首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The records of strong earthquakes (December 26, 2004, Sumatra; February 27, 2010, Chile; and March 11, 2011, Tohoku) from broadband IRIS seismic stations are analyzed. Several days after the events, oscillations of 128–130 minutes in period start and last for about a month. The period of oscillations exceeds that of the Earth’s spheroidal eigen oscillation with the lowest frequency (53.9 min) by a factor of about two. Oscillations are of opposite polarity at stations located near the epicenters and at the symmetric point in the other hemisphere of the Earth. They manifest as trains of fluctuations migrating westward at 2.5° per hour. The amplitude of oscillations is up to few μGal.  相似文献   

5.
Doklady Earth Sciences - This paper discusses the influence of tropical cyclones (TCs) upon the Earth’s crust beneath the ocean bottom, which is associated with rapid variations of pressure...  相似文献   

6.
Geotechnical and Geological Engineering - The purpose of the article is to construct petrodensity and structural velocity models of the Earth’s crust and the upper mantle based on the...  相似文献   

7.
8.
9.
Published and new data on the Earth’s past magnetic field have been interpreted in terms of its links with the frequency of magnetic polarity reversals and with tectonic events such as plume-related eruptions and rifting. The paleointensity and reversal frequency variations show an antiphase correlation between 0 and 160 Ma, and the same tendency likely holds for the past 400 Myr. The geomagnetic field intensity averaged over geological ages (stages) appears to evolve in a linearly increasing trend while its variations increase proportionally in amplitude and change in structure. Both paleointensity and reversal frequency patterns correlate with rifting and eruption events. In periods of high rifting activity, the geomagnetic field increases (15 to 30%) and the reversals become about 40% less frequent. Large eruption events between 0 and 150 Ma have been preceded by notable changes in magnetic intensity which decreases and then increases, the lead being most often within a few million years.  相似文献   

10.
This paper reviews and integrates new results on: (1) the Late Paleozoic and Mesozoic evolution of Central Asia; (2) Cenozoic mountain building and intramontane basin formation in the Altay-Sayan area; (3) comparison of the tectonic evolutionary paths of the Altay, Baikal, and Tien Shan regions; (4) Cenozoic tectonics and mantle-plume magmatic activity; and (5) the geodynamics and tectonic evolution of Central Asia as a function of the India-Himalaya collision. It provides a new and more complete scenario for the formation of the Central Asian intracontinental mountain belt, compared with the generally accepted model of the “indentation” of the Indian plate into the Eurasian plate. The new model is based on the hypothesis of a complex interaction of lithospheric plates and mantle-plume magmatism. Compilation and comparison of new and published structural, geomorphological, paleomagnetic, isotopic, fission-track, and plume magmatism data from the Baikal area, the Altay, Mongolia, Tien Shan, Pamir, and Tibet show that the main stages of their orogenic evolution and basin sedimentation are closely related in time and space. After a long period of tectonic quiescence and peneplanation, Central and Southeast Asia were strongly affected by India-Eurasia collisional tectonics. During the first collisional stage (60 to 35 Ma), a first series of high mountains formed in the Himalayas, southern Tibet, and, possibly, the southern Tien Shan. Eocene deposits, younging northward, formed coevally with the orogeny in the near-Himalaya trough, Tarim, Tajik depression, and Fergana Basin. During postcollisional convergence, new depressions formed over wide territories, from the Tarim to Baikal and Altay areas. However, intensification of the deformation and uplift later were propagated northward, with development of the Qinghai-Tibetan Plateau (20 to 12 Ma), Tien Shan mountains (18 to 11 Ma), Junggar mountains and depression (8 to 5 Ma), and Altay, Baikal, and Transbaikal depressions and mountains (3 Ma).

Northward propagation of the deformation front from the Himalayan collision zone is suggested by regular northward younging of mountains and intramontane basins. Evidence of this includes: (1) India thrusting under Tibet, resulting in the rotation of the latter (60 to 35 Ma); (2) subsidence of the Tarim ramp depression, the rise of the Tien Shan, and the migration of both the Tien Shan and Tarim to the northwest along the Junggar and Talas-Fergana strike-slip faults (35 to 8 Ma); (3) subsidence of the Junggar plate, counterclockwise rotation of the Mongolian and Amur plates (8 to 3 Ma); and (4) rise of the Altay, Hangai, and Transbaikal areas, clockwise rotation of the Amur plate, and rapid opening of the Baikal rift. There is a clear relation between tectonics (rotation of the Tibet and Amur microplates, displacement along plate boundaries) and plume magmatism. The effects of the latter on moving plates are deduced from migration of the Tien Shan volcanic area toward the Tibet area and of the South Mongolian volcanic migration toward the Hangai area. Magmatism and tectonic processes became synchronous just after India collided with the South Himalaya area (60 Ma) and the Pamirs (35 Ma). Plumes beneath the Asian plate are considered to be responsible for the rotation of the microplates and for the northward propagation of tectonic activity from the zone of collision. Mantle magmatism is lacking beneath the Altay. In this case, mountain-building processes and basin-formation mechanisms likely are related to external sources of deformation originating from the India-Pamir convergence. In addition, they also may be related to the general translation and rotation of microplates.  相似文献   

