首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mobility of toxic metals in soils or sediments is of great concern to scientists and environmentalists since it directly affects the bioavailability of metals and their movement to surface and ground waters. In this study, a multi-surface soil speciation model for Cd (II) and Pb (II) was developed to predict the partition of metals on various soil solid components (e.g. soil organic matter (SOM), oxide mineral, and clay mineral). In previous study, the sorption of metal cations on SOM and oxide minerals has been evaluated by thermodynamically based surface complexation model. However, metal binding to soil clay fractions was normally treated in a simplistic manner: only cation exchange reactions were considered and exchange coefficient was assumed unity. In this study, the binding of metals onto clays was described by a two-site surface sorption model (a basal surface site and an edge site). The model was checked by predicting the adsorption behavior of Cd (II) and Pb (II) onto three selected Chinese soils as a function of pH and ionic strengths. Results showed that the proposed model more accurately predicted the metal adsorption on soils under studied condition, especially in low ionic strength condition, suggesting that adsorption of metals to soil clay fractions need to be considered more carefully when modeling the partition of trace elements in soils. The developed soil speciation model will be useful when evaluating the movement and bioavailability of toxic metals in soil environment.  相似文献   

2.
Experimental studies of the reactions of Cu(II), Pb(II), and Zn(II) in aqueous solutions with organic matter derived from fresh samples of the green filamentous algae Ulothrix spp. and the green unicellular algae Chlamydomonas spp. and Chlorella vulgaris show that, under suitable conditions, a significant proportion of the metals is removed from solution by sorption onto the particulate organic matter of the algal suspension.The metal sorption is strongly suppressed by H+ but is only marginally influenced by the proportion of whole cells in the suspension and by complexing of metals in solution by the soluble organic matter. The presence of relatively small amounts of the cations Na+ and Mg2+ in solution reduces the sorption of Zn(II) to near zero, but Pb(II) and Cu(II) sorption occurs to an appreciable extent even in strong brines. This may be a means for the selective precipitation of Pb(II) from brines rich in Pb(II) and Zn(II).Metal “saturation” values indicate that particulate algal matter of the type used in these experiments could sorb sufficient quantities of metal to form an ore deposit if a weight of organic matter of similar order of magnitude to that of the inorganic sediments in the deposits was available. However, the metal sorption is an equilibrium reaction, and the experimentally determined “enrichment factors” suggest that the “saturation” values could be approached only in solutions whose metal contents were initially at least two orders of magnitude above those of normal seawater.  相似文献   

3.
Data are presented in this study from laboratory model experiments describing the behaviour of Cu, Pb, Zn and Ni at a simulated sediment-water boundary. The interactions involved are sorption by kaolin and by bentonite, organic complexing in solution by fulvic acid and by humic acid, carbonate reactions, hydrolysis, and desorption of the cations from a clay-bound phase and from their metal hydroxides by the organic acids. The organic acids increase the solubility of Cu, Zn and Ni in the presence of clay. The Pb solubility is variable and can even decrease, particularly at acidic pH, with organic complexing likely due to colloidal coagulation. Both Zn and Ni are influenced by hydrolysis at basic pH. When carbonate was added to the metal-organic acid-clay mixtures, a further decrease in solubility was observed for Ni and, to a lesser extent, for Zn. The organic acids prove capable of remobilizing Cu, Pb, Zn and Ni from the solid phases examined. However, there is a general kinetic hindrance to the desorption particularly at basic pH. Copper desorption appears to be the most kinetically hindered. Conclusions pertinent to the geochemical dispersion of these metals are drawn.  相似文献   

