首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Resource Geology》2018,68(3):275-286
The volcanic‐hosted Xiangshan uranium orefield is the largest uranium deposit in South China. Recent exploration has discovered extensive Pb–Zn mineralization beneath the uranium orebodies. Detailed geological investigation reveals that the major metallic minerals include pyrite, sphalerite, galena, and chalcopyrite, whilst the major non‐metallic minerals include quartz, sericite, and calcite. New δ18Ofluid and δDfluid data indicate that the ore‐forming fluids were mainly derived from magmatic, and the sulfide δ34S values (2.2–6.9‰) suggest a dominantly magmatic sulfur source. The Pb isotope compositions are homogeneous (206Pb/204Pb = 18.120–18.233, 207Pb/204Pb = 15.575–15.698, and 208Pb/204Pb = 37.047–38.446). The 87Sr/86Sr ratios of sulfide minerals range from 0.7197 to 0.7204, which is much higher than volcanic rocks and fall into the range of metamorphic basement. Lead and strontium isotopic compositions indicate that the metallogenic materials probably were derived from metamorphic basement. Pyrite Rb–Sr dating of the ores yielded 131.3 ± 4.0 Ma, indicating that the Pb–Zn mineralization occurred in the Early Cretaceous.  相似文献   

2.
The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD_(H2O-SMOW) and δ~(18)O_(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H_2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ~(13)C_(PDB) values ranging from-6.2‰ to-4.1‰ and δ~(18)O_(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ~(34)S_(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The ~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.  相似文献   

3.
Associated with the Cretaceous Okorusu carbonatite complex (Namibia) is a hydrothermal fluorite mineralization hosted in Pan-African country rock marbles, which resulted from fluid-rock reaction between the marbles and orthomagmatic, carbonatitic fluids expelled from the carbonatite. Yellow fluorite I was deposited in veins up to 5 cm away from the wallrock contact, followed by purple and colorless fluorite II, smoky quartz and barite, a Mn-rich crust on early calcite, and pure calcite. This clear-cut sequence of mineral growth allows an investigation into fluid-rock interaction processes between the marble and the migrating carbonatitic fluid, and element fractionation patterns between the fluid and subsequent hydrothermal precipitates.Fluorite I shows a progressive change in color from dark yellow to colorless with purple laminations over time of deposition. Subsequent fluorite I precipitates show an increase in Ca, and a continuous decrease in F, Sr, REE, Y, Th, U and Pb contents. The ratios (Eu/Eu*)cn, Th/Pb and U/Pb increase whereas Y/Ho, Th/U and (La/Yb)cn decrease. The Sr-isotopic composition remains constant at 87Sr/86Sr = 0.70456-0.70459, but with varying, highly radiogenic Pb (206Pb/204Pb = 32-190, 238U/204Pb = 7-63). Fluorite II has 87Sr/86Sr = 0.70454-0.70459, 206Pb/204Pb = 18.349, and 207Pb/204Pb = 15.600, and a chemical composition similar to youngest fluorite I. The Mn-rich crust on early calcite accumulated REE, Ba, Pb, Zr, Cs, Th and U, developing into pure calcite with a prominent negative Ce anomaly and successively more radiogenic Sr. The calculated degrees of fluid-rock interaction, f = weight fraction of fluid/(fluid + marble), decrease from fluorite I and most fluorite II (f = 0.5) to calcite (f = 0.2-0.3) and hydrothermal quartz (f ? 0.1). A crush-leach experiment for fluid inclusions in the hydrothermal quartz yielded a Rb-Sr isochron age of 103 ± 12 Ma. Crush-leach analysis for the carbonatitic fluid trapped in the wallrock yielded a trend from the fluid leachate to the host quartz (206Pb/204Pb = 18.224 and 18.602, 207Pb/204Pb = 15.616 and 15.636, respectively) extending from carbonatite towards crustal rocks.Calculated trace element distribution coefficients fluorite/fluid are below unity throughout, and increase from La to Yb. Elements largely excluded from fluorite (Ba, Pb, LREE relative to HREE) were incorporated later into the Mn-rich crust on calcite. The trace element patterns of the hydrothermal minerals are related to changing aCO2 and aF in the fluid during continued fluid-marble reaction. A predominance of carbonate over fluoride complexing in the fluid as reactions proceeded controlled the Y/Ho, Th/U and REE patterns in the fluid and the crystallizing phases. Deviations from these trends indicate discontinuous processes of fluid-rock reaction.  相似文献   

