首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
CO2 flux was measured continuously in a wheat and maize rotation system of North China Plain using the eddy covariance technique to study the characteristic of CO2 exchange and its response to key environmental factors. The results show that nighttime net ecosystem exchange (NEE) varied exponentially with soil temperature. The temperature sensitivities of the ecosystem (Q10) were 2.94 and 2.49 in years 2002-2003 and 2003-2004, respectively. The response of gross primary productivity (GPP) to photosynthetically active radiation (PAR) in the crop field can be expressed by a rectangular hyperbolic function. Average Amax andαfor maize were more than those for wheat. The values ofαincreased positively with leaf area index (LAI) of wheat. Diurnal variations of NEE were significant from March to May and from July to September, but not remarkable in other months. NEE, GPP and ecosystem respiration (Rec) showed significantly seasonal variations in the crop field. The highest mean daily CO2 uptake rate was -10.20 and -12.50 gC·m-2·d-1 in 2003 and 2004, for the maize field, respectively, and -8.19 and -9.50 gC·m-2·d-1 in 2003 and 2004 for the wheat field, respectively. The maximal CO2 uptake appeared in April or May for wheat and mid-August for maize. During the main growing seasons of winter wheat and summer maize, NEE was controlled by GPP which was chiefly influenced by PAR and LAI. Rec reached its annual maximum in July when Rec and GPP contributed to NEE equally. NEE was dominated by Rec in other months and temperature became a key factor controlling NEE. Total NEE for the wheat field was -77.6 and -152.2 gC·m-2·a-1 in years 2002-2003 and 2003-2004, respectively, and -120.1 and -165.6 gC·m-2·a-1 in 2003 and 2004 for the maize field, respectively. The cropland of North China Plain was a carbon sink, with annual -197.6 and -317.9 gC·m-2·a-1 in years 2002-2003 and 2003-2004, respectively. After considering the carbon in grains, the cropland became a carbon source, which was 340.5 and 107.5 gC·m-2·a-1 in years 2002-2003 and 2003-2004, respectively. Affected by climate and filed managements, inter-annual carbon exchange varied largely in the wheat and maize rotation system of North China Plain.  相似文献   

4.
The sandy littoral zone of Lake Tegel (Berlin, Germany) was investigated during 2004–2006 down to sediment depths ≥26 cm to derive a scheme of seasonal carbon turnover under induced bank filtration conditions. Carbon turnover processes were quantified regarding external and internal sources of dissolved and particulate organic matter (DOM and POM), primary production, community respiration, redox potential as well as specific loads of soluble chemical compounds such as nitrogen, iron, manganese and DOC.Over the course of the year, infiltrating DOC decreased by about 13–20% within the upper 26 cm sediment of the infiltration stretch. Gradients of all observed soluble compounds that are highly cross-linked to biological activities were highest in the topmost centimetre. In this depth mass balances (output–input) were negative concerning NO3-N (−1 mg dm−2 d−1, summer mean) and DOC (−2 mg dm−2 d−1, winter mean), respectively, while specific loads of cations such as manganese reached up to 0.2 mg dm−2 d−1 during summer. Carbon mineralization ranged between 3 and 7 mg C dm−2 d−1 and was nearly twice as high in summer as in winter. The turnover of the infiltrating DOC contributed maximally 25% in summer to 50% in winter to the entire organic carbon mineralization. Gross and net primary production differed up to a factor of >10, indicating very fast turnover reactions and the predominance of community respiration and mineralization, respectively. The POC in the upper sediment layer (10 cm) temporally varied around 1% sediment d.w.; benthic algae, organic seston input and autumnal leaf fall contributed similar percentages to the POC pool.  相似文献   

5.
钱奎梅  陈宇炜 《湖泊科学》2012,24(2):294-298
浮游生物群体分尺度估测方法在水生生态系统研究中应用越来越普遍,但大型浅水湖泊中不同尺度浮游生物群体研究鲜见报道.本文以太湖2002年10月至2003年9月的野外实测资料为基础,系统研究了不同尺度浮游生物群落的(R为浮游生物群体的平均直径,R≥41μm,2μm≤R<41μm,R<2μm)呼吸率.结果表明,在太湖梅梁湾,R≥41μm的浮游生物群体(主要是微囊藻群体)占优势,呼吸率占总呼吸率的70%以上,R<2μm的浮游生物(主要是浮游细菌)呼吸率占总呼吸率的18%左右;在太湖北部敞水区,R≥41μm的浮游生物的呼吸率占总呼吸率的10%左右,R<2μm的浮游生物占优势,其呼吸率能占总呼吸率的65%以上.总体来看,梅梁湾中R≥41μm的浮游生物群体特别是微囊藻群体呼吸率占优势,敞水区微型浮游生物特别是浮游细菌对总呼吸率的贡献很大.  相似文献   