4.
The presence of heavy metal concentrations was examined in natural sediments from four sites along the Jajrood river in northeast of Tehran, the capital of Iran. Besides determination of elemental concentrations (Pb, Cu, Zn, Cd, Ni and Cr), X-ray fluorescence and X-ray diffraction tests were carried out to determine other chemical components in these adsorbents. Also the ability of sediments to adsorb these heavy metal ions from aqueous solutions was investigated. Results show that the extent of adsorption increases with increase in adsorbent concentration. The amount of adsorbed Pb, Cu and Zn in sediments was much greater than that of the other metals, and Cr was adsorbed much less than others. The adsorbabilities of sediments to heavy metals increased in the order of Pb > Cu > Zn > Cd > Ni > Cr. Based on the adsorption data, equilibrium isotherms were determined at selected areas to characterize the adsorption process. The adsorption data followed Freundlich and Langmuir isotherms in most cases. Correlation and cluster analysis was performed on heavy metals adsorption and sediment components at each site to evaluate main adsorbing compounds in sediments for each metal. Results demonstrated that heavy metals sorption is mostly related to load of organic matter in the Jajrood river sediments.  相似文献   

5.
The levels and depth distributions of As,Cd,Cu,Zn,Pb,Hg,Fe and Mn in two sediment cores DY2 and DY4 collected from the"Cattle Pond"of Dongdao Island,South China Sea,were determined and analyzed with the main objective to identify the sources of these elements and evaluate the corresponding sedimentological and geochemical processes.Lithological characters and sedimentary parameters such as LOI_(950℃),CaO,LOI_(550℃) and TOC indicate that the depth of 96 cm and 87 cm are the critical points for DY2 and DY4 cores,respectively.As,Cd,Cu,Zn,Hg and P are remarkably enriched in the ornithogenic sediments above the critical depth points;their concentration-versus-depth profiles are similar to those of TOC and LOIssooc;the ratios of As,Cd,Cu, Zn,Hg over Ca are significantly correlated with P/Ca.Statistical and comparative analyses of these elements' levels in the ornithogenic sediments of DY2 and DY4 strongly suggest that seabird droppings are the main source of these elements.Additionally,for the upper sediment layers of DY2 and DY4 cores,Fe oxide sorption mechanism,like organic matter,may also play an important role in the abundances of heavy metals.Heavy metal Pb has geochemical characteristics distinctly different from those of As,Cd,Cu,Zn,Hg and P,and its isotope composition indicates an origin of anthropogenic emissions from the surrounding countries.These geochemical characteristics in the orinithogenic sediments of Xisha Islands are compared with the studies in the remote Antarctic and Arctic regions.  相似文献   

6.
A sequential extraction method was employed to extract the metals Al, Ag, Cd, Co, Cr, Cu, Pb, Fe, Li, Mn, Ni, and Zn from a 10-m sediment core taken from the Tilbury Basin on the Thames Estuary. Characteristics of the observed metal partitioning distributions were attributed primarily to the composition of the estuarine waters at the time of deposition. For some metals, a decrease in the bulk sediment metal concentrations from a depth of ?6.59 m ODN to the surface was also observed in one of the solid phases. This was the case for Cr, Cu, and Pb extracted from the organic phase and for Zn extracted from the carbonate phase. This decrease in sediment concentrations is thought to reflect reported improvements to water quality in this region of the Thames Estuary in the early 1960s, following updating of major sewage treatment works (STW) approximately 20 km upstream. These findings give an indication of the influence of estuarine inputs from STW on metal partitioning distributions. The order of mobility for the metals of environmental concern was Cd>Ag>Cr>Ni, Zn>Co, Cu, Pb. for Cd and Ag there was a tendency to partition towards the exchangeable phase, both at the surface and at depth, which indicates the potential for long-term leaching of these metals from the sediments.  相似文献   

7.
土壤粒级中重金属元素的形态分析与环境风险评价   总被引:6,自引:0,他引:6       下载免费PDF全文
研究评价不同粒级组分中重金属的活性和潜在环境风险,对3个地区土壤颗粒的分析表明,重金属在土壤中分布并不均匀,随着颗粒粒径的减小,重金属Cu、Cd元素及有机质的浓度有不断增高的趋势。线性分析显示,Cu、Cd元素浓度与有机质的浓度显著相关。形态分析表明,Cd主要以环境高活性的形态存在,其次以低活性的形态存在,环境惰性的形态仅占极小部分,Cu主要以低环境活性和环境惰性的形态存在,高环境活性的形态只占小量,Cu在土壤中的存在形态可能与土壤性质有关。  相似文献   

