic phasesinclude amphibole (low-Ti Mg-katophorite), Na-rich phlogopite,apatite, graphite and metasomatic low-Al orthopyroxene. Transitionalsamples show that metasomatism led to replacement of clinopyroxeneby amphibole. In all modally metasomatized xenoliths melt pockets(silicate glass containing silicate and oxide micro-phenocrysts,carbonates and empty vugs) occur in close textural relationshipwith the earlier metasomatic phases. The petrography, majorand trace element data, together with constraints from thermobarometryand fO2 calculations, indicate that the cryptic and modal metasomatismare the result of a single event of interaction between peridotiteand an orthopyroxene-saturated volatile-rich silicate melt.The unusual style of metasomatism (composition of amphibole,presence of graphite, formation of orthopyroxene) reflects lowP –T conditions (850–1000°C at < 1·5GPa) in the wall-rocks during impregnation and locally low oxygenfugacities. The latter allowed the precipitation of graphitefrom CO2. The inferred melt was possibly derived from alkalinebasic melts by melt–rock reaction during the developmentof the Tertiary–Quaternary Kenya rift. Glass-bearing meltpockets formed at the expense of the early phases, mainly throughincongruent melting of amphibole and orthopyroxene, triggeredby infiltration of a CO2-rich fluid and heating related to themagmatic activity that ultimately sampled and transported thexenoliths to the surface. KEY WORDS: graphite; peridotite xenoliths; Kenya Rift; modal metasomatism; silicate glass  相似文献   

2.
Xenoliths hosted by Quaternary basanites and alkali basaltsfrom Marsabit (northern Kenya) represent fragments of Proterozoiclithospheric mantle thinned and chemically modified during riftingin the Mesozoic (Anza Graben) and in the Tertiary–Quaternary(Kenya rift). Four types of peridotite xenoliths were investigatedto constrain the thermal and chemical evolution of the lithosphericmantle. Group I, III and IV peridotites provide evidence ofa cold, highly deformed and heterogeneous upper mantle. Textures,thermobarometry and trace element characteristics of mineralsindicate that low temperatures in the spinel stability field(750–800°C at <1·5 GPa) were attained bydecompression and cooling from initially high pressures andtemperatures in the garnet stability field (970–1080°Cat 2·3–2·9 GPa). Cooling, decompressionand penetrative deformation are consistent with lithosphericthinning, probably related to the development of the Mesozoicto Paleogene Anza Graben. Re-equilibrated and recrystallizedperidotite xenoliths (Group II) record heating (from 800°Cto 1100°C). Mineral trace element signatures indicate enrichmentby mafic silicate melts, parental to the Quaternary host basanitesand alkali basalts. Relationships between mineral textures,P–T conditions of equilibration, and geochemistry canbe explained by metasomatism and heating of the lithosphererelated to the formation of the Kenya rift, above a zone ofhot upwelling mantle. KEY WORDS: East African Rift System; Anza Graben; in situ LA-ICPMS; peridotite xenoliths; thermobarometry  相似文献   

3.
Xenoliths record two distinct events in the mantle below theQuarternary West Eifel Volcanic Field, Germany. The first, duringthe Hercynian Orogeny, led to widespread formation of secondary,Ti-poor amphibole, clinopyroxene and phlogopite. The signatureof the second event, related to Quaternary volcanism, variesacross the field. At Dreiser Weiher and Meerfelder Maar, thisevent is characterized by amphibole–phlogopite–clinopyroxeneveins, hosted in lherzolite and harzburgite xenoliths broughtto the surface by sodic olivine nephelinite–basanite suitelavas. These veins formed from crystallization of sodic magmathat flowed along fractures in the mantle. At Rockeskyller Kopf,Gees and Baarley, the Quaternary event is characterized by wehrlitexenoliths, many of which have phlogopite–clinopyroxeneveins, that were transported by potassic foid suite lavas. Wehrliteformed by reaction of lherzolite–harzburgite, with a largevolume of potassic magma that flowed along grain boundariesrather than in fractures. During reaction, orthopyroxene wasconsumed and secondary clinopyroxene, olivine and phlogopiteprecipitated. Veins formed in wehrlites only during periodicover-pressure events. The composition of the magmas parentalto the veins is similar to the lavas that carried the xenolithsto surface, indicating that the source of foid and olivine nephelinite–basanitesuite magma is domainal, as was the flow regime and magma flux. KEY WORDS: Eifel; mantle xenoliths; metasomatism; trace elements  相似文献   