4.
U–Pb isotopic analyses indicate that ores from the South Zhuguang uranium ore field, south China, have high common (non‐radiogenic) Pb contents, with variable and relatively radiogenic initial Pb contents. The U–Pb isochron method was used to date these ores, with plots of 208Pb/204Pb and 207Pb/204Pb versus 206Pb/204Pb being used to identify sample suites with similar initial Pb isotopic ratios and to normalize variable initial Pb isotopic ratios. The resulting U–Pb isochrons indicate two substages of uranium mineralization at ~57 and 52 Ma, with a later hydrothermal reformation at ~49 Ma, which homogenized Pb isotopic compositions. Initial Pb isotopic systematics indicate that the ore‐forming fluid was characterized by high 206Pb/204Pb and 207Pb/204Pb ratios and low 208Pb/204Pb ratios, suggesting that the ore‐forming fluid was sourced from Cretaceous–Paleogene red‐bed basins, rather than from magma or the mantle, with consideration of mineralization ages.  相似文献   

5.
The Nanmushu Zn‐Pb deposit, hosted by the Neoproterozoic Dengying Formation dolostone, is located in the eastern part of the Micangshan tectonic belt at the northern margin of the Yangtze Craton, China. This study involves a systematic field investigation, detailed mineralogical study, and Rb‐Sr and Pb isotopic analyses of the deposit. The results of Rb‐Sr isotopic dating of coexisting sphalerite and galena yield an isochron age of 486.7 ± 3.1 Ma, indicating the deposit was formed during the Late Cambrian to Early Ordovician. This mineralization age is interpreted to be related to the timing of destruction of the paleo‐oil reservoir in the Micangshan tectonic belt. All initial 87Sr/86Sr ratios of sphalerite and galena (0.70955–0.71212) fall into the range of the Mesoproterozoic Huodiya Group basement rocks (0.70877–0.71997) and Dengying Formation sandstone (0.70927–0.71282), which are significantly higher than those of Cambrian Guojiaba Formation limestone (0.70750–0.70980), Cambrian Guojiaba Formation carbonaceous slate (0.70766–0.71012), and Neoproterozoic Dengying Formation dolostone (0.70835–0.70876). Such Sr isotope signatures suggest that the ore strontium was mainly derived from a mixed source, and both of the Huodiya Group basement rocks and Dengying Formation sandstone were involved in ore formation. Both sphalerite and galena are characterized by an upper‐crustal source of lead (206Pb/204Pb = 17.849–18.022, 207Pb/204Pb = 15.604–15.809, and 208Pb/204Pb = 37.735–38.402), and their Pb isotopes are higher than, but partly overlap with, those of the Huodiya Group basement rocks, but differ from those of the Guojiaba and Dengying Formations. This suggests that the lead also originated from a mixed source, and the Huodiya Group basement rocks played a significant role. The Sr and Pb isotopic results suggest that the Huodiya Group basement rocks were one of the most important sources of metallogenic material. The geological and geochemical characteristics show that the Nanmushu Zn‐Pb deposit is similar to typical Mississippi Valley type, and the fluid mixing may be a reasonable metallogenic mechanism for Nanmushu Zn‐Pb deposit.  相似文献   

6.
湘中锡矿山锑矿床的Sr同位素地球化学   总被引:21,自引:3,他引:21  
对湘中锡矿山锑矿床围岩灰岩、硅化灰岩、煌斑岩和脉石矿物进行了系统的Sr同位素研究。结果表明,矿区围岩发生了隐性蚀变,灰岩中Sr亏损,而^87Sr/^86Sr高于同时代的海相碳酸盐,这种隐性蚀变很可能是水/岩反应所致。矿体附近的硅化灰岩中Sr更加亏损,而^87Sr/^86Sr明显增加。成矿期方解石的^87Sr/^86Sr较高,成矿体系中变化的W/R比造成了方解石中^87Sr/^86Sr值的明显波动。成矿流体为一富放射成因^87Sr的溶液。成矿流体来自或流经基底地层,流体中的Sr由基底碎屑岩提供,矿质Sb也可能主要来自富Sb的元古宇基底。水/岩反应的理论模拟显示,锡矿山成矿流体中的Sr约为3.0μg/g,^87Sr/^86Sr为0.717;蚀变-成矿体系为一开放体系,矿石的沉淀机制主要为水/岩反应,成矿体系中W/R 比较高。  相似文献   

