首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The temperature dependences of the crystal structure and intensities of the (113) and (211) reflections in calcite, CaCO3, were studied using Rietveld structure refinements based on synchrotron powder X-ray diffraction data. Calcite transforms from to at about T c = 1,240 K. A CO3 group occupies, statistically, two positions with equal frequency in the disordered phase, but with unequal frequency in the partially ordered phase. One position for the CO3 group is rotated by 180° with respect to the other. The unequal occupancy of the two orientations in the partially ordered phase is obtained directly from the occupancy factor, x, for the O1 site and gives rise to the order parameter, S = 2x − 1. The a cell parameter shows a negative thermal expansion at low T, followed by a plateau region at higher T, then a steeper contraction towards T c, where the CO3 groups disorder in a rapid process. Using a modified Bragg–Williams model, fits were obtained for the order parameter S, and for the intensities of the (113) and (211) reflections. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
This paper describes the development of a new Near InfraRed Imaging Spectrograph (NIRIS) which is capable of simultaneous measurements of OH(6-2) Meinel and \(\hbox {O}_{2}\)(0-1) atmospheric band nightglow emission intensities. In this spectrographic technique, rotational line ratios are obtained to derive temperatures corresponding to the emission altitudes of 87 and 94 km. NIRIS has been commissioned for continuous operation from optical aeronomy observatory, Gurushikhar, Mount Abu (\(24.6^{\circ }\hbox {N}\), \(72.8^{\circ }\hbox {E}\)) since January 2013. NIRIS uses a diffraction grating of 1200 lines \(\hbox {mm}^{-1}\) and 1024\(\times \)1024 pixels thermoelectrically cooled CCD camera and has a large field-of-view (FOV) of \(80^{\circ }\) along the slit orientation. The data analysis methodology adopted for the derivation of mesospheric temperatures is also described in detail. The observed NIRIS temperatures show good correspondence with satellite (SABER) derived temperatures and exhibit both tidal and gravity waves (GW) like features. From the time taken for phase propagation in the emission intensities between these two altitudes, vertical phase speed of gravity waves, \(c_{z}\), is calculated and along with the coherent GW time period ‘\(\tau \)’, the vertical wavelength, \(\lambda _{z}\), is obtained. Using large FOV observations from NIRIS, the meridional wavelengths, \(\lambda _{y}\), are also calculated. We have used one year of data to study the possible cause(s) for the occurrences of mesospheric temperature inversions (MTIs). From the statistics obtained for 234 nights, it appears that in situ chemical heating is mainly responsible for the observed MTIs than the vertical propagation of the waves. Thus, this paper describes a novel near infrared imaging spectrograph, its working principle, data analysis method for deriving OH and \(\hbox {O}_{2}\) emission intensities and the corresponding rotational temperatures at these altitudes, derivation of gravity wave parameters (\(\tau \), \(c_{z}\), \(\lambda _{z}\), and \(\lambda _{y})\), and results on the statistical study of MTIs that exist in the earth’s mesospheric altitudes.  相似文献   