6.
Previous investigations into factors influencing incubation success of salmonid progeny have largely been limited to the development of empirical relationships between characteristics of the incubation environment and survival to emergence. It is suggested that adopting a process‐based approach to assessing incubation success aids identification of the precise causes of embryonic mortalities, and provides a robust framework for developing and implementing managerial responses. Identifying oxygen availability within the incubation environment as a limiting factor, a comprehensive review of trends in embryonic respiration, and processes influencing the flux of oxygenated water through gravel riverbeds is provided. The availability of oxygen to incubating salmonid embryos is dependent on the exchange of oxygenated water with the riverbed, and the ability of the riverbed gravel medium to transport this water at a rate and concentration appropriate to support embryonic respiratory requirements. Embryonic respiratory trends indicate that oxygen consumption varies with stage of development, ambient water temperature and oxygen availability. The flux of oxygenated water through the incubation environment is controlled by a complex interaction of intragravel and extragravel processes and factors. The processes driving the exchange of channel water with gravel riverbeds include bed topography, bed permeability, and surface roughness effects. The flux of oxygenated water through riverbed gravels is controlled by gravel permeability, coupling of surface–subsurface flow and oxygen demands imposed by materials infiltrating riverbed gravels. Temporally and spatially variable inputs of groundwater can also influence the oxygen concentration of interstitial water. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
依据四川省布拖土壤CO2测点2005—2013年的连续数据,分析了CO2的释放特征、来源和影响因素。结果表明,布拖CO2释放率有明显的夏高冬低年变特征,来源于土壤生物呼吸。布拖CO2释放率的主要影响因素为地温和土壤湿度,在每年11月至次年3月,CO2释放率和地温正相关;在每年4~10月,CO2释放率和土壤湿度正相关。结果还表明,布拖CO2释放率在2007、2012和2013年夏季的峰值偏高,其成因为生物生长增长期内降水量偏大引起土壤湿度增大、从而引起土壤呼吸增强、进而引起CO2释放率偏高,与地震孕育或区域构造活动无关。  相似文献   