8.
The levels and depth distributions of As, Cd, Cu, Zn, Pb, Hg, Fe and Mn in two sediment cores DY2 and DY4 collected from the "Cattle Pond" of Dongdao Island, South China Sea, were determined and analyzed with the main objective to identify the sources of these elements and evaluate the corresponding sedimentological and geochemical processes. Lithological characters and sedimentary parameters such as LOI950℃, CaO, LOI550℃ and TOC indicate that the depth of 96 cm and 87 cm are the critical points for DY2 and DY4 cores, respectively. As, Cd, Cu, Zn, Hg and P are remarkably enriched in the ornithogenic sediments above the critical depth points; their concentration-versus-depth profiles are similar to those of TOC and LOI550℃; the ratios of As, Cd, Cu, Zn, Hg over Ca are significantly correlated with P/Ca. Statistical and comparative analyses of these elements' levels in the ornithogenic sediments of DY2 and DY4 strongly suggest that seabird droppings are the main source of these elements. Additionally, for the upper sediment layers of DY2 and DY4 cores, Fe oxide sorption mechanism, like organic matter, may also play an important role in the abundances of heavy metals. Heavy metal Pb has geochemical characteristics distinctly different from those of As, Cd, Cu, Zn, Hg and P, and its isotope composition indicates an origin of anthropogenic emissions from the surrounding countries. These geochemical characteristics in the orinithogenic sediments of Xisha Islands are compared with the studies in the remote Antarctic and Arctic regions.  相似文献   

9.
The geochemistry of oxic sediments was contrasted across a range of Canadian aquatic ecosystems; 7 freshwater lakes, (3 circumneutral and 4 acidic), 15 peatlands (5 mineral-rich, 5 moderately-poor and 5 mineral-poor), 9 wetlands (3 oligosaline, 3 mesosaline and 3 euryhaline), an estuary (deposited and suspended sediments) and an intertidal region. Sediments were characterized by a simultaneous extraction that separated sediments into easily reducible (ER) metal (oxyhydroxides of Mn and easily reducible amorphous oxyhydroxides of Fe) and reducible (R) metal (more crystalline forms of oxyhydroxides of Fe), organic matter, and, the concentrations and partitioning of Zn, Cu and Cd associated with these 3 sediment components. Ecosystems were distinct with respect to ER Fe and organic matter [canonical variate analysis (CVA)] with 53% of among system variation in geochemistry attributed to these 2 components. Sediments of peatlands and wetlands contained greater amounts of organic matter whereas sediments of lakes, intertidal and estuarine deposited and suspended sediments were characterized by greater amounts of ER Fe. A further 21% of among system variation could be ascribed to organically bound Fe that was greater in acidic lakes and mineral-rich peatlands as compared to other systems. Concentration and partitioning of Cd within sediments was regionally dependent with 41% of among system variation (CVA) attributed to differences in ER Cd and R Cd. Cadmium from peatlands and lakes located in Ontario was recovered from all 3 sediment components whereas sediment from wetlands, the estuary and the intertidal regions of British Columbia (BC) contained no organically bound Cd with amounts recovered occurring mostly as ER Cd. Lakes and peatlands located in Ontario contained 3–5-fold total Cd as compared to ecosystems located in BC. A further 21% of among ecosystem variation was attributed to Zn partitioning. Zinc in peatland and wetland sediments occurred as R Zn as compared to lake and estuarine deposited sediments where Zn was recovered both as ER and R Zn. Total Zn was also 3–5-fold greater in sediments of systems in Ontario as compared to those sampled in BC. Concentration and partitioning of Cu was similar across all systems with Cu recovered from the organic component of sediment. The geochemistry of surficial oxic sediments with respect to ER Mn, R Fe and organic matter and the geochemical associations among these sediment components is ecosystem and region dependent. For assessing impacts of metals on sediment dwelling biota the geochemical characteristics of the system under study should first be defined.  相似文献   