7.
Located in the western Yangtze Block, the Qingshan Pb–Zn deposit, part of the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province, contains 0.3 million tonnes of 9.86 wt.% Pb and 22.27 wt.% Zn. Ore bodies are hosted in Carboniferous and Permian carbonate rocks, structurally controlled by the Weining–Shuicheng anticline and its intraformational faults. Ores composed of sphalerite, galena, pyrite, dolomite, and calcite occur as massive, brecciated, veinlets, and disseminations in dolomitic limestones.

The C–O isotope compositions of hydrothermal calcite and S–Pb–Sr isotope compositions of Qingshan sulphide minerals were analysed in order to trace the sources of reduced sulphur and metals for the Pb–Zn deposit. δ13CPDB and δ18OSMOW values of calcite range from –5.0‰ to –3.4‰ and +18.9‰ to +19.6‰, respectively, and fall in the field between mantle and marine carbonate rocks. They display a negative correlation, suggesting that CO2 in the hydrothermal fluid had a mixed origin of mantle, marine carbonate rocks, and sedimentary organic matter. δ34S values of sulphide minerals range from +10.7‰ to +19.6‰, similar to Devonian-to-Permian seawater sulphate (+20‰ to +35‰) and evaporite rocks (+23‰ to +28‰) in Carboniferous-to-Permian strata, suggesting that the reduced sulphur in hydrothermal fluids was derived from host-strata evaporites. Ores and sulphide minerals have homogeneous and low radiogenic Pb isotope compositions (206Pb/204Pb = 18.561 to 18.768, 207Pb/204Pb = 15.701 to 15.920, and 208Pb/204Pb = 38.831 to 39.641) that plot in the upper crust Pb evolution curve, and are similar to those of Devonian-to-Permian carbonate rocks. Pb isotope compositions suggest derivation of Pb metal from the host rocks. 87Sr/86Sr ratios of sphalerite range from 0.7107 to 0.7136 and (87Sr/86Sr)200Ma ratios range from 0.7099 to 0.7126, higher than Sinian-to-Permian sedimentary rocks and Permian Emeishan flood basalts, but lower than Proterozoic basement rocks. This indicates that the ore strontium has a mixture source of the older basement rocks and the younger cover sequence. C–O–S–Pb–Sr isotope compositions of the Qingshan Pb–Zn deposit indicate a mixed origin of the ore-forming fluids and metals.  相似文献   

8.
The Sr,Nd and Pb isotopic characteristics of the Wudang basic dyke swarms and basic volcanics of the Yaolinghe Group show that they were derived from the same multi-component mixing source in the mantle.The Wudang basic dyke swarms have(^87Sr/^86Sr)i=0.6905-0.7061,εNd(t)=-1.9-5.0,△^208Pb/^204Pb=35.49-190.26,△^207Pb/^204Pb=Th/Ta and a wide range of La/Yb ratios;and the basic volcanics of the Yaolinghe Group have(^87Sr/^86Sr)i=0.6487-0.7075,εNd(t)=0.11-3.94,△^208Pb/^204Pb=-81.58-219.95,△^207Pb/^204Pb=4.44-16.68and higher Th/Ta and La/Yb ratios,indicating that their source is a mixture of DM and EMⅡ,and the basic volcanics of the Yaolinghe Group were contaminated by crust materials en rout to the surface.Based on the geochemical features of continental tholeiitic basalts and being products of differen tacies derived from the same source,it can be concluded that an important rifting event in the South Qinling basement block occurred during Neoproterozoic,followed by a setting of oceanic basic in the Early Paleozoic.  相似文献   