8.
The respiratory potential [i.e. electron transport system activity (ETSA)] of soils and sediments from five floodplain habitats (channel, gravel, islands, riparian forest and grassland) of the Urbach River, Switzerland, and actual respiration rate (R) of the same samples exposed to experimental inundation were measured. Measurements were carried out at three incubation temperatures (4°C, 12°C and 20°C), and ETSA/R ratios (i.e. exploitation of the overall metabolic capacity) were investigated to better understand the effects of temperature and inundation on floodplain functional heterogeneity. Furthermore, ETSA/R ratios obtained during experimental inundation were compared with ETSA/R ratios from field measurements to investigate the exploitation in total metabolic potential at different conditions. Lowest ETSA and R were measured in samples from channel and gravel habitats, followed by those from islands. Substantially higher values were measured in soils from riparian forest and grassland. Both ETSA and R increased with increasing temperature in samples from all habitats, while the ETSA/R ratio decreased because of a rapid response in microbial community respiration to higher temperatures. The metabolic capacity exploitation (i.e. ETSA/R) during experimental inundation was lowest in predominantly terrestrial samples (riparian forest and grassland), indicating the weakest response to wetted conditions. Comparison of experimentally inundated and field conditions revealed that in rarely flooded soils, the metabolic capacity was less exploited during inundation than during non‐flooded conditions. The results suggest high sensitivity in floodplain respiration to changes in temperature and hydrological regime. ETSA/R ratios are considered good indicators of changes in metabolic activity of floodplain soils and sediments, and thus useful to estimate the impact of changes in hydrological regime or to evaluate success of floodplain restoration actions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Soil salinization due to saltwater incursion, is a major threat to microbial population and thus strongly alters biogeochemical processes in a freshwater riparian of coastal estuary region. An incubation experiment was conducted to investigate the effects of simulated saltwater treatments with different percentages of artificial seawater on biodegradation dynamics of herbicide bensulfuron‐methyl (BSM) and microbial ecophysiological parameters in a riparian soil in Chongming Island, China. The results showed that saltwater addition with 10% seawater significantly increased the biodegradation efficiency of BSM with the lowest residual concentration among all the treatments. However, BSM degradation was markedly decreased in the riparian soil with high levels of saltwater treatment. The half‐lives for 20% and 50% seawater treatments were prolonged by 4.9% and 21.1%, respectively, as compared to no saltwater treatment. Throughout the incubation period, 10% seawater treatment showed significantly stimulating effects on microbial parameters in the BSM‐spiked riparian soil. At the end of incubation experiment, flourescein diacetate (FDA) hydrolysis rate, soil microbial adenosine triphosphate (ATP), and basal soil respiration (BSR) in the BSM‐spiked riparian soil with 10% seawater were 64.2%, 48.9%, and 39.4% higher than those with no saltwater treatment, respectively. In contrast, saltwater treatment with 50% seawater significantly inhibited microbial activities, relative to no saltwater treatment. Especially, FDA hydrolysis rate, microbial ATP, and BSR were decreased by 74.1%, 69.8%, and 63.4%, respectively, as compared to no saltwater treatment. Our data indicate that different levels of simulated saltwater incursion can exert variable effects on microbial ecophysiological parameters, and consequently resulted in the difference in biodegradation dynamics of herbicide in the herbicide‐spiked riparian soil.  相似文献   

10.
Grassland is the largest terrestrial ecosystem in China. It is of great significance to measure accurately the soil respiration of different grassland types for the contribution evaluation of the Chinese terrestrial ecosystem’s carbon emission to the atmospheric CO2 concentration. A three-year (2005-2007) field experiment was carried out on three steppes of Stipa L. in the Xilin River Basin, Inner Mongolia, China, using a static opaque chamber technique. The seasonal and interannual variations of soil respiration rates were analyzed, and the annual total soil respiration of the three steppes was estimated. The numerical models between soil respiration and water-heat factors were established respectively. Similar seasonal dynamic and high annual and interannual variations of soil respiration were found in all of the three steppes. In the growing season, the fluctuation of soil respiration was particularly evident. The coefficients of variation (CVs) for soil respiration in different growing seasons ranged from 54% to 93%, and the annual CVs were all above 115%. The interannual CV of soil respiration progressively decreased in the order of Stipa grandis (S. grandis) steppe Stipa baicalensis (S. baicalensis) steppe Stipa krylovii (S. krylovii) steppe. The annual total soil respiration for the S. baicalensis steppe was 223.62?299.24 gC m-2 a-1, 150.62-226.99 gC m-2 a-1 for the S. grandis steppe, and 111.31–131.55 gC m-2 a-1 for the S. krylovii steppe, which were consistent with the precipitation gradient. The variation in the best fitting temperature factor explained the 63.5%, 73.0%, and 73.2% change in soil respiration in the three steppes at an annual time scale, and the corresponding Q10 values were 2.16, 2.98, and 2.40, respectively. Moreover, the Q10 values that were calculated by soil temperature at different depths all expressed a 10 cm 5 cm surface in the three sampling sites. In the growing season, the soil respiration rates were related mostly to the surface soil moisture, and the 95.2%, 97.4%, and 93.2% variations in soil respiration in the three steppes were explained by the change in soil moisture at a depth of 0-10 cm, respectively.  相似文献   

11.
不同出露时间下洞庭湖洲滩土壤及生态系统呼吸特征   总被引:1,自引:0,他引:1  
周延  靖磊  杨萌  史林鹭  吕偲  雷光春 《湖泊科学》2018,30(6):1664-1671
于2015年1月洞庭湖枯水期,针对不同出露时间下的洲滩,调查其土壤理化性质,并利用LI-8100便携式二氧化碳气体分析仪监测其生态系统呼吸.结果表明:在洞庭湖枯水期,洲滩出露后,洲滩土壤有机质、硝态氮、铵态氮和全氮含量随出露时间增长而先升高后降低.土壤溶解性有机碳含量是影响洞庭湖枯水期洲滩生态系统呼吸强度的最重要影响因子.溶解性有机碳含量随出露时间增长而提高,洲滩生态系统呼吸强度随之提高,并在洲滩出露约60天后达到最高值.出露洲滩生态系统呼吸通量均值为0.72±0.55 μmol/(m2·s),超过杨树林地、芦苇地和农田地,成为洞庭湖区冬季CO2排放最活跃的区域.  相似文献   

