首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Protracted pre-eruptive zircon residence is frequently detected in continental rhyolites and can conflict with thermal models, indicating briefer magma cooling durations if scaled to erupted volumes. Here, we present combined U-Th and (U-Th)/He zircon ages from the Acigöl rhyolite field (Central Anatolia, Turkey), which is part of a Quaternary bimodal volcanic complex. Unlike other geochronometers, this approach dates crystallization and eruption on the same crystals, allowing for internal consistency testing. Despite the overall longevity of Acigöl rhyolite volcanism and systematic trends of progressive depletion in compatible trace elements and decreasing zircon saturation temperatures, we find that zircon crystallized in two brief pulses corresponding to eruptions in the eastern and western part of the field during Middle and Late Pleistocene times, respectively. For Late Pleistocene zircon, resolvable differences exist between interior (average: 30.7 ± 0.9 ka; 1σ error) and rim (21.9 ± 1.3 ka) crystallization ages. These translate into radial crystal growth rates of ~10?13 to 10?14 cm/s, broadly consistent with those constrained by diffusion experiments. Rim crystallization and (U-Th)/He eruption ages (24.2 ± 0.4 ka) overlap within uncertainty. Evidence for brief zircon residence at Acigöl contrasts with many other rhyolite fields, suggesting that protracted zircon crystallization in, or recycling from, long-lived crystal mushes is not ubiquitous in continental silicic magma systems. Instead, the span of pre-eruptive zircon ages is consistent with autochthonous crystallization in individual small-volume magma batches that originated from basaltic precursors.  相似文献   

2.
Zircon crystals in the age range of ca. 10–300 ka can be dated by 230Th/238U (U‐Th) disequilibrium methods because of the strong fractionation between Th and U during crystallisation of zircon from melts. Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of nine commonly used reference zircons (at secular equilibrium) and a synthetic zircon indicates that corrections for abundance sensitivity and dizirconium trioxide molecular ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon. When corrected for abundance sensitivity and interferences, mean activity ratios of (230Th)/(238U) for nine reference zircons analysed on five different days averaged 0.995 ± 0.023 (95% confidence weighted by data‐point uncertainty only, MSWD = 1.6; = 9), consistent with their U‐Pb ages > 4 Ma that imply equilibrium for all intermediate daughter isotopes (including 230Th) within the 238U decay chain. U‐Th zircon ages generated by LA‐ICP‐MS without mitigating (e.g., by high mass resolution) or correcting for abundance sensitivity and molecular interferences on 230Th are potentially unreliable. To validate the applicability of LA‐ICP‐MS to this dating method, we acquired data from three late Quaternary volcanic units: the 41 ka Campanian Ignimbrite (plutonic clasts), the 161 ka Kos Plateau Tuff (juvenile clasts) and the 12 ka Puy de Dôme trachyte lava (all eruption ages by Ar/Ar, with zircon U‐Th ages being of equal or slightly older). A comparison of the corrected LA‐ICP‐MS results with previously published secondary ion mass spectrometry (SIMS) data for these rocks shows comparable ages with equivalent precision for LA‐ICP‐MS and SIMS, but much shorter analysis durations (~ 2 min vs. ~ 15 min) per spot with LA‐ICP‐MS and much simpler sample preparation. Previously undated zircons from the Yali eruption (Kos‐Nisyros volcanic centre, Greece) were analysed using this method. This yielded a large age spread (~ 45 to > 300 ka), suggesting significant antecryst recycling. The youngest zircon age (~ 45 ± 10 ka) provides a reasonable maximum estimate for the eruption age, in agreement with the previously published age using oxygen isotope stratigraphy (~ 31 ka).  相似文献   

3.
The climactic Los Chocoyos (LCY) eruption from Atitlán caldera (Guatemala) is a key chronostratigraphic marker for the Quaternary period given the extensive distribution of its deposits that reached both the Pacific and Atlantic Oceans. Despite LCY tephra being an important marker horizon, a radioisotopic age for this eruption has remained elusive. Using zircon (U–Th)/He geochronology, we present the first radioisotopically determined eruption age for the LCY of 75 ± 2 ka. Additionally, the youngest zircon crystallization 238U–230Th rim ages in their respective samples constrain eruption age maxima for two other tephra units that erupted from Atitlán caldera, W-Fall (130 +16/−14 ka) and I-Fall eruptions (56 +8.2/−7.7 ka), which under- and overlie LCY tephra, respectively. Moreover, rim and interior zircon dating and glass chemistry suggest that before eruption silicic magma was stored for >80 kyr, with magma accumulation peaking within ca. 35 kyr before the LCY eruption during which the system may have developed into a vertically zoned magma chamber. Based on an updated distribution of LCY pyroclastic deposits, a new conservatively estimated volume of ~1220 ± 150 km3 is obtained (volcanic explosivity index VEI > 8), which confirms the LCY eruption as the first-ever recognized supereruption in Central America.  相似文献   