10.
《Chemical Geology》2007,236(3-4):266-280
The surface chemistry of the cell wall of the metal resistant bacterium Cupriavidus metallidurans CH34 was investigated through proton exchange and zinc and cadmium sorption experiments. The effect of organic and mineral nutrients availability, culture age and viability on cell wall reactivity to H+, Zn or Cd was specifically addressed. Parameter sensitivity studies allowed constraining the pH-validity domain of the titration experiments and defining experimental conditions that permit reproducible experiments with this bacterium. The results were satisfactorily fitted with a non-electrostatic model that allowed the determination of the stability constants of three discrete acid–base functional groups differing in acidity at bacterial cell surfaces. These results revealed that C. metallidurans CH34 did not particularly stand out in terms of its surface reactivity as compared to metal-sensitive bacteria. This may confirm a generic global reactivity of all bacteria towards non-redox sensitive metals. The same reactivity to zinc was observed for C. metallidurans CH34 cells grown in LB-rich or TSM-mineral media. Cell surface reactivity was found to be independent of organic substrates availability but strongly dependent on cell growth stage and cell viability. Zinc sorption by C. metallidurans CH34 was only slightly (15% decrease) affected by phosphate availability. This suggests the involvement of phosphorus sites in metal binding. Zn and Cd stability constants compared to those of strong chelating ligands but were higher than those of weak ligands, such as acetic acid or phosphoric acid. This indicates that bacterial cells strongly compete with small dissolved organic components that are potentially less reactive to metals than bacteria. This competition potentially affects metal mobility in soils.  相似文献   

11.
Studies of heavy metal concentrations in porewaters and in sediments from the Weser Estuary, Germany, indicate that the depth distribution of Mn, Cd, and Cu in the solid phase is predominantly influenced by the subsurface redox regime, while Ni shows only moderate alteration. Based on solid-phase heavy metal data from eight locations in the study area, linear regressions of Fe, Mn, Cu, Ni, and Cd on Al allowed differences between the initial metal concentration and the concentration preserved in the sediments to be predicted. We calculate that, due to early diagenetic processes, Mn is enriched to 145 percent, while Cu and Cd are depleted to 71 percent and 46 percent, respectively, of the initial metal concentration in the near-surface sediment. Maximum depletion of Cd (84 percent), Cu (68 percent), Mn (54 percent), and Ni (24 percent) concentrations in the sediment, observed at a restricted area downcore, indicate the importance of post-depositional processes to metal preservation in the sediment. Without knowledge of the quantitative effects of diagenetic reactions on the preservation of metal concentrations in sediments, the depth distribution of metals in sediment cores may be misinterpreted as the effect of human activities.  相似文献   

12.
The bioavailability and fate of heavy metals in the environment are often controlled by sorption reactions on the reactive surfaces of soil minerals. We have developed a non-electrostatic equilibrium model (NEM) with both surface complexation and ion exchange reactions to describe the sorption of Pb and Cd in single- and binary-metal systems over a range of pH and metal concentration. Mineralogical and exchange properties of three different acidic soils were used to constrain surface reactions in the model and to estimate surface densities for sorption sites, rather than treating them as adjustable parameters. Soil heterogeneity was modeled with >FeOH and >SOH functional groups, representing Fe- and Al-oxyhydroxide minerals and phyllosilicate clay mineral edge sites, and two ion exchange sites (X and Y), representing clay mineral exchange. An optimization process was carried out using the entire experimental sorption data set to determine the binding constants for Pb and Cd surface complexation and ion exchange reactions.Modeling results showed that the adsorption of Pb and Cd was distributed between ion exchange sites at low pH values and specific adsorption sites at higher pH values, mainly associated with >FeOH sites. Modeling results confirmed the greater tendency of Cd to be retained on exchange sites compared to Pb, which had a higher affinity than Cd for specific adsorption on >FeOH sites. Lead retention on >FeOH occurred at lower pH than for Cd, suggesting that Pb sorbs to surface hydroxyl groups at pH values at which Cd interacts only with exchange sites. The results from the binary system (both Pb and Cd present) showed that Cd retained in >FeOH sites decreased significantly in the presence of Pb, while the occupancy of Pb in these sites did not change in the presence of Cd. As a consequence of this competition, Cd was shifted to ion exchange sites, where it competes with Pb and possibly Ca (from the background electrolyte). Sorption on >SOH functional groups increased with increasing pH but was small compared to >FeOH sites, with little difference between single- and binary-metal systems. Model reactions and conditional sorption constants for Pb and Cd sorption were tested on a fourth soil that was not used for model optimization. The same reactions and constants were used successfully without adjustment by estimating surface site concentrations from soil mineralogy. The model formulation developed in this study is applicable to acidic mineral soils with low organic matter content. Extension of the model to soils of different composition may require selection of surface reactions that account for differences in clay and oxide mineral composition and organic matter content.  相似文献   