4.
The feasibility of geological carbon storage (GCS) sites depends on their capacity to retain safely \({\hbox {CO}_{2}}\). While deep saline formations and depleted gas/oil reservoirs are good candidates to sequester \({\hbox {CO}_{2}}\), gas/oil reservoirs typically have a limited storage capacity compared to ideal targets (\(\sim \) 1 Mt/year) considered for \({\hbox {CO}_{2}}\) disposal (Celia et al. in Water Resour Res 51(9):6846–6892, 2015. doi: 10.1002/2015WR017609). In this respect, deep saline aquifers are considered more appropriate formations for GCS, but present the disadvantage of having limited characterization data. In particular, information about the continuity of the overlying sealing formations (caprock) is often sparse if it exists at all. In this work, a study of \({\hbox {CO}_{2}}\) leakage is conducted for a candidate GCS site located in the Michigan Basin, whose sealing properties of the caprock are practically unknown. Quantification of uncertainty on \({\hbox {CO}_{2}}\) leakage from the storage formation is achieved through a Monte Carlo simulation approach, relying on the use of a computationally efficient semi-analytical leakage model based upon the solution derived by Nordbotten et al. (Environ Sci Technol 43(3):743–749, 2009), which assumes leakage occurs across “passive” wells intersecting caprock layers. A categorical indicator Kriging simulator is developed and implemented to represent the caprock sealing properties and model the permeability uncertainty. Binary fields of caprock permeability are generated and exhibit mostly low permeability, with sparsely-occurring local high permeability areas where brine and \({\hbox {CO}_{2}}\) may leak out of the storage formation. In addition, the feasibility of extending the use of the semi-analytical model to large-area leakage pathways is studied. This work advances a methodology for preliminary uncertainty quantification of \({\hbox {CO}_{2}}\) leakage at sites of GCS with little or no information on the sealing properties of the caprock. The implemented analysis shows that, for the considered site, \({\hbox {CO}_{2}}\) leakage may not be negligible even for relatively low (\(\sim \) 1%) probabilities of finding permeable inclusions in the caprock and highlights the importance of being able to characterize caprock sealing properties over large areas.  相似文献   

5.
Information about the state of sulfur in silicate melts and glasses is important in both earth sciences and materials sciences. Because of its variety of valence states from S2− (sulfide) to S6+ (sulfate), the speciation of sulfur dissolved in silicate melts and glasses is expected to be highly dependent on the oxygen fugacity. To place new constraint on this issue, we have synthesized sulfur-bearing sodium silicate glasses (quenched melts) from starting materials containing sulfur of different valence states (Na2SO4, Na2SO3, Na2S2O3 and native S) using an internally heated gas pressure vessel, and have applied electron-induced SKα X-ray fluorescence, micro-Raman and NMR spectroscopic techniques to probe their structure. The wavelength shift of SKα X-rays revealed that the differences in the valence state of sulfur in the starting compounds are largely retained in the synthesized sulfur-bearing glasses, with a small reduction for more oxidized samples. The 29Si MAS NMR spectra of all the glasses contain no peaks attributable to the SiO4-nSn (with n > 0) linkages. The Raman spectra are consistent with the coexistence of sodium sulfate (Na2SO4) species and one or more types of more reduced sulfur species containing S-S linkages in all the sulfur-bearing silicate glasses, with the former dominant in glasses produced from Na2SO4-doped starting materials, and the latter more abundant in more reduced glasses. The 29Si MAS NMR and Raman spectra also revealed changes in the silicate network structure of the sulfur-bearing glasses, which can be interpreted in terms of changes in the chemical composition and sulfur speciation.  相似文献   

6.
The local structure of iron in three tektites has been studied by means of Fe K-edge extended X-ray absorption fine structure (EXAFS) and high-resolution X-ray absorption near-edge structure (XANES) spectroscopy in order to provide quantitative data on <Fe-O> distance and Fe coordination number. The samples studied are a moldavite and two australasian tektites. Fe model compounds with known Fe oxidation state and coordination number were used as standards in order to extract structural information from the XANES pre-edge peak. EXAFS-derived grand mean <Fe-O> distances and Fe coordination numbers for the three tektite samples are constant within the estimated error (<Fe-O > =2.00 Å ± 0.02 Å, CN = 4.0 ± 0.4). In contrast to other data from the literature on Fe-bearing silicate glasses, the tektites spectra could not be fitted with a single Fe-O distance, but rather were fit with two independent distances (2 × 1.92 Å and 2 × 2.08 Å). High-resolution XANES spectra of the three tektites display a pre-edge peak whose intensity is intermediate between those of staurolite and grandidierite, thus suggesting a mean coordination number intermediate between 4 and 5. Combining the EXAFS and XANES data for Fe, we infer the mean coordination number to be close to 4.5.Comparison of the tektites XANES spectra with those of a suite of different impact glasses clearly shows that tektites display a relatively narrow range of Fe oxidation state and coordination numbers, whereas impact glasses data span a much wider range of Fe oxidation states (from divalent to trivalent) and coordination numbers (from tetra-coordinated to esa-coordinated). These data suggest that the tektite production process is very similar for all the known strewn fields, whereas impact glasses can experience a wide variety of different temperature-pressure-oxygen fugacity conditions, leading to different Fe local structure in the resulting glasses. These data could be of aid in discriminating between tektite-like impact glasses and impact glasses sensu strictu.  相似文献   