4.
Electromagnetic experiments were conducted in 1995 as part of a multidisciplinary research project to investigate the deep structure of the Chyulu Hills volcanic chain on the eastern flank of the Kenya Rift in East Africa. Transient electromagnetic (TEM) and broadband (120–0.0001 Hz) magnetotelluric (MT) soundings were made at eight stations along a seismic survey line and the data were processed using standard techniques. The TEM data provided effective correction for static shifts in MT data. The MT data were inverted for the structure in the upper 20 km of the crust using a 2-D inversion scheme and a variety of starting models. The resulting 2-D models show interesting features but the wide spacing between the MT stations limited model resolution to a large extent. These models suggest that there are significant differences in the physical state of the crust between the northern and southern parts of the Chyulu Hills volcanic field. North of the Chyulu Hills, the resistivity structure consists of a 10–12-km-thick resistive (up to 4000 Ω m) upper crustal layer, ca. 10-km-thick mid-crustal layer of moderate resistivity (50 Ω m), and a conductive substratum. The resistive upper crustal unit is considerably thinner over the main ridge (where it is ca. 2 km thick) and further south (where it may be up to 5 km thick). Below this cover unit, steep zones of low resistivity (0.01–10 Ω m) occur underneath the main ridge and at its NW and SE margins (near survey positions 100 and 150–210 km on seismic line F of Novak et al. [Novak, O., Prodehl, C., Jacob, A.W.B., Okoth, W., 1997. Crustal structure of the southern flank of the Kenya Rift deduced from wide-angle P-wave data. In: Fuchs, K., Altherr, R., Muller, B., Prodehl, C. (Eds.), Structure and Dynamic Processes in the Lithosphere of the Afro-Arabian Rift System. Tectonophysics, vol. 278, 171–186]). These conductors appear to be best developed in upper crustal (1–8 km) and middle crustal (9–18 km) zones in the areas affected by volcanism. The low-resistivity anomalies are interpreted as possible magmatic features and may be related to the low-velocity zones recently detected at greater depth in the same geographic locations. The MT results, thus, provide a necessary upper crustal constraint on the anomalous zone in Chyulu Hills, and we suggest that MT is a logical compliment to seismics for the exploration of the deep crust in this volcanic-covered basement terrain. A detailed 3-D field study is recommended to gain a better understanding of the deep structure of the volcanic field.  相似文献   

5.
Anatectic veins containing the Be minerals khmaralite and berylliansapphirine as primary phases (or surinamite derived therefrom)are associated with Mg–Al-rich paragneisses at three localitiesin the ultrahigh-temperature Napier complex, Antarctica, a uniqueBe mineralization in the granulite facies. Likely precursorsof the paragneisses are volcaniclastic deposits that were hydrothermallyaltered by heated seawater prior to metamorphism. Regular distributionof Be among minerals in the paragneisses suggests an approachto equilibrium with Be greatly concentrated in sapphirine (25–3430ppm Be) or cordierite (560–930 ppm Be) relative to plagioclaseAn53–66 (14–43 ppm Be) > cores of coarse-grainedorthopyroxene (0·7–29 ppm Be) > coronitic orthopyroxene(0·4–14 ppm Be) sillimanite (0·1–26ppm Be) plagioclase An18–33 (0·6–15 ppmBe) > biotite (0·06–8 ppm Be) > K-feldspar,quartz, garnet (0·05–0·7 ppm Be). Sapphirine-bearingparagneisses have average Be concentrations, 4·9 ±2·4 ppm (13 samples), about twice that of typical pelites,whereas paragneisses lacking sapphirine and primary cordieritehave only 2·9 ± 2·1 ppm Be (12 samples),implying some loss of Be during metamorphism. The likely sourcerocks for the Be-rich melts were biotitic rocks lacking theBe sinks sapphirine and cordierite. These gneisses were probablyless competent than the sapphirine-bearing gneisses, so themelts were drawn to the latter and collected in spaces openedduring deformation and boudinage of the more competent paragneisses.Fractionation of the melts concentrated Be to the extent thatBe minerals could crystallize. The final result was Be-mineralizedanatectic veins hosted by relatively Be-rich sapphirine-bearingparagneisses. KEY WORDS: Antarctica; beryllium; granulite facies; microprobe; sapphirine  相似文献   