11.
《International Geology Review》2012,54(11):1652-1656
Inasmuch as kimberlites prove to be porphyritic rocks of effusive habit, upon review of published ideas and facts, the general classification of effusive rocks is fully applicable to kimberlites. Consequently superfluous adjectives such as “massive,” “igneous,” “basaltic,” etc., and use of the term “kimberlite” itself should be discouraged.  相似文献   

12.
Interseam “sands” of Morwell form part of a sequence of brown‐coal seams, sediments and volcanic rocks which, together, make up the Tertiary Latrobe Valley Coal Measures. A detailed investigation and computer analysis of the “sands” show that they are fluviatile deposits which accumulated within the tectonically stable Latrobe Valley Depression.

On an inclusive‐graphic comparative scale, particle‐size analyses show that the sediments tend to be poorly sorted, positively skewed and mesocurtic with a mean size within the coarse‐sand range. Modal frequency peaks occur between –0.5 and –1 and between 1 and 2 phi. Presented evidence suggests that the coarser fraction represents a rolled grain population with fine‐medium sand reflecting parallel deposition from graded suspension.  相似文献   

13.
The general evolution of planets in the Solar System is discussed with a focus on the structure and history of Venus compared with the Earth. The history of the planets of the terrestrial group has been similar and included at least six correlated stages. Many common features the terrestrial planets shared in their early and late evolution have been due to their common origin from the protoplanetary gas-and-dust nebula and plume magmatism widespread on all the planets of the terrestrial group. The characteristic features of the structure and evolution of Venus are most brightly manifested in the specific composition of its atmosphere and of plume magmatism. Venus, with its surface as hot as 450 °C and the near-surface pressure of 92-93 bars, has a hot and dense atmosphere 93 times that of the Earth in mass. Most of its atmospheric mass (99%) belongs to the 65-km thick troposphere consisting of CO2 (96.5%) and N2 (3.5%). The upper troposphere includes a 25-30 km thick cloud layer composed mainly of sulfuric acid droplets, water vapor, and SO2. At a height of 49.58 km, the clouds approach the conditions of the terrestrial surface and might be hospitable to bacterial life. Volcanism, the most active and widespread process of Venusian geology, maintains continuous SO2 emission. There are diverse volcanic edifices on Venus, which are most often large and are similar to the Earth’s plume-related volcanoes. The evolution before 1 Ga, as well as the share and the role of alkaline rocks and carbonatites among its volcanics, are among the most debatable issues about Venus. Being located closer to the Sun, Venus cooled down more slowly and less intensely than the Earth after the primary accretion. In the Proterozoic, it began heating and reached its present state at ~ 1 or 2 Ga. In the future, as the Sun becomes a red giant, the Earth is predicted to begin heating up in 500-600 Myr to reach the temperature of present Venus in about 1.5 Gyr.  相似文献   

14.
The mobility of the rare-earth elements(REE)during hydrothermal activities is increasingly documented.Geological and experimental evidence suggests that REE may be mobile in solutions rich in F^-,Cl^-,HCO3^-,CO^2- 3,HPO4^2-,PO4^3-,or in combinations of the above ligands,even though little has been known about which ligand or which combination is most effective in mobilizing REE. The fractionation of REE resulting from hydrothermal activities is inconsistent.One set of field data implies the prererential mobility of the light rare-earth elements(LREE).whereas another set of field observations indicates the dominant mobilization of the heavy rare earth elements(HREE),and some theoretical prediction is comtradictory to the field evidence.The Eu anomalies due to hydrothermal activities are complex and plausible explanation is not available.The existing experimental approaches dealing with REE are not adequate for explanation ofREE behaviour in aqueous solutions.Systematic experimental approaches are suggested.  相似文献   