9.
Neodymium, Sr and Pb isotopic compositions, along with rare earth element (REE) concentrations were determined for twelve black ores and one yellow ore from twelve localities of the Kuroko deposits, Japan. The ores were generated by submarine hydrothermal activity during the Miocene age. Neodymium isotopic compositions of the ores (Nd: –4.9 to +6.5) mostly overlap with spatially associated igneous rocks. On a Nd versus Sr isotopic correlation diagram, however, 87Sr/86Sr ratios are shifted from the associated igneous rocks towards the higher contemporaneous seawater ratio. REE patterns are highly variable, ranging from light REE enriched to depleted, and show no Ce anomalies, as would be expected if they were derived from seawater. These results suggest that the REEs contained in ores were mainly derived from the associated igneous rocks, but that the ore Sr is a mixture derived from both seawater and the igneous rocks. Most Pb isotopic compositions fall within the range defined by the associated igneous rocks (206Pb/204Pb=18.35–18.84, 207Pb/204Pb=15.59–15.97 and 208Pb/204Pb=38.53–39.90), although several samples have very radiogenic compositions that were most likely derived from basement rocks. Our new Pb isotopic results display greater variation, and have a larger range of more radiogenic compositions than has been noted previously for these ores. In addition, the black ore with the most radiogenic Pb isotopic composition also has the least radiogenic Nd isotopic composition. This suggests that at least some of the Pb contained in the ores was derived mainly from older basement rocks. The large positive Eu anomalies for some black ores are consistent with a high-temperature origin for the parental fluids, irrespective of the source rock. The single yellow ore examined, however, has a small negative Eu anomaly, which may indicate derivation from a lower temperature fluid. Previous studies suggested that the Kuroko ores were formed in the presence of organic materials in an anoxic basin. Combined Nd, Sr, Pb and Os isotopic and REE abundance data indicate that multiple sources were involved in the genesis of Kuroko ores.  相似文献   

10.
The Zhaxikang Pb-Zn-Ag-Sb deposit, the largest polymetallic deposit known in the Himalayan Orogen of southern Tibet, is characterized by vein-type mineralization that hosts multiple mineral assemblages and complicated metal associations. The deposit consists of at least six steeply dipping veintype orebodies that are hosted by Early Jurassic black carbonaceous slates and are controlled by a Cenozoic N–S-striking normal fault system. This deposit records multiple stages of mineralization that include an early period(A) of massive coarse-grained galena–sphalerite deposition and a later period(B) of Sb-bearing vein-type mineralization. Period A is only associated with galena–sphalerite mineralization, whereas period B can be subdivided into ferrous rhodochrosite–sphalerite–pyrite, quartz–sulfosalt–sphalerite, calcite–pyrite, quartz–stibnite, and quartz-only stages of mineralization. The formation of brecciated galena and sphalerite ores during period A implies reworking of pre-existing Pb–Zn sulfides by Cenozoic tectonic deformation, whereas period B mineralization records extensive openspace filling during ore formation. Fluid inclusion microthermometric data indicate that both periods A and B were associated with low–medium temperature(187–267°C) and low salinity(4.00–10.18% wt. Na Cl equivalent) ore-forming fluids, although variations in the physical–chemical nature of the period B fluids suggest that this phase of mineralization was characterized by variable water/rock ratios. Microprobe analyses indicate that Fe concentrations in sphalerite decrease from period A to period B, and can be divided into three groups with Fe S concentrations of 8.999–9.577, 7.125–9.109, 5.438–1.460 mol.%. The concentrations of Zn, Sb, Pb, and Ag within orebodies in the study area are normally distributed in both lateral and vertical directions, and Pb, Sb, and/or Ag concentrations are positive correlation within the central part of these orebodies, but negatively correlate in the margins. Sulfide S isotope compositions are highly variable(4‰–13‰), varying from 4‰ to 11‰ in period A and 10‰ to 13‰ in period B. The Pb isotope within these samples is highly radiogenic and defines linear trends in 206 Pb/204 Pb vs. 207 Pb/204 Pb and 206 Pb/204 Pb vs. 208 Pb/204 Pb diagrams, respectively. The S and Pb isotopic characteristics indicate that the period B orebodies formed by mixing of Pb–Zn sulfides and regional Sbbearing fluids. These features are indicative of overprinting and remobilization of pre-existing Pb–Zn sulfides by Sb-bearing ore-forming fluids during a post-collisional period of the Himalayan Orogeny. The presence of similar ore types in the north Rhenish Massif that formed after the Variscan Orogeny suggests that Zhaxikang-style mineralization may be present in other orogenic belts, suggesting that this deposit may guide Pb–Zn exploration in these areas.  相似文献   

