首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates how medium‐term gully‐development data differ from short‐term data, and which factors influence their spatial and temporal variability at nine selected actively retreating bank gullies situated in four Spanish basin landscapes. Small‐format aerial photographs using unmanned, remote‐controlled platforms were taken at the gully sites in short‐term intervals of one to two years over medium‐term periods of seven to 13 years and gully change during each period was determined using stereophotogrammetry and a geographic information system. Results show a high variability of annual gully retreat rates both between gullies and between observation periods. The mean linear headcut retreat rates range between 0·02 and 0·26 m a–1. Gully area loss was between 0·8 and 22 m² a–1 and gully volume loss between 0·5 to 100 m³ a–1, of which sidewall erosion may play a considerable part. A non‐linear relationship between catchment area and medium‐term gully headcut volume change was found for these gullies. The short‐term changes observed at the individual gullies show very high variability: on average, the maximum headcut volume change observed in 7–13 years was 14·3 times larger than the minimum change. Dependency on precipitation varies but is clearly higher for headcuts than sidewalls, especially in smaller and less disturbed catchments. The varying influences of land use and human activities with their positive or negative effects on runoff production and connectivity play a dominant role in these study areas, both for short‐term variability and medium‐term difference in gully development. The study proves the value of capturing spatially continuous, high‐resolution three‐dimensional data using small‐format aerial photography for detailed gully monitoring. Results confirm that short‐term data are not representative of longer‐term gully development and demonstrate the necessity for medium‐ to long‐term monitoring. However, short‐term data are still required to understand the processes – particularly human activity at varying time scales – causing fluctuations in gully erosion rates. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
3.
The impact assessment of molasses‐based distillery‐effluent irrigation on groundwater quality around village Gajraula in the district of Jyotiba Phule Nagar, Uttar Pradesh, India was studied by sampling groundwater on monthly intervals consecutively for summer, winter and monsoon seasons during 2006–2007 and water quality parameters, viz. pH, electrical conductivity (EC), chloride (Cl?), sulphate (SO), nitrate (NO), chemical oxygen demand (COD), total solids (TS), total dissolved solids (TDS), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), zinc (Zn2+), iron (Fe3+), and total coliforms (TC) were monitored. Results depicted that the values of all parameters decreased with increasing depth of water table. Sulphate, nitrate and potassium contents were maximal in agricultural site during monsoon while EC, Cl?, TS, TDS, Na+, Ca2+, Mg2+, Zn, and Fe were maximal in industrial sites during summer. Groundwater samples of residential site harboured maximum coliforms especially during monsoon, highlighting threat to groundwater. Significant positive correlation matrix between coliforms with nitrate, sulphate and potassium ions explained their survival on these nutrients. To overcome this, important measures emphasizing improvement in effluent treatment technology matching site‐specific characteristics are recommended for eco‐friendly ferti‐irrigation.  相似文献   

4.
5.
6.
7.
The effluents of wastewater treatment plants in small sized communities of less than 2000 population equivalent (PE), which are discharged into sensitive receiving water environments, must receive “appropriate treatment” according to the EU Urban Wastewater Treatment Directive. Appropriate treatment depends on the quality objectives of the receiving waters as well as the relevant provisions of the member states. In this study, wastewater treatment options, such as vegetated land treatment (VLT), constructed wetlands (CW), and activated sludge treatment (AST), by which effluents are discharged to sensitive and less sensitive areas are evaluated by the life cycle assessment (LCA) approach. For this purpose, data related to energy usage, land requirement, raw material consumption, and released emissions from the life phases were collected with an inventory study and the environmental impacts were assessed by using SimaPro 7.1 LCA software. The results obtained from the assessments were compared with each other, which indicated that for small‐scale communities VLT and CW are the most environmentally friendly wastewater treatment option.  相似文献   