6.
柴胡栏子金矿位于华北板块北缘,属中温热液蚀变岩型金矿。金成矿与矿区北部的早中生代辉石闪长岩体有密切关系。在辉石闪长岩体内发育大量包体,可以分为基性麻粒岩和角闪岩两类包体。包体的地球化学、形成温压条件表明基性岩包体为来源于大陆下地壳的基性麻粒岩包体,来源深度大约相当于下地壳中部-中上部位置,为早中生代时期底侵作用的产物。角闪岩包体来源于下地壳上部-中地壳下部位置,被上升岩浆带至地壳浅部。包体和寄主岩石具有相似的地球化学和氧、铅、锶、钕同位素特征,说明二者具有相同的岩浆来源。基性麻粒岩包体为底侵作用早期形成的堆晶岩受到后续岩浆的烘烤发生麻粒岩化形成。基性麻粒岩和寄主岩石辉石闪长岩与金矿床形成的密切时空关系显示底侵作用对柴胡栏子金矿含矿流体形成、运移和矿质富集有重要控制作用,其中 H2O和CO2等挥发性组分对控制流体形成和演化有至关重要作用。基性麻粒岩包体发育为成柴胡栏子金矿成矿物质来源于深部提供了有力的证据。  相似文献   

7.
A diverse assemblage of small mafic and ultramafic xenolithsoccurs in alkalic lava from Davidson and Pioneer seamounts locatedat the continental margin of central California. Based on mineralcompositions and textures, they form three groups: (1) mantlexenoliths of lherzolite, pyroxenite, and dunite with olivineof >Fo90; (2) ocean crust xenoliths of dunite with olivine<Fo90, troctolite, pyroxene-gabbro, and anorthosite withlow-K2O plagioclase; (3) cumulates of seamount magmas of alkalicgabbro with primary amphibole and biotite and anorthosites withhigh-K2O plagioclase. The alkalic cumulates are geneticallyrelated to, but more evolved than, their host lavas and probablycrystallized at the margins of magma reservoirs. Modeling andcomparison with experimentally derived phases suggest an originat moderate pressures (0·5–0·9 GPa). Thehigh volatile contents of the alkalic host lavas may have pressurizedthe magma chambers and helped to propel the xenolith-bearinglavas directly from deep storage at the base of the lithosphereto the eruption site on the ocean floor, entraining fragmentsof the upper mantle and ocean crust cumulates from the underlyingabandoned spreading center. KEY WORDS: basaltic magmatism; continental margin seamounts; geothermobarometry; mineral chemistry; xenoliths  相似文献   

8.
Integrated metamorphic and geochronological data place new constraintson the metamorphic evolution of a Neoproterozoic orogen in eastAntarctica. Granulite-facies rocks from a 150 km stretch ofthe Kemp Land coast reflect peak conditions involving T 870–990°Cat P 7·4–10 kbar, with pressure increasing westwardtowards an Archaean craton. Electron microprobe-derived (Th+ U)–Pb monazite ages from metapelitic assemblages indicatethat the major mineral textures in these rocks developed duringthe c. 940 Ma Rayner Orogeny. Complex compositional zoning inmonazite suggests high-T recrystallization over c. 25 Myr. Diversityin metapelitic reaction textures reflects silica and ferromagnesiancontent: Si-saturated Fe-rich metapelites contain garnet thatis partially pseudomorphed by biotite and sillimanite, whereasSi-saturated Mg-rich metapelites and Si-undersaturated metapeliticpods have reaction microstructures involving cordierite enclosingorthopyroxene, garnet and/or sapphirine, cordierite + sapphirinesymplectites around sillimanite and coarse-grained orthopyroxene+ corundum separated by sapphirine coronae. Interpretationsbased on PT pseudosections provide integrated bulk-rockconstraints and indicate a clockwise PTt pathcharacterized by a post-peak PT trajectory with dP/dT 15–20 bar/ °C. This moderately sloped decompressive-coolingPT path is in contrast to near-isothermal decompressionPT paths commonly cited for this region of the RaynerComplex, with implications for the post-collisional tectonicresponse of the mid- to lower crust within this orogenic belt. KEY WORDS: electron microprobe monazite dating; granulite facies; Rayner Complex; sapphirine; THERMOCALCMinerals abbreviations: q, quartz; g, garnet; sill, sillimanite; ky, kyanite; opx, orthopyroxene; cd, cordierite; ksp, alkali feldspar; pl, plagioclase; bi, biotite; sp, spinel; ilm, ilmenite; mt, magnetite; ru, rutile; sa, sapphirine; cor, corundum; osm, osumilite; liq, silicate melt; mnz, monazite  相似文献   