11.
12.
The Hashitu molybdenum deposit is located in the southern part of the Great Hinggan Range,NE China.Molybdenum mineralization is hosted by and genetically associated with monzogranite and porphyritic syenogranite.Sr-Nd-Pb isotopes of the intrusions show that the porphyritic syenogranite has initial~(87)Sr/~(86)Sr ratios of 0.70418-0.70952,ε_(Nd)(t)values of 1.3 to 2.1(t=143Ma),~(206)Pb/~(204)Pb ratios of 19.191-19.573,~(207)Pb/~(204)Pb ratios of 15.551-15.572,and~(208)Pb/~(204)Pb ratios of38.826-39.143.The monzogranite has initial~(87)Sr/~(86)Sr ratios of 0.70293-0.71305,ε_(Nd)(t)values of 1.1 to2.0(t=147 Ma),~(206)Pb/~(204)Pb ratios of 19.507-20.075,~(207)Pb/~(204)Pb ratios of 15.564-15.596,and~(208)Pb/~(204)Pb ratios of 39.012-39.599.The calculated Nd model ages(T_(DM))for monzogranite and porphyritic syenogranite range from 866 to 1121 Ma and 795 to 1020 Ma,respectively.The granitic rocks in the Hashitu area have the same isotope range as granites in the southern parts of the Great Hinggan Range.The isotope composition indicates that these granites are derived from the partial melting of a juvenile lower crust originating from a depleted mantle with minor contamination by ancient continental crust.The integrating our results with published data and the Late Mesozoic regional tectonic setting of the region suggest that the granites in the Hashitu area formed in an intra-continent extensional setting,and they are related to the thinning of the thickened lithosphere and upwelling of the asthenosphere.  相似文献   

13.
This study presents Sr and Pb isotopic ratios and Rb, Sr, U, Th, and Pb concentrations of an ultrapotassic basaltic suite and related rocks from the central Sierra Nevada, California. The ultrapotassic suite yields a narrow range of Sr and Pb isotopic compositions (87Sr/86Sr=0.70597–0.70653; 206Pb/ 204Pb=18.862–19.018; 207Pb/204Pb=15.640–15.686; 208Pb/ 204Pb=38.833–38.950). Associated basalts containing ultramafic nodules have less radiogenic Sr (87Sr/86=0.70430–0.70521) and generally higher Rb/Sr ratios than the ultrapotassic suite. Leucitites from Deep Springs Valley, California, contain high 87Sr/86Sr (71141–0.71240) and low 206Pb/204Pb (17.169–17.234) ratios, reflecting contamination by crustal granulite.The isotopic relationships support an origin of the ultrapotassic basaltic suite by partial melting of an enriched upper mantle source. Dehydration of a gently inclined oceanic slab beneath the Sierra Nevada may have provided Ba, K, Rb, Sr, and H2O, which migrated into the overlying upper mantle lithosphere. The end of subduction 10 m.y. ago allowed increased asthenospheric heat flow into the upper mantle lithosphere. The increased heat flow enhanced fluid movement in the upper mantle and contributed towards isotopic homogenization of the upper mantle source areas. Continued heating of the enriched upper mantle caused partial melting and subsequent eruption of the ultrapotassic lavas.  相似文献   