12.
High-sensitivity stepped extraction reveals two isotopically distinct forms of carbon in submarine basalt glasses: an isotopically light carbon component released by combustion from 200 to 600°C and an isotopically heavy CO2 liberated from vesicles (magmatic carbon) from 600 to 1200°C. The δ13CPDB of the low release temperature carbon varies from −24 to −30‰ and is believed to be surficial organic contamination. A survey of various types of oceanic glasses demonstrates that the δ13C of magmatic CO2 varies from −4.2 to −7.5‰ in mid-ocean ridge basalt (MORB), from −2.8 to −6.7‰ in glasses from Hawaii and Explorer Seamount and from −7.7 to −16.3‰ in glasses from the Scotia Sea and Mariana Trough. Magmatic CO2 in back-arc basin basalts (BABB) is on average 5‰ lighter than equivalent CO2 in MORB and can be explained by the mixing in the source regions for BABB magmas of juvenile (MORB-like) CO2 with an organic carbon component from subducted pelagic sediments. It is inferred that significant amounts of pelagic carbonate carbon (δ13C 0‰) must be recycled into the mantle.  相似文献   

13.
14.
In this study, crude multi‐walled carbon nanotubes (MWCNT) was functionalized by a two‐step process; first using strong mixed acids (H2SO4/HNO3) and then treatment with 1,3‐phenylenediamine (mPDA). The equilibrium adsorption of CO2 on pristine MWCNT and amine functionalized MWCNT (MWCNT‐NH2) were investigated. Experiments were preformed via application of volumetric method in a dual sorption vessel at temperature range of 298–318 K and pressures up to 40 bars. The results obtained indicated that the equilibrium uptake of CO2 increased after functionalizing of MWCNT. The increase in CO2 capture by MWCNT‐NH2 was attributed to the existence of great affinity between CO2 molecules and amine sites on this adsorbent at low pressures. The experimental data were analyzed by means of Freundlich and Langmuir adsorption isotherm models. The data obtained revealed a fast kinetics for the adsorption of CO2 in which most of adsorption occurred at initial period of adsorption experiments. This renders MWCNT as a suitable adsorbent for practical applications. Values of isosteric heat of adsorption were evaluated based on Clausius–Clapeyron equation. The results demonstrated that both chemisorption and physisorption played important role in CO2 adsorption on MWCNT‐NH2, whereas the physisorption process was dominant for CO2 adsorption on MWCNT.  相似文献   

15.
As one component of ChinaFLUX, the measurement of CO2 flux using eddy covariance over subtropical planted coniferous ecosystem in Qianyanzhou was conducted for a long term. This paper discusses the seasonal dynamics of net ecosystem exchange (NEE), ecosystem respiration (RE) and gross ecosystem exchange (GEE) between the coniferous ecosystem and atmosphere along 2003 and 2004. The variations of NEE, RE and GEE show obvious seasonal variabilities and correlate to each other, i.e. lower in winter and drought season, but higher in summer; light, temperature and soil water content are the main factors determining NEE; air temperature and water vapor pressure deficit (VPD) influence NEE with stronger influence from VPD. Under the proper light condition, drought stress could decrease the temperature range for carbon capture in planted coniferous, air temperature and precipitation controlled RE; The NEE, RE, and GEE for planted coniferous in Qianyanzhou are -387.2 gC·m-2 a-1,1223.3 g C·m-2 a-1, -1610.4 g C·m-2 a-1 in 2003 and -423.8 g C·m-2 a-1, 1442.0 g C·m-2 a-1, -1865.8 g C·m-2 a-1 in 2004, respectively, which suggest the intensive ability of plantation coniferous forest on carbon absorbing in Qianyanzhou.  相似文献   