13.
The biogeochemistry of Zn, Cd, Cu, Hg, and Fe in lakes and streams polluted by mine and smelter wastes emitted at Flin Flon, Canada, was investigated. In Schist Lake, a repository for both tailings-pond drainage and sewage, green algal blooms generated by nutrients from sewage promote entrapment of metals in sediments by (1) accumulation of metals from solution by algal seston, with preferential uptake of Zn, the most abundant metal, followed by sinking of the seston; and (2) production of H2S during decomposition of dead algae, resulting in sulfide precipitation. Metals are partially resolubilized from seston as it decomposes while sinking. Preferential retention of Cu by sinking seston and by mud promotes Cu enrichment in the mud but the Cu/Zn ratio of mud varies with the Cu/Zn ratio of surface water seston. In bottom muds, partitioning of a metal between sulfide and organic matter is strongly dependent on the stability of the metal sulfide as measured by its standard entropy, the proportion of sulfide-bound metal decreasing in the order Hg>Cd>Cu>Fe>Zn. When sulfide-rich muds were heated under helium, x-ray diffraction revealed abundant well-crystallized ZnS (sphalerite) containing Cd, Hg, and Fe; only poorly crystallized traces of the mineral were detected in unheated mud, however. Cu sulfide failed to crystallize, suggesting interference by sorbed impurities. Metals were concentrated in H2S-rich muds and extraction of muds with various solvents and by electrodialysis showed that sulfide was much more effective than organic matter in suppressing remobilization of metals. Remobilized Cu is probably bound to organic complexing agents. Some extractable complexing agents bind Cu preferentially with respect to Zn and Cd but others preferentially bind Zn and Cd; the complexes, being stable in the presence of free sulfide, may cause some release of metals from sulfide-rich muds in nature. These results indicate that introduction of sewage together with heavy-metal effluents into settling ponds could be an effective and economic method for limiting heavy-metal pollution of natural waters.  相似文献   

14.
Heavy metal exchange processes in sediment-water systems   总被引:1,自引:1,他引:1  
Experimental data for sorption of Hg, Cd, Cu, and Pb by sand, silt, and organic-rich sediments from the Ottawa River, Canada show significant conformity to Langmuir's equation. Values of the bonding energy constant and the sorption maximum correlate directly with organic content and mean grain size (φ). Desorption experiments indicate that the heavy metals form stable complexes in nitrilotriacetate (NTA) and NaCl Solutions, with the following desorption ratios: Hg, 1:1 (Cl:NTA); Pb, 1:10; Cd, 1:2. Serial and batch desorption studies under various conditions show that the cation-exchange order in the sediments is Hg>Pb>Cu>Cd. For a given heavy metal the partition coefficient between sediment and solution is not greatly changed by the presence of another cation, provided the latter has the same order of concentration. If, the concentration of one cation exceeds another by more than 10, however, significant desorption of the less concentrated ion takes place on a mass action basis.  相似文献   