4.
Summary The ∼ 150 km3 (DRE) trachytic Campanian Ignimbrite, which is situated north-west of Naples, Italy, is one of the largest eruptions in the Mediterranean region in the last 200 ky. Despite centuries of investigation, the age and eruptive history of the Campanian Ignimbrite is still debated, as is the chronology of other significant volcanic events of the Campanian Plain within the last 200–300 ky. New 40Ar/39Ar geochronology defines the age of the Campanian Ignimbrite at 39.28 ± 0.11 ka, about 2 ky older than the previous best estimate. Based on the distribution of the Campanian Ignimbrite and associated uppermost proximal lithic and polyclastic breccias, we suggest that the Campanian Ignimbrite magma was emitted from fissures activated along neotectonic Apennine faults rather than from ring fractures defining a Campi Flegrei caldera. Significantly, new volcanological, geochronological, and geochemical data distinguish previously unrecognized ignimbrite deposits in the Campanian Plain, accurately dated between 157 and 205 ka. These ages, coupled with a xenocrystic sanidine component > 315 ka, extend the volcanic history of this region by over 200 ky. Recent work also identifies a pyroclastic deposit, dated at 18.0 ka, outside of the topographic Campi Flegrei basin, expanding the spatial distribution of post-Campanian Ignimbrite deposits. These new discoveries emphasize the importance of continued investigation of the ages, distribution, volumes, and eruption dynamics of volcanic events associated with the Campanian Plain. Such information is critical for accurate assessment of the volcanic hazards associated with potentially large-volume explosive eruptions in close proximity to the densely populated Neapolitan region. Received August 1, 2000; accepted November 2, 2000  相似文献   

5.
Volcanic ash (tephra) erupted from the frequently active Campi Flegrei volcano forms layers in many palaeoenvironmental archives across Italy and the Mediterranean. Proximal deposits of 50 of the post-15 ka eruptions have been thoroughly sampled and analysed to produce a complete database of glass compositions (>1900 analyses) to aid identification of these units. The deposits of individual eruptions are compositionally diverse and this variability is often greater than that observed between different units. Many of the tephra units do not have a unique glass chemistry, with compositionally similar tephra often erupted over long periods of time (1000s years). Thus, glass chemistry alone is not enough to robustly correlate most of the tephra from Campi Flegrei, especially in the last 10 kyrs. In order to reliably correlate the eruption units it is important to take into account the stratigraphy, chronology, magnitude, and dispersal of the eruptions, which has been collated to aid identification. An updated chronology is also presented, which was constrained using Bayesian analysis (OxCal) of published radiocarbon dates and 40Ar/39Ar ages. All the data presented can be employed to help correlate post-15 ka tephra units preserved in archaeological and Holocene palaeoenvironmental archives. The new database of proximal glass compositions has been used to correlate proximal volcanic deposits through to distal tephra layers in the Lago di Monticchio record (Wulf et al., 2004, Wulf et al., 2008) and these correlations provide information on eruption stratigraphy and the tempo of volcanism at Campi Flegrei.  相似文献   

6.
Large volumes of silicic magma were produced on a very short timescale in the nested caldera complex of the SW Nevada volcanic field (SWNVF). Voluminous ash flows erupted in two paired events: Topopah Spring (TS, >1,200 km3, 12.8 Ma)–Tiva Canyon (TC, 1,000 km3, 12.7 Ma) and Rainier Mesa (RM, 1,200 km3, 11.6 Ma)–Ammonia Tanks (AT, 900 km3, 11.45 Ma; all cited ages are previously published 40Ar/39Ar sanidine ages). Within each pair, eruptions are separated by only 0.1–0.15 My and produced tuffs with contrasting isotopic values. These events represent nearly complete evacuation of sheet-like magma chambers formed in the extensional Basin and Range environment. We present ion microprobe ages from zircons in the zoned ash-flow sheets of TS, TC, RM, and AT in conjunction with δ18O values of zircons and other phenocrysts, which differ dramatically among subsequently erupted units. Bulk zircons in the low-δ18O AT cycle were earlier determined to exhibit ∼1.5‰ core-to-rim oxygen isotope zoning; and high-spatial resolution zircon analyses by ion microprobe reveal the presence of older grains that are zoned by 0.5–2.5‰. The following U–Pb isochron ages were calculated after correcting for the initial U–Pb disequilibria: AT (zircon rims: 11.7 ± 0.2 Ma; cores: 12.0 ± 0.1 Ma); pre-AT rhyolite lava: (12.0 ± 0.3 Ma); RM: 12.4 ± 0.3); TC: (13.2 ± 0.15 Ma); TS: (13.5 ± 0.2). Average zircon crystallization ages calculated from weighted regression or cumulative averaging are older than the Ar–Ar stratigraphy, but preserve the comparably short time gaps within each of two major eruption cycles (TS/TC, RM/AT). Notably, every sample yields average zircon ages that are 0.70–0.35 Ma older than the respective Ar–Ar eruption ages. The Th/U ratio of SWNVF zircons are 0.4–4.7, higher than typically found in igneous zircons, which correlates with elevated Th/U of the whole rocks (5–16). High Th/U could be explained if uranium was preferentially removed by hydrothermal solutions or is retained in the protolith during partial melting. For low-δ18O AT-cycle magmas, rim ages from unpolished zircons overlap within analytical uncertainties with the 40Ar/39Ar eruption age compared to core ages that are on average ∼0.2–0.3 My older than even the age of the preceding caldera forming eruption of RM tuff. This age difference, the core-to-rim oxygen isotope zoning in AT zircons, and disequilibrium quartz–zircon and melt-zircon isotopic fractionations suggest that AT magma recycled older zircons derived from the RM and older eruptive cycles. These results suggest that the low-δ18O AT magmas were generated by melting a hydrothermally-altered protolith from the same nested complex that erupted high-δ18O magmas of the RM cycle only 0.15 My prior to the eruption of the AT, the largest volume low-δ18O magma presently known.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