14.
High-K mafic alkalic lavas (5.4 to 3.2 wt% K2O) from Deep Springs Valley, California define good correlations of increasing incompatible element (e.g., Sr, Zr, Ba, LREE) and compatible element contents (e.g., Ni, Cr) with increasing MgO. Strontium and Nd isotope compositions are also correlated with MgO; 87Sr/86Sr ratios decrease and ɛNd values increase with decreasing MgO. The Sr and Nd isotope compositions of these lavas are extreme compared to most other continental and oceanic rocks; 87Sr/86Sr ratios range from 0.7121 to 0.7105 and ɛNd values range from −16.9 to −15.4. Lead isotope ratios are relatively constant, 206Pb/204Pb ∼17.2, 207Pb/204Pb ∼15.5, and 208Pb/204Pb ∼38.6. Depleted mantle model ages calculated using Sr and Nd isotopes imply that the reservoir these lavas were derived from has been distinct from the depleted mantle reservoir since the early Proterozoic. The Sr-Nd-Pb isotope variations of the Deep Springs Valley lavas are unique because they do not plot along either the EM I or EM II arrays. For example, most basalts that have low ɛNd values and unradiogenic 206Pb/204Pb ratios have relatively low 87Sr/86Sr ratios (the EM I array), whereas basalts with low ɛNd values and high 87Sr/86Sr ratios have radiogenic 206Pb/204Pb ratios (the EM II array). High-K lavas from Deep Springs Valley have EM II-like Sr and Nd isotope compositions, but EM I-like Pb isotope compositions. A simple method for producing the range of isotopic and major- and trace-element variations in the Deep Springs Valley lavas is by two-component mixing between this unusual K-rich mantle source and a more typical depleted mantle basalt. We favor passage of MORB-like magmas that partially fused and were contaminated by potassic magmas derived from melting high-K mantle veins that were stored in the lithospheric mantle. The origin of the anomalously high 87Sr/86Sr and 208Pb/204Pb ratios and low ɛNd values and 206Pb/204Pb ratios requires addition of an old component with high Rb/Sr and Th/Pb ratios but low Sm/Nd and U/Pb ratios into the mantle source region from which these basalts were derived. This old component may be sediments that were introduced into the mantle, either during Proterozoic subduction, or by foundering of Proterozoic age crust into the mantle at some time prior to eruption of the lavas. Received: 28 February 1997 / Accepted: 9 July 1998  相似文献   

15.
Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, K2O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. K2O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% K2O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts.Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5–10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks.Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar to the primitive basalts in lead isotope ratios.The primitive basalts have: 206Pb/204Pb 18.09–18.34, 207Pb/204Pb 15.5, 208Pb/204Pb 37.6–37.9, 87Sr/86Sr 0.704–0.705. In the primitive basalts from the Southern Rocky Mountains the values of 206Pb/204Pb are similar to values reported by others for Hawaiian and eastern Honshu basalts and abyssal basalts, whereas 208Pb/204Pb tends to be equal to or a little less radiogenic than those from the oceanic localities. 87Sr/86Sr appears to be equal to or a little greater than those of the oceanic localities. These 206Pb/204Pb and 208Pb/204Pb ratios are distinctly less radiogenic and 87Sr/86Sr values are about equal to those reported by others for volcanic islands on oceanic ridges and rises.Publication authorized by the Director, U.S. Geological Survey  相似文献   

16.
The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact relationships with the host biotite granodiorite. Geochemistry, zircon LA-ICP MS (laser ablation inductively-coupled plasma mass spectrometry) U-Pb chronology and Sr- Nd-Pb isotope geochemistry of the pluton are reported in this paper. The biotite granodiorite shows close compositional similarities to high-silica adakite. Its chondrite-normalized REE patterns are characterized by strong HREE depletion (Yb = 0.33--0.96 10-6 and Y = 4.77-11.19 ×10^-6), enrichment of Ba (775-1386 x 10-6) and Sr (643-1115 × 10^-6) and high Sr/Y (57.83-159.99) and Y/Yb (10.99-14.32) ratios, as well as insignificant Eu anomalies (6Eu = 0.70-0.83), suggesting a feldspar-poor, garnet±amphibole-rich residual mineral assemblage. The mafic enclaves have higher MgO (4.15- 8.13%), Cr (14.79-371.31 × 10-6), Ni (20.00-224.24× 10^-6) and Nb/Ta (15.42-21.91) than the host granodiorite, implying that they are mantle-derived and might represent underplated mafic magma. Zircon LA-ICP MS dating of the granodiorite yields a ^206pb/^238U weighted mean age of 208±2 Ma (MSWD=0.50, 1σ), which is the age of emplacement of the host biotite granodiorite. This age indicates that the Wulong pluton formed during the late-orogenic or post-collisional stage (〈242±21 Ma) of the South Qinling belt. The host biotite granodiorite displays ^87Sr/^86Sr = 0.7059-0.7062, Isr = 0.7044-- 0.7050,^143Nd/^144Nd = 0.51236-0.51238, εNd(t)= -2.26 to -2.66 to ^206Pb/^204pb = 18.099-18.209, ^207pb/^204pb = 15.873-15.979 and ^208pb/^204pb = 38.973-39.430. Those ratios are similar to those of the Mesoproterozoic Yaolinghe Group in the South Qinling. Furthermore, its Nd isotopic model age (-1.02 Ga) is consistent with the age (-1.1 Ga) of the Yaolinghe Group. Based on the integrated geological and ge  相似文献   