9.
Neogene basanite lavas of Kozákov volcano, located alongthe Lusatian fault in the northeastern Czech Republic, containabundant anhydrous spinel lherzolite xenoliths that providean exceptionally continuous sampling of the upper two-thirdsof central European lithospheric mantle. The xenoliths yielda range of two-pyroxene equilibration temperatures from 680°Cto 1070°C, and are estimated to originate from depths of32–70 km, based on a tectonothermal model for basalticunderplating associated with Neogene rifting. The sub-Kozákovmantle is layered, consisting of an equigranular upper layer(32–43 km), a protogranular intermediate layer that containsspinel–pyroxene symplectites after garnet (43–67km), and an equigranular lower layer (67–70 km). Negativecorrelations of wt % TiO2, Al2O3, and CaO with MgO and clinopyroxenemode with Cr-number in the lherzolites record the effects ofpartial fusion and melt extraction; Y and Yb contents of clinopyroxeneand the Cr-number in spinel indicate 5 to 15% partial melting.Subsequent metasomatism of a depleted lherzolite protolith,probably by a silicate melt, produced enrichments in the largeion lithophile elements, light rare earth elements and highfield strength elements, and positive anomalies in primitivemantle normalized trace element patterns for P, Zr, and Hf.Although there are slight geochemical discontinuities at theboundaries between the three textural layers of mantle, theretends to be an overall decrease in the degree of depletion withdepth, accompanied by a decrease in the magnitude of metasomatism.Clinopyroxene separates from the intermediate protogranularlayer and the lower equigranular layer yield 143Nd/144Nd valuesof 0·51287–0·51307 (Nd = +4·6 to+8·4) and 87Sr/86Sr values of 0·70328–0·70339.Such values are intermediate with respect to the Nd–Srisotopic array defined by anhydrous spinel peridotite xenolithsfrom central Europe and are similar to those associated withthe present-day low-velocity anomaly in the upper mantle beneathEurope. The geochemical characteristics of the central Europeanlithospheric mantle reflect a complex evolution related to Devonianto Early Carboniferous plate convergence, accretion, and crustalthickening, Late Carboniferous to Permian extension and gravitationalcollapse, and Neogene rifting, lithospheric thinning, and magmatism. KEY WORDS: xenoliths; lithospheric mantle; REE–LILE–HFSE; Sr–Nd isotopes; Bohemian Massif  相似文献   

10.
Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountainsvolcanic field (Montana, USA), derived from the lower lithosphereof the Wyoming craton, can be divided based on textural criteriainto tectonite and cumulate groups. The tectonites consist ofstrongly depleted spinel lherzolites, harzburgites and dunites.Although their mineralogical compositions are generally similarto those of spinel peridotites in off-craton settings, somecontain pyroxenes and spinels that have unusually low Al2O3contents more akin to those found in cratonic spinel peridotites.Furthermore, the tectonite peridotites have whole-rock majorelement compositions that tend to be significantly more depletedthan non-cratonic mantle spinel peridotites (high MgO, low CaO,Al2O3 and TiO2) and resemble those of cratonic mantle. Thesecompositions could have been generated by up to 30% partialmelting of an undepleted mantle source. Petrographic evidencesuggests that the mantle beneath the Wyoming craton was re-enrichedin three ways: (1) by silicate melts that formed mica websteriteand clinopyroxenite veins; (2) by growth of phlogopite fromK-rich hydrous fluids; (3) by interaction with aqueous fluidsto form orthopyroxene porphyroblasts and orthopyroxenite veins.In contrast to their depleted major element compositions, thetectonite peridotites are mostly light rare earth element (LREE)-enrichedand show enrichment in fluid-mobile elements such as Cs, Rb,U and Pb on mantle-normalized diagrams. Lack of enrichment inhigh field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf)suggests that the tectonite peridotites have been metasomatizedby a subduction-related fluid. Clinopyroxenes from the tectoniteperidotites have distinct U-shaped REE patterns with strongLREE enrichment. They have 143Nd/144Nd values that range from0·5121 (close to the host minette values) to 0·5107,similar to those of xenoliths from the nearby Highwood Mountains.Foliated mica websterites also have low 143Nd/144Nd values (0·5113)and extremely high 87Sr/86Sr ratios in their constituent phlogopite,indicating an ancient (probably mid-Proterozoic) enrichment.This enriched mantle lithosphere later contributed to the formationof the high-K Eocene host magmas. The cumulate group rangesfrom clinopyroxene-rich mica peridotites (including abundantmica wehrlites) to mica clinopyroxenites. Most contain >30%phlogopite. Their mineral compositions are similar to thoseof phenocrysts in the host minettes. Their whole-rock compositionsare generally poorer in MgO but richer in incompatible traceelements than those of the tectonite peridotites. Whole-rocktrace element patterns are enriched in large ion lithophileelements (LILE; Rb, Cs, U and Pb) and depleted in HFSE (Nb,Ta Zr and Hf) as in the host minettes, and their Sr–Ndisotopic compositions are also identical to those of the minettes.Their clinopyroxenes are LREE-enriched and formed in equilibriumwith a LREE-enriched melt closely resembling the minettes. Thecumulates therefore represent a much younger magmatic event,related to crystallization at mantle depths of minette magmasin Eocene times, that caused further metasomatic enrichmentof the lithosphere. KEY WORDS: ultramafic xenoliths; Montana; Wyoming craton; metasomatism; cumulates; minette  相似文献   