15.
A sediment core collected from coastal zone near the Qiao Island in the Pearl River Estuary was analyzed for total metal concentrations, chemical partitioning, and physico-chemical properties. Three vertical distribution patterns of the heavy metals in the sediment core were identified, respectively. The dominant binding phases for Cu, Pb, Cr, and Zn were the residual and Fe/Mn oxides fractions. Cd in all sediments was mainly associated with exchangeable fraction. Influences of total organic carbon content and cation exchange capacity on the total concentrations and fractions of almost all the metals were not evident, whereas sand content might play an important role in the distributions of residual phases of Cr, Cu, Pb, and Zn. In addition, sediment pH had also an important influence on the Fe/Mn oxides, organic/sulfide and residual fractions of Cr, Cu, and Zn. Contamination assessment on the heavy metals in the sediment core adopting Index of Geoaccumulation showed that Cr, V, Be, Se, Sn, and Tl were unpolluted, while Cu, Ni, Pb, Zn, Cd, and Co were polluted in different degrees throughout the core. It was remarkable that the various pollution levels of the metals from moderate (for Cu, Pb, and Zn) to strong (for Cd) were observed in the top 45 cm of the profiles. The relative decrease of the residual fraction in the upper 45 cm of the core is striking, especially for Zn and Cu, and, also for Pb, and Cr. The change in fraction distribution in the upper 45 cm, which is very much contrasting to the one at larger depths, confirms that the residual fraction is related to the natural origin of these metals, whereas in the upper part, the non-residual fractions (mainly the Fe/Mn oxides fraction) are increased due to pollution in the last decade. The possible sources for Cu, Pb, Zn, and Cd contaminations were attributed to the increasing municipal and industrial wastewater discharges, agricultural runoff, atmospheric inputs, and runoff from upstream mining or smelting activities, which may be associated with an accelerating growth of economy in the Pearl River Delta region in the past decade.  相似文献   

16.
The chemical associations of Cd, Cu, Pb, and Zn in four mine soil samples from the Amizour-Bejaia Pb/Zn mine (Algeria) have been investigated by a five-step sequential extraction procedure. Although Cd preferentially binds to carbonates, Cu, Pb, and Zn are mainly associated with the organic and reducible fractions. Batch adsorption experiments with either mono- or multi-metallic solutions are described with the Freundlich isotherm model. Whatever the nature of the soil sample, the sorption behavior for each given metal except Pb is very similar, indicating that the binding sites at the soil surface are progressively occupied by the metal from the solution. On each soil sample, the decreasing order of sorption can be established as Pb >> Cu > Cd > Zn. When the four metals are simultaneously applied to each soil sample, their specific behavior is strongly affected by their interactions and/or competition for the available surface sites: we generally observed isotherm curves with a slight maximum before the plateau at higher solution concentration. Although Cu is only slightly affected by the other metals, in the case of Pb, Cd, and Zn, the sorbed amounts strongly decreased.  相似文献   

17.
Thirty-three bottom sediments were collected from the Potomac and Anacostia rivers, Tidal Basin, and Washington Ship Channel in June 1991 to define the extent of trace metal contamination and to elucidate source areas of sediment contaminants. In addition, twenty-three sediment samples were collected directly in front of and within major storm and combined sewers that discharge directly to these areas. Trace metals (e.g., Cu, Cr, Cd, Hg, Pb, and Zn) exhibited a wide range in values throughout the study area. Sediment concentrations of Pb ranged from 32.0 μg Pb g?1 to 3,630 μg Pb g?1, Cd from 0.24 μg Cd g?1 to 4.1 μg Cd g?1, and Hg from 0.13 μg Hg g?1 to 9.2 μg Hg g?1, with generally higher concentrations in either outfall or sewer sediments compared to river bottom-sediments. In the Anacostia River, concentration differences among sewer, outfall, and river sediments, along with downriver spatial trends in trace metals suggest that numerous storm and combined swers are major sources of trace metals. Similar results were observed in both the Tidal Basin and Washington Ship Channel. Cadminum and Pb concentrations are higher in specific sewers and outfalls, whereas the distribution of other metals suggests a more diffuse source to the rivers and basins of the area. Cadmium and Pb also exhibited the greatest enrichment throughout the study area, with peak values located in the Anacostia River, near the Washington Navy Yard. Enrichment factors decrease in the order: Cd>Pb>Zn>Hg>Cu>Cr. Between 70% and 96% of sediment-bound Pb and Cd was released from a N2-purged IN HCl leach. On average, ≤40% of total sedimentary Cu was liberated, possibly due to the partial attack of organic components of the sediment. Sediments of the tidal freshwater portion of the Potomac estuary reflect a moderate to highly components area with substantial enrichments of sedimentary Pb, Cd, and Zn. The sediment phase that contains these metals indicates the potential mobility of the sediment-bound metals if they are reworked during either storm events or dredging.  相似文献   