16.
Floodplains are vital components of river ecosystems and play an important role in carbon cycling and storage at catchment and global scales. For efficient river management and conservation, it is critical to understand the functional role of spatiotemporally complex and dynamic habitat mosaics of river floodplains. Unfortunately, the fundamental understanding of mineralization and carbon flux patterns across complex floodplains is still fragmentary. In this study, respiratory potential (i.e., electron transport system activity [ETSA]) was quantified seasonally across different aquatic and terrestrial habitats (wetted channels, gravel bars, islands, riparian forests, and grasslands) of 2 Alpine floodplains differing in climate, altitude, discharge, flow alteration intensity, and land use (So?a [natural flow regime, 12% grassland area] and Urbach [mean annual discharge reduction by 30% due to water abstraction, 69% grassland area]). In situ respiration (R) was measured, and ETSA–R ratios were calculated to examine differences in exploitation intensity of the overall respiratory capacity among floodplain habitats and seasons. ETSA and R provided potential and actual estimates, respectively, of organic matter mineralization in the different floodplain habitats. Hierarchical linear regression across habitat types showed that organic matter, grain sizes <0.063 mm, and water content were the most important predictors of ETSA in both floodplains, and grain sizes 2–0.063 and >8 mm were also highly important for the So?a floodplain. The combination of ETSA and R measurements conducted in contrasting floodplains increased our understanding of the relationships between floodplain habitat heterogeneity, organic matter mineralization and human impacts, that is, structural–functional linkages in floodplains. These data are integral towards predicting changes in floodplain function in response to environmental alterations from increasing human pressures and environmental change.  相似文献   

17.
The reaction of CO + OH? in aqueous solution to give formate was studied as a carbon monoxide sink on the primitive earth and in the present ocean. The reaction is first order in OH? and first order in the molar CO concentration. The second order rate constant is given by log k(M?1hr?1) = 15.83?4886/T between 25°C and 60°C. Using the solubility of CO in sea water, and assuming a pH of 8 for a primitive ocean of the present size, the halflife of CO in the atmosphere is calculated to be 12 × 106 yr at 0°C and 5.5 × 104 yr at 25°C.Three other CO sinks would have been important in the primitive atmosphere: CO + H2 → H2CO driven by various energy sources, CO + OH → CO2 + H, and the Fischer-Tropsch reaction of CO + H2 → hydrocarbons, etc. It is concluded that the lifetime of a CO atmosphere would have been very short on the geological time scale although the relative importance of these four CO sinks is difficult to estimate.The CO + OH? reaction to give formate is a very minor CO sink on the earth at the present time.  相似文献   

18.
Dynamic aspects of algal photosynthesis are set against the background of physical water motions which change the light experienced by the phytoplankton. These time-dependent photosynthetic responses are reviewed in relation to the proposition that phytoplankton primary production may be incorrectly estimated by the commonly used static incubation of light and dark bottles for periods significantly longer than the response-time of phytoplankton to changing light. This proposition is supported by the clear overlap between the timescales which characterize water motions and the timescales reported for the complex responses of algae to changing light. Empirical studies comparing static and dynamic incubations have been inconclusive, as have models incorporating some representation of the dynamic photosynthetic response to changing light. These results reflect weaknesses in the simple formulations used to describe photosynthesis in relation to irradiance, the simplicity of physical schemes used to generate changes in irradiance with time, and a lack of data (field and laboratory) on dynamic responses of microalgae to changing light. The quantitative significance of many physiological mechanisms is not known in relation to their effect on photosynthesis.  相似文献   

19.
20.
Sulfur removal using adsorption requires a proper process parametric study to determine its optimal performance characteristics. In this study, response surface methodology was employed for sulfur removal from model oil (dibenzothiophene; DBT dissolved in iso‐octane) using commercial activated carbon (CAC) as an adsorbent. Experiments were carried out as per central composite design with four input parameters such as initial concentration (C0: 100–900 mg/L), adsorbent dosage (m: 2–22 g/L), time of adsorption (t: 15–735 min), and temperature (T: 10–50°C). Regression analysis showed good fit of the experimental data to the second‐order polynomial model with coefficient of determination R2‐value of 0.9390 and Fisher F‐value of 16.5. The highest removal of sulfur by CAC was obtained with m = 20 g/L, t = 6 h, and T = 30°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号