11.
A suite of peralkaline trachytes from Longonot volcano, Kenya,which erupted during the last 6000 years, has been analysedfor major and trace elements, Pb and Nd isotopes, and U–Th–Radisequilibria. The lavas are divided into three stratigraphicgroups of trachytes (Lt2a, Lt2b and Lt3), and hybrid lavas,designated LMx1 and LMx2, which, respectively, pre-date andpost-date the Lt2 lavas. Major and trace elements are consistent,with up to 37% within-group fractional crystallization of predominantlyalkali feldspar. The parental magma for the different trachytegroups had a more mafic composition—probably hawaiitic.Nd and Pb isotopes show minimal variation, both within and betweenmagma groups, and indicate that up to 10% comendite magma fromthe neighbouring Olkaria volcanic field may have intermixedwith the Longonot magma. (230Th/238U) disequilibria indicatethat limited U/Th fractionation occurred during the past 10kyr, whereas (226Ra/230Th) disequilibria reflect the effectof alkali feldspar fractionation >8 kyr ago in the Lt2a lavas,between 3 and 7 kyr ago in the Lt2b lavas and in the past 3kyr for the Lt3 lavas. (226Ra/230Th) disequilibria in the Lt2blavas are interpreted using a model that combines the equationsof radioactive decay and in-growth with Rayleigh crystallizationto give fractionation rates of about 0·2 x 10–4/yearfor the evolution of hawaiite to trachyte, but more rapid ratesof up to 3 x 10–4/year for fractionation within the trachytesequence. (226Ra/230Th) from two whole-rock–alkali feldsparpairs are interpreted to show the crystals formed at 5800 yearsBP (Lt2b) and 2800 years BP (Lt3), implying that phenocrystformation continued almost up to the time of eruption. The resultsstrongly indicate that fractionated magmas can be stored forperiods on the order of 1000–2500 years prior to eruption,whereas other magmas were erupted as fractionation was proceeding. KEY WORDS: trachyte; magma chambers; u-series; Kenya  相似文献   

12.
The Baikal Rift is a zone of active lithospheric extension adjacentto the Siberian Craton. The 6–16 Myr old Vitim VolcanicField (VVF) lies approximately 200 km east of the rift axisand consists of 5000 km3 of melanephelinites, basanites, alkaliand tholeiitic basalts, and minor nephelinites. In the volcanicpile, 142 drill core samples were used to study temporal andspatial variations. Variations in major element abundances (e.g.MgO = 3·3–14·6 wt %) reflect polybaric fractionalcrystallization of olivine, clinopyroxene and plagioclase. 87Sr/86Sri(0·7039–0·7049), 143Nd/144Ndi (0·5127–0·5129)and 176Hf/177Hfi (0·2829–0·2830) ratiosare similar to those for ocean island basalts and suggest thatthe magmas have not assimilated significant amounts of continentalcrust. Variable degrees of partial melting appear to be responsiblefor differences in Na2O, P2O5, K2O and incompatible trace elementabundances in the most primitive (high-MgO) magmas. Fractionatedheavy rare earth element (HREE) ratios (e.g. [Gd/Lu]n > 2·5)indicate that the parental magmas of the Vitim lavas were predominantlygenerated within the garnet stability field. Forward major elementand REE inversion models suggest that the tholeiitic and alkalibasalts were generated by decompression melting of a fertileperidotite source within the convecting mantle beneath Vitim.Ba/Sr ratios and negative K anomalies in normalized multi-elementplots suggest that phlogopite was a residual mantle phase duringthe genesis of the nephelinites and basanites. Relatively highlight REE (LREE) abundances in the silica-undersaturated meltsrequire a metasomatically enriched lithospheric mantle source.Results of forward major element modelling suggest that meltingof phlogopite-bearing pyroxenite veins could explain the majorelement composition of these melts. In support of this, pyroxenitexenoliths have been found in the VVF. High Cenozoic mantle potentialtemperatures (1450°C) predicted from geochemical modellingsuggest the presence of a mantle plume beneath the Baikal RiftZone. KEY WORDS: Baikal Rift; mafic magmatism; mantle plume; metasomatism; partial melting  相似文献   