17.
Qingdong Zeng    Jianming Liu    Zuolun Zhang    Changshun Jia    Changming Yu    Jie Ye    Hongtao Liu 《Resource Geology》2009,59(2):170-180
The Baiyinnuoer deposit (32.74 Mt ore with grades of 5.44% Zn, 2.02% Pb and 31.36 g t?1 Ag), the largest Zn‐Pb‐Ag deposit in northern China, is hosted by crystalline limestone and slate of the Early Permian Huanggangliang Formation. Detailed cross‐section mapping indicates stratigraphic and fold structural controls on the mineralization. The Zn‐Pb‐Ag mineralization is hosted predominantly by skarn, which occurs as bedding‐parallel lens that pinch out at the margins of the main economic zone. Three skarn stages are identified at the deposit: (i) garnet‐clinopyroxene; (ii) sulfides; and (iii) carbonate‐epidote. Lead isotopic compositions were determined for galena and sphalerite of the ores, whole rock samples of the Yanshanian granite and granodiorite, Permian marble and tuff, and Jurassic volcanic and subvolcanic rocks in and around the Baiyinnuoer area in order to discuss the sources of ore‐forming materials and the relationship between the ore formation and these whole rocks. Galena and sphalerite of the Baiyinnuoer ore have uniform isotopic ratios (206Pb/204Pb, 18.267–18.369; 207Pb/204Pb, 15.506–15.624; 208Pb/204Pb, 38.078–38.394) consistent with the granite and granodiorite (206Pb/204Pb, 18.252–18.346; 207Pb/204Pb, 15.504–15.560; 208Pb/204Pb, 38.141–38.320), whereas the ratios for Jurassic volcanic and subvolcanic rocks are variable and radiogenic (206Pb/204Pb, 18.468–18.614; 207Pb/204Pb, 15.521–15.557; 208Pb/204Pb, 38.304–38.375). These results indicate that the mineralization was not related to the Jurassic volcanism, but to the Yanshanian magmatism. The Permian strata may have a slight contribution to the mineralization. All features show that the Baiyinnuoer deposit is related to the Yanshanian granitic magmatism, and can be classified as a zinc‐lead‐silver skarn deposit.  相似文献   

18.
Rb-Sr isotopic dating of phlogopite megacryst samples separated from Sturgeon Lake kimberlite, Saskatchewan, yields a crystallization age of 98±1 Ma (2 , MSWD=1.2; 87Sr/86Sr(t)=0.7059). The 40Ar/39Ar analyses of a phlogopite megacryst sample indicate the presence of large amounts of excess 40Ar and yield an excessively old age of 410 Ma. Assessment of the Ar data using isotope correlation plots indicates clustering of the data points about a mixing line between the radiogenic 40Ar component at 98 Ma and a trapped component with uniform 36Ar/40Ar and Cl/40Ar. Values of {ie212-1} as high as +20%. (VSMOW) for calcite from the groundmass and a whole-rock sample indicate pervasive lowtemperature alteration. The {ie212-2} of matrix carbonate is-11.3%. (PDB), slightly lighter than typical values from the literature. The {ie212-3} values of about +5%. (VSMOW) for brown phlogopite megacrysts may be primary, green phlogopites are interpreted to be an alteration product of the brown variety and are 2%. heavier. Initial Nd-Sr-Pb isotopic ratios for a whole-rock sample {ie212-4}; 87Sr/86Sr=0.7063, 206Pb/204Pb=18.67, 207Pb/204Pb=15.54, 208Pb/204Pb=38.97) suggest an affinity with group I kimberlites. Initial {ie212-5} values of +1.7 and +0.5 (87Sr/ 86Sr(t)=0.7053 and 0.7050) for eclogitic and lherzolitic garnet megacryst samples, and values of 0.0 for two phlogopite megacryst samples reflect an origin from an isotopically evolving melt due to assimilation of heterogeneous mantle. Lilac high-Cr lherzolitic garnet megacrysts give an unusually high {ie212-6} of +28.6 (87Sr/86Sr=0.7046) indicating a xenocrystic origin probably from the lithospheric mantle. The very radiogenic 87Sr/86Sr and 206Pb/204Pb ratios of the kimberlite are consistent with melting of EM II (enriched) mantle components.  相似文献   