15.
Over the past one billion years, England has experienced a remarkable geological journey. At times it has formed part of ancient volcanic island arcs, mountain ranges and arid deserts; lain beneath deep oceans, shallow tropical seas, extensive coal swamps and vast ice sheets; been inhabited by the earliest complex life forms, dinosaurs, and finally, witnessed the evolution of humans to a level where they now utilise and change the natural environment to meet their societal and economic needs. Evidence of this journey is recorded in the landscape and the rocks and sediments beneath our feet, and this article provides an overview of these events and the themed contributions to this Special Issue of Proceedings of the Geologists’ Association, which focuses on ‘The Geology of England – critical examples of Earth History’. Rather than being a stratigraphic account of English geology, this paper and the Special Issue attempts to place the Geology of England within the broader context of key ‘shifts’ and ‘tipping points’ that have occurred during Earth History.  相似文献   

16.
17.
“Nonsulfides” is a term, which comprises a series of oxidized Zn(Pb)-ore minerals. It has also been used to define a special deposit type, mainly considered as derived from the weathering of Zn(Pb) sulfide concentrations. However, nonsulfide zinc deposits have been distinguished between supergene and hypogene, according to their mineralogy, geological characteristics and genetic setting. The supergene deposits formed by weathering and oxidation at ambient temperatures, whereas the hypogene ones are considered hydrothermal, or associated with metamorphic processes on primary sulfide ores.In this review paper, a comparison between a number of several nonsulfide deposits has been carried out: typical “Calamines”, peculiar “Calamines” and “Others”. The whole group comprises deposits of typical supergene origin, mixed supergene–hypogene mineralizations, and oxidized concentrations characterized by different metals only locally associated with zinc. The Zn–Pb nonsulfide concentrations hosted in carbonate rocks, which are mainly attributed to “wall-rock replacement” and “direct-replacement” supergene processes, are the typical “Calamines” (Liège district, Belgium; Iglesias district, Italy; Silesia–Cracow district, Poland). Peculiar “Calamine” deposits are those mineralizations that have been generally considered as supergene, but which are instead genetically related, at least partly, to hypogene processes (e.g. Angouran, Iran; Jabali, Yemen), though mineralogically and texturally similar to supergene nonsulfide deposits. The “Others” are prevailingly supergene nonsulfide zinc deposits not hosted in carbonate rocks (Skorpion, Namibia; Yanque, Peru), or characterized by other metals as main commodities, like lead (Magellan, Australia), silver (Sierra Mojada, Mexico; Wonawinta, Australia) or vanadium (Otavi Mountainland, Namibia).Minerals of current economic importance in most “Calamine” deposits are smithsonite, hydrozincite, and cerussite. This mineralogical association is generally simple but, when the “Calamines” are dolomite-hosted, one of the consequences of the “wall-rock replacement” process is the generation of a series of economically useless Zn- and Mg-bearing mixed carbonate phases. Secondary deposits hosted in silicatic (sedimentary or volcanic) rocks mainly contain hemimorphite and/or sauconite. Lead-, Ag- and V-rich nonsulfide ores are characterized by a more complex mineralogical association: mixed Pb-carbonates, Pb-sulfates, Pb-phosphates, Pb-arsenates, various Ag-sulfosalts, and Zn–Pb–Cu-vanadates.Carbon and oxygen stable isotope studies allow distinguishing between supergene and hypogene nonsulfide deposits, evaluating the effects of oxidative heating and even gaining indirect paleoclimatic information. The oxygen-isotope variation of the individual carbonate minerals within a deposit is relatively small, indicating constant formation temperatures and a single, meteoric fluid source. Carbon-isotope values are highly variable, thus suggesting several isotopically distinct carbon sources.Periods of paleoclimatic switch-overs from seasonally humid/arid to hyperarid have been considered as the most favorable conditions for the formation and preservation of supergene nonsulfide deposits. However, while several recent nonsulfide deposits throughout the world are positioned between 15° and 45° N latitude, thus pointing to a warm and humid weathering climate, others have been deposited in sub-Arctic regions.The economic value of the nonsulfide Zn(Pb–Ag–V) ores is highly variable, because more than in the case of metallic sulfide deposits, it resides not only on the geological setting, but also on their mineralogy that can directly influence processing and metallurgy.  相似文献   

18.
19.
This paper is focused on analysis of comprehensive experimental research data on the infragravitational range of periods (from 20 s to 10–12 min) obtained by synchronous measurements of fluctuations in deformations of the Earth’s crust and atmospheric and hydrospheric pressure variations. It is established that the identified variations in the period range of 1–4 min are rarely observed in records of a laser nanobarograph and laser instrument for measuring hydrospheric pressure variations (laser hydrophone), while they are frequently observed in records of laser strainmeters at a variation period of 3–4 min. Oscillation excitation in the period ranges of 7–13 min, especially in the period ranges of 8–12 min, is largely related to atmospheric processes in the corresponding periods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号