7.
Mössbauer spectra of glasses of NaFeSi3O8 and 3NaAlSi2O6 · NaFeSiO4 starting compositions consist of a dominant Fe3+ and subordinate Fe2+ quadrupole-split doublet, in agreement with previous work. Fe3+ is assigned to tetrahedral coordination. Pressure-induced coordination changes are not observed in the pressure range 1 bar to 30 kbar. A gradual increase in isomer shift of the Fe3+ doublet with increase in pressure is attributed to steric effects. Raman spectra of GeO2, NaGaSi3O8 and NaGaSiO4 glasses are dominated by network structure vibrations. There is no detectable change in the nearest-neighbor coordination of Ge4+ in GeO2 from 1 bar to 14 kbar, of Ga3+ in NaGaSi3O8 from 1 bar to 28 kbar and of Ga3+ in NaGaSiO4 from 1 bar to 25 kbar. However, some structural reorganization outside of the first coordination sphere occurs in the high pressure glasses.XANES and EXAFS spectra on powdered samples of 1 bar and 25 kbar NaGaSiO4 glasses and crystalline NaGaSiO4 were obtained from K edge absorption spectra at the Stanford Synchrotron Radiation Laboratory using a double crystal monochromator equipped with Si(220) crystals. The XANES spectra indicate that Ga3+ has a similar extended coordination geometry in both glasses. The EXAFS spectra reveal that Ga3+ is four-coordinated with oxygen in all three samples with a Ga3+-O distance of about 1.83 Å. The radial distribution functions of the two glasses are virtually identical. However, both XANES and EXAFS spectra indicate significant structural differences between crystalline NaGaSiO4 (nepheline-type structure) and vitreous NaGaSiO4 beyond the first coordination shell of Ga3+. Thus, X-ray absorption spectroscopy independently confirms the Raman results on the unchanged coordination of Ga3+ in NaGaSiO4 glasses with pressures up to 25 kbar.Glass compositions were selected in anticipation that larger and/or lower charged cations would exhibit pressure-induced coordination changes at lower pressures than Al3+ and Si4+. The present null result suggests that the stabilizing features of open network structures in the liquid state (large entropy and minimized cation-cation repulsion) more than compensate for large molar volume in the pressure range accessible to experimentation. It appears that network structures in natural magmas should remain stable throughout the upper mantle. Consequently, the densities of magmas at high pressures which are calculated from compressibility data and the appropriate equation of state will be only slightly underestimated, due to the effect of minor structural changes beyond the first coordination sphere.  相似文献   

8.
Contributions to Mineralogy and Petrology - Melting experiments were performed in the systems at P H 2 O =5 kbars. The compositions of the plagioclases coexisting with melt or with melt and quartz...  相似文献   