7.
Summary We present compositions of reheated melt inclusions in clinopyroxene phenocrysts from three mafic xenoliths in Breccia Museo, Campi Flegrei, Italy. Melt inclusion compositions are remarkably different from the compositions of known contemporary Campi Flegrei lavas, being significantly enriched in K2O and depleted in Na2O. Some differences are also evident in FeO* (total Fe as FeO) and TiO2 contents. The clinopyroxene phenocrysts could not have crystallised from Campi Flegrei magmas. We suggest that they originated from a volcanic system genetically very similar to, and possibly linked with, the >14 ka volcanic system of Mt. Somma, another Campanian volcano ∼ 30 km east from Campi Flegrei, from which Vesuvius subsequently developed. This result indicates a close relationship (or link) between the two volcanic systems which have until now been considered separate. We speculate that the link was established prior to eruption of the Neapolitan Yellow Tuff (NYT) (∼ 12 ka). The xenoliths were derived from a volcanic system older than the host breccias themselves. We suggest that this older volcanism had close similarities with the volcanism of the older products of Mt. Somma (∼25 ka). Received March 20, 2000; accepted November 2, 2000  相似文献   

8.
Zoned crystals can be important recorders of magmatic processes in space and time. However, in most situations, the temporal dimension is difficult to quantify. Here, we have employed secondary ion mass spectrometry depth profiling to excavate parallel pits into non-polished crystal faces of zircon to obtain ~5 μm resolution U–Th disequilibrium ages (one pit) that can be correlated with trace element zoning at sub-μm resolution derived from a second pit. Data from 17 crystals representing each of the four rhyolite eruptions of Tarawera volcano, an intra-caldera edifice within the Okataina Volcanic Centre, reveal diverse zircon growth conditions over time. Most crystals display rimward depletions in Zr/Hf and Ti, broadly consistent with cooling and crystallization. However, a significant fraction of crystals lacks these patterns and displays rimward trace element variations consistent with isothermal or prograde crystallization. Oscillatory zonation patterns in Y, Th, and U are superimposed on the Zr/Hf and Ti trends. Despite the limited number of crystals analyzed in this way, the striking lack of ubiquitous trace element zoning patterns in crystals from the same hand sample implies that fractional crystallization upon cooling was punctuated by magma recharge and crystal mixing affecting different parts of the magma reservoir. By combining data from all crystals, a systematic change to more heterogeneous trace element abundances is revealed by zircon crystal domains <45 ka following the Rotoiti caldera-forming eruption. This contrasts with the more uniform conditions of zircon crystallization lasting >100 ka prior to caldera formation and is best explained by the post-caldera system consisting of small, isolated melt pockets that evolved independently. An important conclusion is that the zircon ‘cargo’ in volcanic rocks reflects thermally and compositionally divergent processes that act near simultaneously in a magma storage region and not exclusively the conditions in the eruptible magma.  相似文献   