8.
9.
Detailed soil erosion studies bene?t from the ability to quantify the magnitude of erosion over time scales appropriate to the process. An inventory balance for 7Be was used to calculate sediment erosion in a 30·73 m2 plot during a series of runoff‐producing thunderstorms occurring over three days at the Deep Loess Research Station in Treynor, Iowa, USA. The inventory balance included determination of the pre‐ and post‐storm 7Be inventories in the soil, the atmospheric in?ux of 7Be during the event, and pro?les of the 7Be activity in the soil following the atmospheric deposition. The erosion calculated in the plot using the 7Be inventory balance was 0·058 g cm?2, which is 23 per cent of the annual average erosion determined using 137Cs inventories. The calculated erosion from the mass balance is similar to the 0·059 g cm?2 of erosion estimated from the amount of sediment collected at the outlet of the 6 ha ?eld during the study period and the delivery ratio (0·64). The inventory balance of 7Be provides a new means for evaluating soil erosion over the time period most relevant to quantifying the prediction of erosion from runoff. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Digital elevation models and topographic pro?les of a beach with intertidal bar and trough (ridge‐and‐runnel) morphology in Merlimont, northern France, were analysed in order to assess patterns of cross‐shore and longshore intertidal bar mobility. The beach exhibited a pronounced dual bar–trough system that showed cross‐shore stationarity. The bars and troughs were, however, characterized by signi?cant longshore advection of sand under the in?uence of suspension by waves and transport by strong tide‐ and wind‐driven longshore currents. Pro?le changes were due in part to the longshore migration of medium‐sized bedforms. The potential for cross‐shore bar migration appears to be mitigated by the large size of the two bars relative to incident wave energy, which is modulated by high vertical tidal excursion rates on this beach due to the large tidal range (mean spring tidal range = 8·3 m). Cross‐shore bar migration is also probably hindered by the well‐entrenched troughs which are maintained by channelled high‐energy intertidal ?ows generated by swash bores and by tidal discharge and drainage. The longshore migration of intertidal bars affecting Merlimont beach is embedded in a regional coastal sand transport pathway involving tidal and wind‐forced northward residual ?ows affecting the rectilinear northern French coast in the eastern English Channel. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Effects of short‐term (1 h exposure) and long‐term (7 d exposure) aluminium stress on photosynthesis and reproductive capacity have been studied in Euglena gracilis strain Z. Following concentrations of Altot (added as AlCl3) were tested: 0.5 mg L‐1, 1.0 mg L‐1, 1.5 mg L‐1, 2.5 mg L‐1, 5.0 mg L‐1, 7.5 mg L‐1, 10.0 mg L‐1, and 15.0 mg L‐1 Al, respectively. Growth rates at different aluminium concentrations did not show significant differences, except at 15.0 mg L‐1Al. Initial respiration was higher in long‐term than in the short‐term experiments. It is supposed that an energy‐dependent mechanism of excretion of aluminium ions has been active in the stressed cells. Consequently, the cells of E. gracilis after long‐term exposure to aluminium are believed to be more acclimatised to the aluminium stress. Photosynthetic efficiency (PE) has been negatively affected by aluminium in all experiments performed. Differences between control algae and those treated with aluminium were significant in all cases. PE in long‐term experiments was in general significantly higher at all concentrations of aluminium studied, compared to the short‐term experiments. The aluminium concentrations tested led only to a general decrease in PE while the level of decrease was not especially concentration‐dependent. In general, aluminium tolerance of E. gracilis can be estimated as low, especially by short‐term exposure. However, good acclimatisation capacity of this green flagellate to aluminium doses by long‐term exposure can be supposed.  相似文献   

14.
15.
We report a series of short‐term (diurnal) rock surface monitoring studies on inter‐ and supra‐tidal shore platforms using a traversing micro‐erosion meter at two sites, Kaikoura Peninsula, New Zealand, and Apollo Bay, Victoria, Australia. Statistically signi?cant day‐to‐day changes were measured. Surface rise and lowering occurred at rates above instrument error, with a maximum range of 3·378 mm between 1·697 mm (lowering) and ‐1·681 mm (rise). Individual measurements showed rises greater than 2 mm. These daily variations reveal that surface lowering and rise occur at a much shorter time scale than previously reported from other studies. The patterns observed suggest wetting and drying is the most likely process causing surface changes at these temporal scales. We argue that traversing micro‐erosion meter studies operating at a short‐term time scale of day‐to‐day provide meaningful results that open new opportunities for studying rock weathering and erosion in a coastal environment. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Due to the unique chemical properties and therefore wide range of applications, significant amounts of reactive dyes often end up in waste waters and this issue raises the need for more efficient treatment technologies. This work investigates the ability of magnetite nanoparticles functionalized with imidazolium based ionic liquid (IL) as an efficient sorbent for the removal of the Reactive black 5 from wastewater. Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, thermo‐gravimetric analysis, and zeta potential measurement were used to characterize the synthesized nanosorbent. The results showed that under optimal conditions, the dye removal efficiency of the grafted IL is 98.5% after a single run. Regeneration of the used sorbent could be possible and the modified magnetic nanoparticles exhibited good reusability. The isothermal data of RB5 sorption conformed well to the Langmuir model and the maximum sorption capacity of IL@Fe3O4 for RB5 was 161.29 mg g?1. Thermodynamic study indicated that the adsorption is endothermic and spontaneous. The use of such a system can provide fast and efficient removal of the reactive dyes from wastewater by using an external magnetic field.  相似文献   