9.
We investigated the dissolved major elements, $ {}^{87}{\text{Sr/}}{}^{86}{\text{Sr}},\;\delta {}^{34}{\text{S}}_{{\text{SO}}_{\text{4}} } ,\;{\text{and}}\;\delta {}^{18}{\text{O}}_{{\text{SO}}_{\text{4}} } $ composition of the Min Jiang, a headwater tributary of the Chang Jiang (Yangtze River). A forward calculation method was applied to quantify the relative contribution to the dissolved load from rain, evaporite, carbonate, and silicate reservoirs. Input from carbonate weathering dominated the major element composition (58–93%) and that from silicate weathering ranged from 2 to 18% in unperturbed Min Jiang watersheds. Most samples were supersaturated with respect to calcite, and the CO2 partial pressures were similar to or up to ~5 times higher than atmospheric levels. The Sr concentrations in our samples were low (1.3–2.5 μM) with isotopic composition ranging from 0.7108 to 0.7127, suggesting some contribution from felsic silicates. The Si/(Na* + K) ratios ranged from 0.5 to 2.5, which indicate low to moderate silicate weathering intensity. The $ \delta {}^{34}{\text{S}}_{{\text{SO}}_{\text{4}} } \;{\text{and}}\;\delta {}^{18}{\text{O}}_{{\text{SO}}_{\text{4}} } $ for five select samples showed that the source of dissolved sulfate was combustion of locally consumed coal. The silicate weathering rates were 23–181 × 103 mol/km2/year, and the CO2 consumption rates were 31–246 × 103 mol/km2/year, which are moderate on a global basis. Upon testing various climatic and geomorphic factors for correlation with the CO2 consumption rate, the best correlation coefficients found were with water temperature (r 2 = 0.284, p = 0.009), water discharge (r 2 = 0.253, p = 0.014), and relief (r 2 = 0.230, p = 0.019).  相似文献   

10.
11.
The effect of temperature, pressure, and dissolved H2O in the melt on the Fe2+–Mg exchange coefficient between orthopyroxene and rhyolite melt was investigated with a series of H2O fluid-saturated phase-equilibrium experiments. Experiments were conducted in a rapid-quench cold-seal pressure vessel over a temperature and pressure range of 785–850 °C and 80–185 MPa, respectively. Oxygen fugacity was buffered with the solid Ni–NiO assemblage in a double-capsule assembly. These experiments, when combined with H2O-undersaturated experiments in the literature, show that \( ^{{{\text{Fe}}^{2 + } {-}{\text{Mg}}}} K_{\text{D}} \) between orthopyroxene and rhyolite liquid increases strongly (from 0.23 to 0.54) as a function of dissolved water in the melt (from 2.7 to 5.6 wt%). There is no detectable effect of temperature or pressure over an interval of 65 °C and 100 MPa, respectively, on the Fe2+–Mg exchange coefficient values. The data show that Fe-rich orthopyroxene is favored at high water contents, whereas Mg-rich orthopyroxene crystallizes at low water contents. It is proposed that the effect of dissolved water in the melt on the composition of orthopyroxene is analogous to its effect on the composition of plagioclase. In the latter case, dissolved hydroxyl groups preferentially complex with Na+ relative to Ca2+, which reduces the activity of the albite component, leading to a more anorthite-rich (calcic) plagioclase. Similarly, it is proposed that dissolved hydroxyl groups preferentially complex with Mg2+ relative to Fe2+, thus lowering the activity of the enstatite component, leading to a more Fe-rich orthopyroxene at high water contents in the melt. The experimental results presented in this study show that reversely zoned pyroxene (i.e., Mg-rich rims) in silicic magmas may be a result of H2O degassing and not necessarily the result of mixing with a more mafic magma.  相似文献   

12.
The isostructural lithium (Li2SiO3) and sodium (Na2SiO3) metasilicates have been investigated from room temperature up to the melting point by single-crystal Raman spectroscopy and energy-dispersive X-ray powder diffraction. The unit-cell parameters and Raman frequencies of Li2SiO3 vary regularly with temperature up to the melting point, which is consistent with the lack of premelting effects in calorimetric measurements. In contrast, Na2SiO3 undergoes a transition at about 850 K from orthorhombic Cmc 21 symmetry, to a lower symmetry (possibly Pmc 21), and shows near 1200 K changes in the Raman spectra that correlate well with the premelting effects as determined from calorimetry observations. In both compounds, a high alkali mobility likely sets in several hundreds of degrees below the melting point. Premelting in Na2SiO3 is associated with extensive deformation of the silicate chains as evidenced near the melting point by similarities in the Raman spectra of the crystalline and liquid phases.  相似文献   