9.
《International Geology Review》2012,54(10):1246-1275
The Maçka subvolcanic intrusions (MSIs) in the eastern part of the Sakarya zone, northeastern Turkey, play a critical role in understanding the petrogenetic and geodynamic processes that took place during the growth of Late Cretaceous arc crust of this region. U–Pb zircon (79.97 ± 0.97 Ma) and two 40Ar–39Ar amphibole ages (average 81.37 ± 0.5 Ma) indicate that the MSIs were emplaced in Late Cretaceous (Campanian) time into the coeval volcanic rocks. A slightly younger zircon fission track (FT) age (73 ± 9 Ma) points to a rapid exhumation and cooling after crystallization. The intrusions are observed in areas less than 1 km2 in the field and contain abundant mafic microgranular enclaves (MMEs). The host rocks (HRs) are entirely composed of tonalite (SiO2 = 63–65 wt.%, Mg# = 43–52), and the MMEs are gabbro-diorite in composition (SiO2 = 53–57 wt.%, Mg# = 45–48). Both the HRs and the MMEs are I-type, high-K calc-alkaline in composition and display a metaluminous character. They are characterized by geochemical features typical for magmas of subduction-related environments. Chondrite-normalized REE patterns are moderately fractionated [(La/Yb)N = 6–11] and display slightly negative Eu anomalies (Eu/Eu* = 0.7–0.9), with weak concave-upward REE patterns, suggesting that amphibole fractionation played a role during their evolution. The MMEs have slightly different ISr (0.7081–0.7085) and εNd (?5.0 to ?5.4) values compared with those of their HRs (ISr = 0.7084–0.7087 and εNd = ?5.7 to ?6.9), indicating that variable amounts of crustal and mantle components were involved in the generation of parental magma to these rocks. All of these data, combined with those of previous regional studies, suggest that the MSIs are hybrid in origin, produced by the mixing of enriched lithospheric mantle- and lower crust-derived melts in an extensional arc setting that was caused by slab rollback.  相似文献   

10.
We report the first high-precision δ18O analyses of glass, δ18O of minerals, and trace element concentrations in glass and minerals for the 260–79 ka Central Plateau Member (CPM) rhyolites of Yellowstone, a >350 km3 cumulative volume of lavas erupted inside of 630 ka Lava Creek Tuff (LCT) caldera. The glass analyses of these crystal-poor rhyolites provide direct characterization of the melt and its evolution through time. The δ18Oglass values are low and mostly homogeneous (4.5 ± 0.14 ‰) within and in between lavas that erupted in four different temporal episodes during 200 ka of CPM volcanism with a slight shift to lower δ18O in the youngest episode (Pitchstone Plateau). These values are lower than Yellowstone basalts (5.7–6 ‰), LCT (5.5 ‰), pre-, and extracaldera rhyolites (~7–8 ‰), but higher than the earliest 550–450 ka post-LCT rhyolites (1–2 ‰). The glass δ18O value is coupled with new clinopyroxene analyses and previously reported zircon analyses to calculate oxygen isotope equilibration temperatures. Clinopyroxene records >900 °C near-liquidus temperatures, while zircon records temperatures <850 °C similar to zircon saturation temperature estimates. Trace element concentrations in the same glass analyzed for oxygen isotopes show evidence for temporal decreases in Ti, Sr, Ba, and Eu—related to Fe–Ti oxide and sanidine (±quartz) crystallization control, while other trace elements remain similar or are enriched through time. The slight temporal increase in glass Zr concentrations may reflect similar or higher temperature magmas (via zircon saturation) through time, while previosuly reported temperature decreases (e.g., Ti-in-quartz) might reflect changing Ti concentrations with progressive melt evolution. Multiple analyses of glass across single samples and in profiles across lava flow surfaces document trace element heterogeneity with compatible behavior of all analyzed elements except Rb, Nb, and U. These new data provide evidence for a three-stage geochemical evolution of these most recent Yellowstone rhyolites: (1) repeated batch melting events at the base of a homogenized low-δ18O intracaldera fill resulting in liquidus rhyolite melt and a refractory residue that sequesters feldspar-compatible elements over time. This melting may be triggered by conductive "hot plate" heating by basaltic magma intruding beneath the Yellowstone caldera resulting in contact rhyolitic melt that crystallizes early clinopyroxene and/or sanidine at high temperature. (2) Heterogeneity within individual samples and across flows reflects crystallization of these melts during preeruptive storage of magma at at lower, zircon-saturated temperatures. Compatible behavior and variations of most trace elements within individual lava flows are the result of sanidine, quartz, Fe–Ti oxide, zircon, and chevkinite crystallization at this stage. (3) Internal mixing immediately prior to and/or during eruption disrupts, these compositional gradients in each parental magma body that are preserved as melt domains distributed throughout the lava flows. These results based on the most recent and best-preserved volcanic products from the Yellowstone volcanic system provide new insight into the multiple stages required to generate highly fractionated hot spot and rift-related rhyolites. Our proposed model differs from previous interpretations that extreme Sr and Ba depletion result from long-term crystallization of a single magma body—instead we suggest that punctuated batch melting events generated a sanidine-rich refractory residue and a melt source region progressively depleted in Sr and Ba.  相似文献   