13.
High-Mg–Al, silica-undersaturated metapelites from theOygarden Group of islands, East Antarctica, preserve clear evidencefor the stable coexistence of the assemblage orthopyroxene +corundum in natural rocks. The quartz-absent metapelite occursas pods and isolated layers within a high-strain zone relatedto deformation during the c. 0·93 Ga Rayner StructuralEpisode. Assemblages that include orthopyroxene, corundum, sapphirine,sillimanite, cordierite, garnet and kornerupine are developedacross a pre-existing compositional zoning, leading to contrastingmineral Fe–Mg ratios. The assemblage orthopyroxene–corundumis shown to exist in only a very restricted range of bulk compositionsand PT histories. Simplified qualitative FMAS grids havebeen constructed for kornerupine-absent and -present systems,illustrating MAS terminations and divariant equilibria thathelp to describe the mineral assemblage and reaction history.Reaction textures that include coronas of sapphirine and sillimaniteseparating orthopyroxene and corundum, and symplectites of orthopyroxene+ sapphirine ± cordierite/plagioclase, orthopyroxene+ sillimanite ± cordierite/plagioclase and orthopyroxene+ sapphirine + sillimanite embaying garnet, imply a clockwisePTt evolution. Conditions of P > 9–10kbar and T  相似文献   

14.
Quartz-rich xenoliths in lavas and pyroclastic rocks from VulcanoIsland, part of the Aeolian arc, Italy, contain silicic meltinclusions with high SiO2 (73–80 wt %) and K2O (3–6wt %) contents. Two types of inclusions can be distinguishedbased on their time of entrapment and incompatible trace element(ITE) concentrations. One type (late, ITE-enriched inclusions)has trace element characteristics that resemble those of themetamorphic rocks of the Calabro-Peloritano basement of theadjacent mainland. Other inclusions (early, ITE-depleted) havevariable Ba, Rb, Sr and Cs, and low Nb, Zr and rare earth element(REE) contents. Their REE patterns are unfractionated, witha marked positive Eu anomaly. Geochemical modelling suggeststhat the ITE-depleted inclusions cannot be derived from equilibriummelting of Calabro-Peloritano metamorphic rocks. ITE-enrichedinclusions can be modelled by large degrees (>80%) of meltingof basement gneisses and schists, leaving a quartz-rich residuerepresented by the quartz-rich xenoliths. Glass inclusions inquartz-rich xenoliths represent potential contaminants of Aeolianarc magmas. Interaction between calc-alkaline magmas and crustalanatectic melts with a composition similar to the analysed inclusionsmay generate significant enrichment in potassium in the magmas.However, ITE contents of the melt inclusions are comparablewith or lower than those of Vulcano calc-alkaline and potassicrocks. This precludes the possibility that potassic magmas inthe Aeolian arc may originate from calc-alkaline parents throughdifferent degrees of incorporation of crustal melts. KEY WORDS: melt inclusions; crustal anatexis; magma assimilation; xenoliths; Vulcano Island  相似文献   

15.
ROACH  IAN C. 《Journal of Petrology》2004,45(4):739-758
Intraplate basalts of the Eocene–Oligocene Monaro VolcanicProvince (MVP), in southeastern New South Wales, include lower-crustaland refractory to weakly metasomatized upper-mantle xenoliths.Lower-crustal-derived xenoliths appear to be all two-pyroxeneplagioclase granulites (CpxFe:Mg:Ca 0·17–0·56:0·63–0·77:0·28–0·89OpxFe:Mg:Ca 0·39–0·52:1·37–1·47:0·02An72–86 and An48–50) but may also include garnetpyroxenites at depth. Mantle-derived xenoliths are principallyspinel-bearing lherzolites (Fo89·8–90·6CpxFe:Mg:Ca 0·07–0·45:0·70–1·70:0·01–0·94OpxFe:Mg:Ca 0·16–0·19:1·62–1·75:0·01–0·10)but also include amphibole ± spinel-bearing lherzolite(Fo88·7–89·1 CpxFe:Mg:Ca 0·09–0·21:0·61–0·91:0·73–0·93OpxFe:Mg:Ca 0·09–0·31:0·70–1·54:0·03–0·91),spinel-bearing harzburgite (Fo90·5–90·7CpxFe:Mg:Ca 0·08:0·91–0·93:0·74–0·84OpxFe:Mg:Ca 0·16–0·18:1·73–1·79:0·00–0·02),wehrlite, pyroxenite (CpxFe:Mg:Ca 0·08–0·10:0·84–0·90:0·80–0·85OpxFe:Mg:Ca 0·16–0·33:1·51–1·73:0·02–0·03)and rare garnet pyroxenite (GtFe:Mg:Ca 0·83–0·95:1·60–1·70:0·45–0·48CpxFe:Mg:Ca 0·14–0·21:0·69–0·77:0·78–0·86Opx Fe:Mg:Ca 0·31–0·42:1·43–1·56:0·02–0·03)and amphibole–apatite composites. Xenolith textures aregenerally weakly to moderately foliated, a few are mosaic-porphyroblasticand rare samples are veined or highly strained. MVP xenolithsappear to have equilibrated under similar pressure–temperature(PT) conditions to other southeastern Australian xenolithsequivalent to the South Eastern Australia (SEA) palaeogeotherm.PT estimates for the MVP suite of xenoliths reveal aheterogeneous lower crust and upper mantle that is thickly underplatedto c. 1·8 GPa or c. 50 km depth. MVP xenolith PTdata are compared with those used to derive the SEA palaeogeotherm,which is shown to be in need of revision using more modern geothermometersand geobarometers and new xenolith coexisting mineral data. KEY WORDS: xenolith; petrography; texture; geotherm; Monaro; eastern Australia  相似文献   