13.
Raman spectroscopy was used to analyze quantitatively water in silicate glasses and melt inclusions and to monitor H2O–OH speciation. Calibration is based on synthetic glasses with various water contents (0.02–7.67% H2O); water determination and OH–H2O differentiation on the area of the Si–O broad band at 468 cm–1 and the asymmetric O–H band at 3,550 cm–1. Each Raman spectrum has been decomposed into four Gaussian + Lorentzian components centered at 3,330, 3,458, 3,560, and 3,626 cm–1 using the Levenberg–Marquardt algorithm. These components are interpreted to be two different types of H2O molecule sites. The influence of the temperature on the loss of water is more important for molecular water than for the hydroxyl groups. The H2O–OH partition confirms the typical evolution of water speciation in rhyolitic glasses as a function of the bulk water content. Method limitations have been studied for the application to natural melt inclusions.Editorial responsibility: T.L Grove  相似文献   

14.
In a regional metamorphic terrain where six isograds have been mapped based on mineral reactions that are observed in metacarbonate rocks, the P-T conditions and fugacities of CO2 and H2O during metamorphism were quantified by calculations involving actual mineral compositions and experimental data. Pressure during metamorphism was near 3,500 bars. Metamorphic temperatures ranged from 380° C (biotite-chlorite isograd) to 520° C (diopside isograd). \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{CO}}_{\text{2}} }\) / \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) in general is higher in metacarbonate rocks below the zoisite isograd than in those above the zoisite isograd. Calculated \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) are consistent with carbonate rocks above the zoisite isograd having equilibrated during metamorphism with a bulk supercritical fluid in which \(P_{{\text{CO}}_{\text{2}} }\) + \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) = P total. Calculations indicate that below the zoisite isograd, however, \(P_{{\text{CO}}_{\text{2}} }\) + \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) was less than Ptotal, and that this condition is not due to the presence of significant amounts of species other than CO2 and H2O in the system C-O-H-S. Calculated \(P_{{\text{CO}}_{\text{2}} }\) /( \(P_{{\text{CO}}_{\text{2}} }\) + \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) ) is low (0.06–0.32) above the zoisite isograd. The differences in conditions above and below the zoisite isograd may indicate that the formation of zoisite records the introduction of a bulk supercritical H2O-rich fluid into the metacarbonates. The results of the study indicate that \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) are constant on a thin section scale, but that gradients in \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) existed during metamorphism on both outcrop and regional scales.  相似文献   

15.
16.
Sulfur K-edge X-ray absorption near edge structure (XANES) spectra were recorded for experimental glasses of various compositions prepared at different oxygen fugacities (fO2) in one-atmosphere gas-mixing experiments at 1400 °C. This sample preparation method only results in measurable S concentrations under either relatively reduced (log fO2 < −9) or oxidised (log fO2 > −2) conditions. The XANES spectra of the reduced samples are characterised by an absorption edge crest at 2476.4 eV, typical of S2−. In addition, spectra of Fe-bearing compositions exhibit a pronounced absorption edge shoulder. Spectra for all the Fe-free samples are essentially identical, as are the spectra for the Fe-bearing compositions, despite significant compositional variability within each group. The presence of a sulfide phase, such as might exsolve on cooling, can be inferred from a pre-edge feature at 2470.5 eV.The XANES spectra of the oxidised samples are characterised by an intense transition at 2482.1 eV, typical of the sulfate anion SO42−. Sulfite (SO32−) has negligible solubility in silicate melts at low pressures. The previous identification of sulfite species in natural glass samples is attributed to an artefact of the analysis (photoreduction of S6+). S4+ does, however, occur unambiguously with S6+ in Fe-free and Fe-poor compositions prepared in equilibrium with CaSO4 at 4-16 kbar, and when buffered with Re/ReO2 at 10 kbar. Solubility of S4+ thus requires partial pressures of SO2 considerably in excess of 1 bar. A number of experiments were undertaken in an attempt to access intermediate fO2s more applicable to terrestrial volcanism. Although these were largely unsuccessful, S2− and S6+ were found to coexist in some samples that were not in equilibrium with the imposed fO2.The XANES spectra of natural olivine-hosted melt inclusions and submarine glasses representative of basalts at, or close to, sulfide saturation show mainly dissolved S2−, but with minor sulfate, and additionally a peak at 2469.5 eV, which, although presumably due to immiscible sulfide, is 1 eV lower than that typical of FeS. These sulfate and sulfide-related peaks disappear with homogenisation of the inclusions by heating to 1200 °C followed by rapid quenching, suggesting that both these features are a result of cooling under natural conditions. The presence of small amounts of sulfate in otherwise reduced basaltic magmas may be explained by the electron exchange reaction: S2− + 8Fe3+ = S6+ + 8Fe2+, which is expected to proceed strongly to the right with decreasing temperature. This reaction would explain why S2− and S6+ are frequently found together despite the very limited fO2 range over which they are thermodynamically predicted to coexist. The S XANES spectra of water-rich, highly oxidised, basaltic inclusions hosted in olivine from Etna and Stromboli confirm that nearly all S is dissolved as sulfate, explaining their relatively high S contents.  相似文献   