11.
The late Neogene to Quaternary Cappadocian Volcanic Province (CVP) in central Anatolia is one of the most impressive volcanic fields of Turkey because of its extent and spectacular erosionally sculptured landscape. The late Neogene evolution of the CVP started with the eruption of extensive andesitic-dacitic lavas and ignimbrites with minor basaltic lavas. This stage was followed by Quaternary bimodal volcanism. Here, we present geochemical, isotopic (Sr–Nd–Pb and δ18O isotopes) and geochronological (U–Pb zircon and Ar–Ar amphibole and whole-rock ages) data for bimodal volcanic rocks of the Ni?de Volcanic Complex (NVC) in the western part of the CVP to determine mantle melting dynamics and magmatic processes within the overlying continental crust during the Quaternary. Geochronological data suggest that the bimodal volcanic activity in the study area occurred between ca. 1.1 and ca. 0.2 Ma (Pleistocene) and comprises (1) mafic lavas consisting of basalts, trachybasalts, basaltic andesites and scoria lapilli fallout deposits with mainly basaltic composition, (2) felsic lavas consisting of mostly rhyolites and pumice lapilli fall-out and surge deposits with dacitic to rhyolitic composition. The most mafic sample is basalt from a monogenetic cone, which is characterized by 87Sr/86Sr = 0.7038, 143Nd/144Nd = 0.5128, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68, suggesting a moderately depleted signature of the mantle source. Felsic volcanic rocks define a narrow range of 143Nd/144Nd isotope ratios (0.5126–0.5128) and are homogeneous in Pb isotope composition (206Pb/204Pb = 18.84–18.87, 207Pb/204Pb = 15.64–15.67 and 208Pb/204Pb = 38.93–38.99). 87Sr/86Sr isotopic compositions of mafic (0.7038–0.7053) and felsic (0.7040–0.7052) samples are similar, reflecting a common mantle source. The felsic rocks have relatively low zircon δ18O values (5.6 ± 0.6 ‰) overlapping mantle values (5.3 ± 0.3 %), consistent with an origin by fractional crystallization from a mafic melt with very minor continental crustal contamination. The geochronological and geochemical data suggest that mafic and felsic volcanic rocks of the NVC are genetically closely related to each other. Mafic rocks show a positive trend between 87Sr/86Sr and Th, suggesting simultaneous assimilation and fractional crystallization, whereas the felsic rocks are characterized by a flat or slightly negative variation. High 87Sr/86Sr gneisses are a potential crustal contaminant of the mafic magmas, but the comparatively low and invariant 87Sr/86Sr in the felsic volcanics suggests that these evolved dominantly by fractional crystallization. Mantle-derived basaltic melts, which experienced low degree of crustal assimilation, are proposed to be the parent melt of the felsic volcanics. Geochronological and geochemical results combined with regional geological and geophysical data suggest that bimodal volcanism of the NVC and the CVP, in general, developed in a post-collisional extensional tectonic regime that is caused by ascending asthenosphere, which played a key role during magma genesis.  相似文献   

12.
The diamondiferous Ellendale 9 (E9) pipe is a funnel-shaped maar-diatreme volcano consisting of inward-dipping tuff sequences intruded by lamproite plugs and dykes. The host rocks for the E9 pipe are Permian sandstones. The multiple lithological contacts exposed within the mined maar volcano provide a natural laboratory in which to study the effect of volcanic processes on U–Th–Pb–He systematics. Zircon from the regional sandstone and E9 lamproite display a bimodal distribution of ages on (U–Th)/He–U/Pb plots. The zircon U/Pb ages for the E9 pipe (n?=?52) range from 440 to 2,725 Ma, while the cluster of (U–Th)/He ages for the lamproite dyke zircon indicate that dyke emplacement occurred at 20.6?±?2.8 Ma, concordant with a maximum emplacement age of about ≤22 Ma from phlogopite 40Ar/39Ar. These ages indicate a xenocrystic origin for the zircon entrained in the E9 dyke. The U/Pb ages of detrital zircon from the regional sandstone host (373–3,248 Ma; n?=?41) are indistinguishable from those of the lamproite zircon xenocrysts, whereas the detrital zircon in the host sandstone yield (U–Th)/He ages from 260 to 1,500 Ma. A thermochronology traverse across the E9 lamproite dyke reveals that the zircon (U–Th)/He ages in the host sandstone have not been significantly thermally reset during dyke emplacement, even at the contact. The capability of the zircon (U–Th)/He method to distinguish deep, mantle source lithologies from upper crustal source lithologies could be used in geochemical exploration for diamonds. Pre-screening of detrital samples using etching and helium assay methods will improve the efficiency and decrease the cost of greenfields exploration.  相似文献   