16.
17.
Laser ablation microprobe data are presented for olivine, orthopyroxeneand clinopyroxene in spinel harzburgite and lherzolite xenolithsfrom La Palma, Hierro, and Lanzarote, and new whole-rock trace-elementdata for xenoliths from Hierro and Lanzarote. The xenolithsshow evidence of strong major, trace element and Sr isotopedepletion (87Sr/86Sr 0·7027 in clinopyroxene in themost refractory harzburgites) overprinted by metasomatism. Thelow Sr isotope ratios are not compatible with the former suggestionof a mantle plume in the area during opening of the AtlanticOcean. Estimates suggest that the composition of the originaloceanic lithospheric mantle beneath the Canary Islands correspondsto the residues after 25–30% fractional melting of primordialmantle material; it is thus significantly more refractory than‘normal’ mid-ocean ridge basalt (MORB) mantle. Thetrace element compositions and Sr isotopic ratios of the mineralsleast affected by metasomatization indicate that the upper mantlebeneath the Canary Islands originally formed as highly refractoryoceanic lithosphere during the opening of the Atlantic Oceanin the area. During the Canarian intraplate event the uppermantle was metasomatized; the metasomatic processes includecryptic metasomatism, resetting of the Sr–Nd isotopicratios to values within the range of Canary Islands basalts,formation of minor amounts of phlogopite, and melt–wall-rockreactions. The upper mantle beneath Tenerife and La Palma isstrongly metasomatized by carbonatitic or carbonaceous meltshighly enriched in light rare earth elements (REE) relativeto heavy REE, and depleted in Zr–Hf and Ti relative toREE. In the lithospheric mantle beneath Hierro and Lanzarote,metasomatism has been relatively weak, and appears to be causedby high-Si melts producing concave-upwards trace element patternsin clinopyroxene with weak negative Zr and Ti anomalies. Ti–Al–Fe-richharzburgites/lherzolites, dunites, wehrlites and clinopyroxenitesformed from mildly alkaline basaltic melts (similar to thosethat dominate the exposed parts of the islands), and appearto be mainly restricted to magma conduits; the alkali basaltmelts have caused only local metasomatism in the mantle wall-rocksof such conduits. The various metasomatic fluids formed as theresults of immiscible separations, melt–wall-rock reactionsand chromatographic fractionation either from a CO2-rich basalticprimary melt, or, alternatively, from a basaltic and a siliceouscarbonatite or carbonaceous silicate melt. KEY WORDS: mantle xenoliths; mantle minerals; trace elements; depletion; carbonatite metasomatism  相似文献   