18.
In most mining areas, significant concentrations of metals such as Pb, Cu, Cr, Zn, Cd, Fe, Mn, Co, Ni, Hg, Ar, halogenated organic compounds and radionuclides are found. Of those, Cr is one of the well-known heavy metals that forms toxic species. It is necessary to study the mobilization and accumulation of Cr at the sediment water interface in an electric field at varying different positions and conditions of the electrode arrangement. The tests were carried out with a natural sediment containing heavy metals from the river Weisse Elster (Germany). The electrokinetic experiments have been performed in columns filled with sediment using electrodes made of conductive polymers (polyethylene with carbon black) at a maximum current density of 0.5 mA/cm2. The experimental results suggest that the mobilization and accumulation of Cr highly depends on chemical factors for e.g., pH value, redox potential, respectively redox status and the content of Fe, A1 and organic matter in the soil or sediment. The sorption of Cr (III, VI) is very high in the pH range > 4.5. As expected, a high mobilization of Cr (III, VI) was seen in the case of the experiments with the anode at the sediment, because the pH value was lower than mentioned above. On the opposite, the best conditions for the Cr (III, VI) immobilization is high pH values (cathode at the sediment).  相似文献   

19.
1998年3月、7月、10月,在对上海潮滩进行连续采样和观测的基础上,用原子吸收法测试了70个沉积物中的Cu,Pb,Zn,Cd.Cr的含量。结果表明:(1)上海潮滩重金属含量有如下顺序:Zn〉Cu〉Cr〉Pb〉〉Cd。(2)从高潮滩到中低潮滩,重金属的含量递减。(3)不同的采样位置对重金属的含量有显著影响。(4)由于季节的变化,重金属元素的含量变化的幅度也很大,就现有三个季度数据对东海农场进行统计  相似文献   

20.
《Applied Geochemistry》1997,12(3):243-254
Column flow-through experiments reacting wastewater solutions with sandy loam soil samples were performed to study heavy metal attenuation by two soils with different physical and chemical properties. Reacted soil columns were leached with synthetic acid rain to study the mobility of attenuated heavy metals under leaching conditions. This study demonstrates that cation exchange, surface adsorption, chelation with solid organic material, and precipitation were the important attenuation mechanisms for the heavy metals (Cd, Cr, Cu, Mo, Ph, and Zn). Adsorption on soil hydrous oxide surfaces was the primary attenuation mechanism for Cd and Zn in both soils, and for Cu in a soil with low organic matter content. Wastewater solution pH is also an important factor that influences the retention of heavy metals. Cadmium, Cu, Cr, and Zn became mobile after prolonged application of spiked wastewater solution, either through saturation of soil adsorption sites or due to decreasing pH. Only Cr, Pb, and Mo, which are attenuated primarily through precipitation, show significant net retention by soil. Acid rain water removed heavy metals left in the column residual pore solution and weakly sorbed heavy metals in the soils, and has the ability to mobilize some strongly attenuated heavy metals, especially when the soil organic matter content is high. The results have important applications in predicting heavy metal mobility in contaminated soil, the disposal of acid mine drainage, and assessing the risks of landfall leachate leakage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号