13.
The Campi Flegrei caldera in southern Italy is one of the greatest geohazard areas on Earth. Evidence of an active magmatic and geothermal system is provided by ongoing ground uplift, with volcano-tectonic and long-period (LP) seismicity, the persistent degassing of ~1500 tonnes of CO2 per day, the presence of hot fumaroles at temperatures of 90–150 °C, brine-rich aquifers (with total dissolved solids up to 33 g l?1) and high thermal gradients in the crust (with temperatures reaching 420 °C at 3,050 m b.s.l.). Since the 1940s, more than 100 exploratory boreholes have been drilled in the area to depths of 80–3,100 m by the Azienda Geologica Italiana Petroli (AGIP) and the Società Anonima Forze Endogene Napoletane (SAFEN). To date, however, no systematic reanalysis of the drilling data has been carried out, and the buried volcanic structure has not been updated using the most recent scientific results and previous findings. By integrating unpublished data from the AGIP and SAFEN reports with published information from geological, volcanological, petrological, petrophysical and geophysical studies, this paper presents an improved picture of the Campi Flegrei caldera that will be useful for volcanic hazard assessment and mitigation in the Naples area and for future research planning. The results suggest that intra-caldera activity has been influenced by how the magmatic system at depths greater than about 4 km has determined the transfer of magma, volatiles, and heat to the overlying geothermal system and, ultimately, to the surface. In particular, intriguing is that the most volcanically active central-eastern sector of the caldera, which is subject to intense bradyseismic ground movement and gas emission, coincides with a structurally delimited subsurface rock volume characterized by an uprising of the 100 °C isotherm, a deep water supply to the shallower aquifer, the early disappearance of secondary calcite, LP seismicity and high seismic S-wave attenuation. In this area, we also document evidence of repeated injection at depths of c. 1.5–3.0 km of isolated and small-volume batches of magma, where occurred their crystallization and degassing. Shallow intrusions and degassing of magma are thus identified as two of the key processes that drive unrest in Campi Flegrei.  相似文献   

14.
A silicic ignimbrite flare-up episode occurred in the Pannonian Basin during the Miocene, coeval with the syn-extensional period in the region. It produced important correlation horizons in the regional stratigraphy; however, they lacked precise and accurate geochronology. Here, we used U–Pb (LA-ICP-MS and ID-TIMS) and (U–Th)/He dating of zircons to determine the eruption ages of the youngest stage of this volcanic activity and constrain the longevity of the magma storage in crustal reservoirs. Reliability of the U–Pb data is supported by (U–Th)/He zircon dating and magnetostratigraphic constraints. We distinguish four eruptive phases from 15.9 ± 0.3 to 14.1 ± 0.3 Ma, each of which possibly includes multiple eruptive events. Among these, at least two large volume eruptions (>10 km3) occurred at 14.8 ± 0.3 Ma (Demjén ignimbrite) and 14.1 ± 0.3 Ma (Harsány ignimbrite). The in situ U–Pb zircon dating shows wide age ranges (up to 700 kyr) in most of the crystal-poor pyroclastic units, containing few to no xenocrysts, which implies efficient recycling of antecrysts. We propose that long-lived silicic magma reservoirs, mostly kept as high-crystallinity mushes, have existed in the Pannonian Basin during the 16–14 Ma period. Small but significant differences in zircon, bulk rock and glass shard composition among units suggest the presence of spatially separated reservoirs, sometimes existing contemporaneously. Our results also better constrain the time frame of the main tectonic events that occurred in the Northern Pannonian Basin: We refined the upper temporal boundary (15 Ma) of the youngest counterclockwise block rotation and the beginning of a new deformation phase, which structurally characterized the onset of the youngest volcanic and sedimentary phase.  相似文献   

15.
The Campi Flegrei caldera, an active volcanic field in the Campanianprovince, Italy, is a nested structure generated by the CampanianIgnimbrite (37 ka BP) and the Neapolitan Yellow Tuff (12 kaBP) eruptions. Since at least 60 ka BP Campi Flegrei has producedmagmas with variable chemical and Sr isotopic compositions.87Sr/86Sr ratios increase through time from 0·7068 to0·7086, with the highest ratios detected in the least-evolvedshoshonitic products. The origin of this progressive Sr isotopicvariability has been investigated using new Sr, Nd and Pb isotopicdata for volcanic rocks and entrained xenoliths. The data obtainedare combined and discussed with previous geochemical and Srisotope data and used to suggest a multi-stage evolution forthe magmatic system, mainly involving deeper and shallower crustalmagma storage reservoirs. The deeper reservoir is proposed tobe a magma chamber periodically refilled by primitive maficmagmas which subsequently undergo contamination by crustal material.The assimilated crustal material is represented by xenolithsrecovered in the shoshonitic pyroclastic products. Magma batchesoriginating from the deeper reservoir migrated towards the surfaceand fed a shallower complex magmatic system. The deeper chamberwas tapped during the eruption of least evolved magmas by regionalfault systems. In addition to crystal–liquid fractionation,open-system processes occurred in the shallower system. KEY WORDS: Campi Flegrei; crustal contamination; xenoliths  相似文献   