18.
Leucocratic and Gabbroic Xenoliths from Hualalai Volcano, Hawai'i   总被引:1,自引:0,他引:1  
A diverse range of crustal xenoliths is hosted in young alkalibasalt lavas and scoria deposits (erupted 3–5 ka) at thesummit of Huallai. Leucocratic xenoliths, including monzodiorites,diorites and syenogabbros, are distinctive among Hawaiian plutonicrocks in having alkali feldspar, apatite, zircon and biotite,and evolved mineral compositions (e.g. albitic feldspar, clinopyroxeneMg-number 67–78). Fine-grained diorites and monzodioritesare plutonic equivalents of mugearite lavas, which are unknownat Huallai. These xenoliths appear to represent melt compositionsfalling along a liquid line of descent leading to trachyte—amagma type which erupted from Huallai as a prodigious lava flowand scoria cone at 114 ka. Inferred fractionating assemblages,MELTS modeling, pyroxene geobarometry and whole-rock norms allpoint to formation of the parent rocks of the leucocratic xenolithsat 3–7 kbar pressure. This depth constraint on xenolithformation, coupled with a demonstrated affinity to hypersthene-normativebasalt and petrologic links between the xenoliths and the trachyte,suggests that the shift from shield to post-shield magmatismat Huallai was accompanied by significant deepening of the activemagma reservoir and a gradual transition from tholeiitic toalkalic magmas. Subsequent differentiation of transitional basaltsby fractional crystallization was apparently both extreme—culminatingin >5·5 km3 of trachyte—and rapid, at 2·75x 106 m3 magma crystallized/year. KEY WORDS: geothermobarometry; magma chamber; xenolith; cumulate; intensive parameters  相似文献   

19.
The petrological characteristics of peridotite xenoliths exhumedfrom the lithospheric mantle below the Western Pacific arcs(Kamchatka, NE Japan, SW Japan, Luzon–Taiwan, New Irelandand Vanuatu) are reviewed to obtain an overview of the supra-subductionzone mantle in mature subduction systems. These data are thencompared with those for peridotite xenoliths from recent orolder arcs described in the literature (e.g. New Britain, WesternCanada to USA, Central Mexico, Patagonia, Lesser Antilles andPannonian Basin) to establish a petrological model of the lithosphericmantle beneath the arc. In currently active volcanic arcs, thedegree of partial melting recorded in the peridotites appearsto decrease away from the fore-arc towards the back-arc region.Highly depleted harzburgites, more depleted than abyssal harzburgites,occur only in the frontal arc to fore-arc region. The degreeof depletion increases again to a degree similar to that ofthe most depleted abyssal harzburgites within the back-arc extensionalregion, whether or not a back-arc basin is developed. Metasomatismis most prominent beneath the volcanic front, where the magmaproduction rate is highest; silica enrichment, involving themetasomatic formation of secondary orthopyroxene at the expenseof olivine, is important in this region because of the additionof slab-derived siliceous fluids. Some apparently primary orthopyroxenes,such as those in harzburgites from the Lesser Antilles arc,could possibly be of this secondary paragenesis but have beenrecrystallized such that the replacement texture is lost. TheTi content of hydrous minerals is relatively low in the sub-arclithospheric mantle peridotites. The K/Na ratio of the metasomatichydrous minerals decreases rearward from the fore-arc mantleas well as downward within the lithospheric mantle. The lithosphericmantle wedge peridotites, especially metasomatized ones frombelow the volcanic front, are highly oxidized. Shearing of themantle wedge is expected beneath the volcanic front, and isrepresented by fine-grained peridotite xenoliths. KEY WORDS: mantle wedge; lithospheric mantle; peridotite xenoliths; melting; metasomatism  相似文献   

20.
Ultrahigh-temperature quartz-sapphirine granulite xenoliths in the post-Karoo Lace kimberlite, South Africa, comprise mainly quartz, sapphirine, garnet and sillimanite, with rarer orthopyroxene, antiperthite, corundum and zinc-bearing spinel; constant accessories are rutile, graphite and sulphides. Comparison with assemblages in the experimentally determined FMAS and KFMASH grids indicates initial equilibration at >1040 °C and 9–11  kbar. Corona assemblages involving garnet, sillimanite and minor cordierite developed on a near-isobaric cooling P–T  path as both temperature and, to a lesser extent, pressures decreased. Garnet-orthopyroxene Fe-Mg exchange thermometers record temperatures of only 830–916 °C. These estimates do not indicate the peak metamorphic conditions but instead reflect the importance of post-peak Fe-Mg exchange during cooling. Correction of mineral Fe-Mg compositions for this exhange using a convergence approach of Fitzsimons & Harley (1994 ) leads to retrieved P–T  estimates from garnet-orthopyroxene thermobarometry ( c . 1000 °C and 10.5±0.7  kbar) that are consistent with the petrogenetic grid constraints. U-Pb dating of a single zircon grain gives an age of 2590±83  Ma, interpreted as the age of the metamorphic event. Protolith major and trace element chemistries of the xenoliths differ from sapphirine-quartzites typical of the Napier Complex (Antarctica) but are comparable to less siliceous, high Cr and Ni, sapphirine granulites reported from several ultrahigh temperature granulite terranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号