18.
Although dunes fronted by sandy beaches constitute approximately 80 per cent of South Africa's coastline, few studies have addressed the formation and life cycle of coastal foredunes, the small, ephemeral shore‐parallel dune ridges typically less than 5 m high and 20 m wide, which form seaward of the storm line. This study used regular, detailed topographic surveys of embryo and foredunes at Tugela mouth, an aggrading stretch of shoreline on the subtropical east coast of South Africa, over a 32‐month period, to gain insight into the formation and motion of these highly mobile landforms over the short term. Average wind drift potential at Tugela mouth during the study period, at 2·35 m s?1, was an order of magnitude lower than that typical of most parts of the eastern South African coast. The dominant sand‐moving wind for the region was from the southwest to west‐southwest at 10·7 to 13·8 m s?1, with a secondary vector from north to north‐northeast at 10·8 to 13·8 m s?1. Signi?cant shoreline retreat, a result of the low sediment yield of the Tugela River during the study period, was one of the main results. This provided the context for redistribution of sand from the inland to the seaward side of the study area, a consequence of the dominant wind direction, and for frequent creation and destruction of short‐lived embryo dunes. Those foredunes which survived the whole study period tended to increase in height, but there was no consistent directional trend in foredune crest movement throughout the 32 months. The study results generally supported Psuty's model of foredune development, but could not con?rm his contention of landward retreat of dune forms under conditions of shoreline erosion. This may be due to the relatively short duration of the study, or possibly to low wind drift potential at the site. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Soil salinization due to saltwater incursion, is a major threat to microbial population and thus strongly alters biogeochemical processes in a freshwater riparian of coastal estuary region. An incubation experiment was conducted to investigate the effects of simulated saltwater treatments with different percentages of artificial seawater on biodegradation dynamics of herbicide bensulfuron‐methyl (BSM) and microbial ecophysiological parameters in a riparian soil in Chongming Island, China. The results showed that saltwater addition with 10% seawater significantly increased the biodegradation efficiency of BSM with the lowest residual concentration among all the treatments. However, BSM degradation was markedly decreased in the riparian soil with high levels of saltwater treatment. The half‐lives for 20% and 50% seawater treatments were prolonged by 4.9% and 21.1%, respectively, as compared to no saltwater treatment. Throughout the incubation period, 10% seawater treatment showed significantly stimulating effects on microbial parameters in the BSM‐spiked riparian soil. At the end of incubation experiment, flourescein diacetate (FDA) hydrolysis rate, soil microbial adenosine triphosphate (ATP), and basal soil respiration (BSR) in the BSM‐spiked riparian soil with 10% seawater were 64.2%, 48.9%, and 39.4% higher than those with no saltwater treatment, respectively. In contrast, saltwater treatment with 50% seawater significantly inhibited microbial activities, relative to no saltwater treatment. Especially, FDA hydrolysis rate, microbial ATP, and BSR were decreased by 74.1%, 69.8%, and 63.4%, respectively, as compared to no saltwater treatment. Our data indicate that different levels of simulated saltwater incursion can exert variable effects on microbial ecophysiological parameters, and consequently resulted in the difference in biodegradation dynamics of herbicide in the herbicide‐spiked riparian soil.  相似文献   

20.
Presenting a critical review of daily flow simulation models based on the Soil Conservation Service curve number (SCS‐CN), this paper introduces a more versatile model based on the modified SCS‐CN method, which specializes into seven cases. The proposed model was applied to the Hemavati watershed (area = 600 km2) in India and was found to yield satisfactory results in both calibration and validation. The model conserved monthly and annual runoff volumes satisfactorily. A sensitivity analysis of the model parameters was performed, including the effect of variation in storm duration. Finally, to investigate the model components, all seven variants of the modified version were tested for their suitability. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号