19.
Late Cenozoic intraplate basaltic rocks in northeastern China have been interpreted as being derived from a mantle source composed of DMM and EM1 components. To constrain the origin of the enriched mantle component, we have now determined the geochemical compositions of basaltic rocks from the active Baekdusan volcano on the border of China and North Korea. The samples show LREE-enriched patterns, with positive Eu and negative Ce anomalies. On a trace element distribution diagram, they show typical oceanic island basalt (OIB)-like LILE enrichments without significant Nb or Ta depletions. However, compared with OIB, they show enrichments in Ba, Rb, K, Pb, Sr, and P. The Nb/U ratios are generally within the range of OIB, but the Ce/Pb ratios are lower than those of OIB. Olivine phenocrysts are characterized by low Ca and high Ni contents. The radiogenic isotopic characteristics (87Sr/86Sr = 0.70449 to 0.70554; εNd = −2.0 to +1.8; εHf = −1.7 to +6.1; 206Pb/204Pb = 17.26 to 18.12) suggest derivation from an EM1-like source together with an Indian MORB-like depleted mantle. The Mg isotopic compositions (δ26Mg = −0.39 ± 0.17‰) are generally lower than the average upper mantle, indicating carbonates in the source. The 87Sr/86Sr ratios decrease with decreasing δ26Mg values whereas the 143Nd/144Nd and (Nb/La)N ratios increase. These observations suggest the mantle source of the Baekdusan basalts contained at least two components that resided in the mantle transition zone (MTZ): (1) recycled subducted ancient (∼2.2–1.6 Ga) terrigenous silicate sediments, possessing EM1-like Sr–Nd–Pb–Hf isotopic signatures and relatively high values of δ26Mg; and (2) carbonated eclogites with relatively MORB-like radiogenic isotopic compositions and low values of δ26Mg. These components might have acted as metasomatizing agents in refertilizing the asthenosphere, eventually influencing the composition of the MTZ-derived plume that produced the Baekdusan volcanism.  相似文献   

20.
The F–(Ba–Pb–Zn) ore deposits of the Zaghouan District, located in NE Tunisia, occur as open space fillings or stratabound orebodies, hosted in Jurassic, Cretaceous and Tertiary layers. The chondrite-normalized rare earth element (REE) patterns may be split into three groups: (i) “Normal marine” patterns characterizing the wallrock carbonates; (ii) light REE (LREE) enriched (slide-shaped) patterns with respect to heavy REE (HREE), with small negative Ce and Eu anomalies, characteristic of the early ore stages; (iii) Bell-shaped REE patterns displaying LREE depletion, as well as weak negative Ce and Eu anomalies, characterizing residual fluids of subsequent stages. The 87Sr/86Sr ratios (0.707654–0.708127 ± 8), show that the Sr of the epigenetic carbonates (dolomite, calcite) and ore minerals (fluorite, celestite) are more radiogenic than those of the country (Triassic, Jurassic, Cretaceous, lower Miocene) sedimentary rocks. The uniformity of this ratio, throughout the District, provides evidence for the isotopic homogeneity and, consequently, the identity of the source of the mineralizing fluids. This signature strongly suggests that the radiogenic Sr is carried by Upper Paleozoic basinal fluids.The δ34S values of barite, associated to mineralizations, are close to those of the Triassic sea water (17‰). The δ34S values of sulfide minerals range from − 13.6‰ to + 11.4‰, suggesting two sulfur-reduced end members (BSR/TSR) with a dominant BSR process.Taking account of the homogeneity in the Pb-isotope composition of galenas (18.833–18.954 ± 0.001, 15.679–15.700 ± 0.001 and 38.690–38.880 ± 0.004, for the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios respectively), a single upper crustal source for base-metals is accepted. The Late Paleozoic basement seems to be the more plausible source for F–Pb–Zn concentrated in the deposits. The genesis of the Zaghouan District ore deposits is considered as the result of the Zaghouan Fault reactivation during the Late Miocene period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号