16.
Combined U-Pb zircon and 40Ar/39Ar sanidine data from volcanic rocks within or adjacent to the Geysers geothermal reservoir constrain the timing of episodic eruption events and the pre-eruptive magma history. Zircon U-Pb concordia intercept model ages (corrected for initial 230Th disequilibrium) decrease as predicted from stratigraphic and regional geological relationships (1σ analytical error): 2.47 ± 0.04 Ma (rhyolite of Pine Mountain), 1.38 ± 0.01 Ma (rhyolite of Alder Creek), 1.33 ± 0.04 Ma (rhyodacite of Cobb Mountain), 1.27 ± 0.03 Ma (dacite of Cobb Valley), and 0.94 ± 0.01 Ma (dacite of Tyler Valley). A significant (∼0.2-0.3 Ma) difference between these ages and sanidine 40Ar/39Ar ages measured for the same samples demonstrates that zircon crystallized well before eruption. Zircons U-Pb ages from the underlying main-phase Geysers Plutonic Complex (GPC) are indistinguishable from those of the Cobb Mountain volcanics. While this is in line with compositional evidence that the GPC fed the Cobb Mountain eruptions, the volcanic units conspicuously lack older (∼1.8 Ma) zircons from the shallowest part of the GPC. Discontinuous zircon age populations and compositional relationships in the volcanic and plutonic samples are incompatible with zircon residing in a single long-lived upper crustal magma chamber. Instead we favor a model in which zircons were recycled by remelting of just-solidified rocks during episodic injection of more mafic magmas. This is consistent with thermochronologic evidence that the GPC cooled below 350° C at the time the Cobb Mountain volcanics were erupted.  相似文献   

17.
The Solonker suture zone of the Central Asian Orogenic Belt (CAOB) records the final closure of the Paleo-Asian Ocean. The nature and timing of final collision along the Solonker suture has long been controversial, partly because of an incomplete record of isotopic ages and differing interpretations of the geological environments of key tectonic units. The Xilin Gol Complex, consisting of strongly deformed gneisses, schists and amphibolites, is such a key tectonic unit within the CAOB. Lenticular or quasi-lamellar amphibolites are dispersed throughout the complex, intercalated with biotite–plagioclase gneiss. Both rock types experienced amphibolite-facies metamorphism. The protolith of the amphibolite is a basic rock that intruded into the biotite–plagioclase gneiss at 319 ± 4 Ma based on LA-ICPMS zircon U–Pb dating. The basic intrusion was sourced from a modified magma that experienced crystal fractionation and was admixed with slab-derived fluids. The slab-derived fluids, which formed during Early Paleozoic oceanic subduction along the north-dipping Sonidzuoqi–Xilinhot subduction zone, mixed with the magma source and produced subduction-related geochemical signatures superimposed on volcanic arc chemistry. After Early Paleozoic oceanic subduction and arc-continent collision, a transient stage of extension occurred between 313 and 280 Ma in the Sonidzuoqi–Xilinhot area. Deformation and recrystallization during the switch from compression to extension and reheating by the later magmatic intrusions reset the isotope systems of minerals in the Xilin Gol Complex, recorded by a 312.2 ± 1.5 Ma biotite 40Ar/39Ar age from biotite–plagioclase gneiss, a 309 ± 12 Ma zircon intercept age and a 307.5 ± 3.5 Ma hornblende 40Ar/39Ar age from amphibolites in the complex. There was an arc/forearc-related marine basin at the southern margin of the Xilin Gol Complex during the Permian. The closure of the oceanic basin led to Late Paleozoic–Middle Triassic north-dipping subduction beneath the Xilin Gol Complex and induced the amphibolite-facies metamorphism of the complex. The final suturing of the Solonker zone occurred from 269 to 231 Ma. This latest amphibolite-facies metamorphism with pressures of 0.31–0.39 GPa and temperatures of 620–660 °C was recorded at 263.4 ± 1.4 Ma to the Xilin Gol Complex, as indicated by the hornblende 40Ar/39Ar age from the amphibolites, as well as several zircon ages of 260 ± 3–231 ± 3 Ma. The Xilin Gol Complex documented the progressive accretion of a single, long-lived subduction system at the southern margin of the south Mongolian microcontinent from the Early Paleozoic (~452 Ma) to Middle Triassic (~231 Ma). The CAOB shows protracted collision prior to final suturing.  相似文献   