17.
18.
L-edge X-ray absorption spectroscopy employing a synchrotron radiation source has been used to study the electronic structure and valency of Cu in the chemically and structurally complex tetrahedrite group of minerals. Mechanical mixtures of Cu2+O and Cu+FeS2 were used to estimate the relative cross sections of Cu2+ and Cu+; the absorption of Cu2+ at 931 eV is 25 times greater than that of Cu+ at 945 eV. Using this calibration, Cu2+/Cu ratios were found to vary from 0.00 to 0.054 in the tetrahedrite samples studied; the highest proportion of Cu2+ occurs in synthetic tetrahedrites with a composition close to Cu12Sb4S13. This study reveals the utility of the technique for determining the valence state of copper in complex minerals, allowing the crystal chemistry to be more fully characterised.  相似文献   

19.
A new approach was developed to measure the water content of silicate glasses using Raman spectroscopy, which is independent of the glass matrix composition and structure. Contrary to previous studies, the compositional range of our studied silicate glasses was not restricted to rhyolites, but included andesitic, basaltic and phonolitic glasses. We used 21 glasses with known water contents for calibration. To reduce the uncertainties caused by the baseline removal and correct for the influence of the glass composition on the spectra, we developed the following strategy: (1) application of a frequency-dependent intensity correction of the Raman spectra; (2) normalization of the water peak using the broad T–O and T–O–T vibration band at 850–1250 cm−1 wavenumbers (instead of the low wavenumber T–O–T broad band, which appeared to be highly sensitive to the FeO content and the degree of polymerization of the melt); (3) normalization of the integrated Si-O band area by the total number of tetrahedral cations and the position of the band maximum. The calibration line shows a ±0.4 wt% uncertainty at one relative standard deviation in the range of 0.8–9.5 wt% water and a wide range of natural melt compositions. This method provides a simple, quick, broadly available and cost-effective way for a quantitative determination of the water content of silicate glasses. Application to silicate melt inclusions yielded data in good agreement with SIMS data.  相似文献   

20.
The Mössbauer absorption spectra of arfvedsonite are composed of three quadrupole doublets which are ascribed to Fe2+ in M1 and M2 sites and to Fe3+ in M2 sites. The relative intensities of the resonances are a measure of the distribution of iron at the different sites, but it is necessary to correct for a difference between the recoil-free fractions. At room temperature [Fe2+] seems detected with an efficiency of only about 85% of that of [Fe3+]. Results of [Fe2+]/[Fe3+] determinations by Mössbauer spectroscopy and by wet chemical analysis of a series of arfvedsonite samples, separated from various rocks from the Ilimaussaq intrusion, south Greenland, are compared and agree reasonably well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号