18.
The Mount Widderin shield volcano is located near Skipton, western Victoria, in the Western Plains subprovince of the monogenetic Pliocene–Holocene Newer Volcanic Province (NVP). Radiometric ages for lavas in the Hamilton–Skipton–Derrinallum area are few, owing to limited suitable outcrop for K–Ar or 40Ar/39Ar geochronology studies. Existing age constraints for flows in this area have been inferred from Regolith Landform Units (RLUs), complemented by a small number of K–Ar studies on ≥1 Ma flows. Although the RLU approach provides a valuable overview of relative eruption ages across the NVP, it is of limited use in eruption frequency studies. Additional radio-isotopic ages are required to refine age ranges for individual RLUs, and to validate previous assignment of individual flows to specific RLUs. We report a new, high-precision 40Ar/39Ar age of 389 ± 8 ka (2σ) for a Mount Widderin basalt sample. Based on this age and geomorphic observations, we propose that both the Widderin and Elephant lava flows be reassigned from the Eccles RLU to the Rouse RLU. We use the 389 ± 8 ka (2σ) age for Widderin, along with published K–Ar ages, to anchor a stratigraphic sequence of 15 individual flows in the Hamilton–Skipton–Derrinallum area, demonstrating that intermittent volcanism has occurred in this area from ≥3 Ma to ≤0.389 Ma. Within the limits of available data for the NVP, this time span of volcanic activity is second only to that of the Melbourne area. We consider the significance of the Widderin eruption age, in conjunction with published age constraints for maars and scoria cones of the Western Plains subprovince, building on previous studies that have focused solely on lava flow ages. The inclusion of the additional data weakens the argument for a decrease in volcanic activity after ca 0.9 Ma as implied by published ages for lava flows only. Additional detailed combined geochronology–geomorphology studies of lavas, scoria cones and maars in strategically selected small areas are advocated to better understand eruption frequency across the NVP.  相似文献   

19.
~(40)Ar/~(39)Ar and zircon U-Pb geochronological and whole-rock geochemical analyses for the Laozanggou intermediate-acidic volcanic rocks from the western Qinling orogenic belt,Central China,constrain their petrogenesis and the nature of the Late Mesozoic lithospheric mantle.These volcanic rocks yield hornblende or whole-rock ~(40)Ar/~(39)Ar plateau ages of 128.3-129.7 Ma and zircon U-Pb age of131.3±1.3 Ma.They exhibit Si02 of 56.86-66.86 wt.%,K_2 O of 0.99-2.46 wt.% and MgO of 1.03-4.47 wt.%,with Mg# of 42-56.They are characterized by arc-like geochemical signatures with significant enrichment in LILE and LREE and depletion in HFSE.All the samples have enriched Sr-Nd isotopic compositions with initial ~(87)Sr/~(86)Sr ratios ranging from 0.7112 to 0.7149 and ε_(Nd)(t) values from 10.2 to 6.3.Such geochemical signatures suggest that these volcanic rocks were derived from enriched lithospherederived magma followed by the assimilation and fractional crystallization(AFC)process.The generation of the enriched lithospheric mantle is likely related to the modification of sediment-derived fluid in response to the Triassic subduction/collision event in Qinling orogenic belt.The early Cretaceous detachment of the lithospheric root provides a reasonable mechanism for understanding the petrogenesis of the Laozanggou volcanic sequence in the western Qinling orogenic belt.  相似文献   

20.
Long-lived intra-oceanic arcs of Izu-Bonin-Marianas (IBM)-type are built on thick, granodioritic crust formed in the absence of pre-existing continental crust. International Ocean Discovery Program Expedition 350, Site U1437, explored the IBM rear arc to better understand continental crust formation in arcs. Detailed petrochronological (U–Pb geochronology combined with trace elements, oxygen and hafnium isotopes) characterizations of zircon from Site U1437 were carried out, taking care to exclude potential contaminants by (1) comparison of zircon ages with ship-board palaeomagnetic and biostratigraphic ages and 40Ar/39Ar geochronology, (2) analysing zircon from drill muds for comparison, (3) selectively carrying out in situ analysis in petrographic thin sections, and (4) minimizing potential laboratory contamination through using pristine equipment during mineral separation. The youngest zircon ages in Site U1437 are consistent with 40Ar/39Ar and shipboard ages to a depth of ~1390 m below sea floor (mbsf) where Igneous Unit Ig 1 yielded an 40Ar/39Ar age of 12.9 ± 0.3 Ma (all errors 2σ). One single zircon (age 15.4 ± 1.0 Ma) was recovered from the deepest lithostratigraphic unit drilled, Unit VII (1459.80–1806.5 mbsf). Site U1437 zircon trace element compositions are distinct from those of oceanic and continental arc environments and differ from those generated in thick oceanic crust (Iceland-type) where low-δ18O evolved melts are produced via re-melting of hydrothermally altered mafic rocks. Ti-in-zircon model temperatures are lower than for mid-ocean ridge rocks, in agreement with low zircon saturation temperatures, suggestive of low-temperature, hydrous melt sources. Zircon oxygen (δ18O = 3.3–6.0‰) and hafnium (εHf = + 10–+16) isotopic compositions indicate asthenospheric mantle sources. Trace element and isotopic differences between zircon from Site U1437 rear-arc rocks and the Hadean detrital zircon population suggest that preserved Hadean zircon crystals were probably generated in an environment different from modern oceanic convergent margins underlain by depleted mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号