首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Here, we present an approach to laser ablation ICP‐MS mapping of multi‐phase assemblages that permits the use of different internal standard elements, concentration values and reference materials for each mineral. In this way, we obtain not only broad pictures of elemental distributions within samples but can also extract high accuracy concentration data for any user‐selected region. This is accomplished by assigning regions of an image to corresponding mineral phases on a pixel‐by‐pixel basis. In this way, accurate trace element concentrations can be determined for each mineral phase, despite potential variations in their ablation characteristics. We present an example where elemental maps are constructed from ablation of a gabbroic sample that includes the phases apatite, amphibole and plagioclase. This work represents an important first step towards development of a method to produce highly accurate LA‐ICP‐MS elemental maps of multi‐phase samples.  相似文献   

2.
A simple, rapid method for the determination of Re and Os concentrations and isotope compositions using isotope dilution multi‐collector inductively coupled plasma‐mass spectrometry (ID‐MC‐ICP‐MS) combined with Carius tube digestion and sparging introduction of Os was developed. For Os measurement, four channeltron ion counters to detect different Os isotopes were used simultaneously, which led to a drastic reduction in the measurement time. Rhenium isotopes were measured by means of eight Faraday cups with solution nebulisation and an ultrasonic membrane desolvator. The representative 188Os count rate of an Os standard solution containing 50 pg of total Os was approximately 110000–120000 cps at the onset of measurement; the Re intensity of our in‐house 10 pg g?1 standard solution reached 1820 V/μg g?1 with a sample uptake rate of 95–99 μl min?1. These values indicate that the sensitivity of the method was sufficient even for samples with low Re and Os concentrations, such as chert. As the temporal variations of the amplification efficiency of the ion counters differed from one another, we adopted a sample‐calibrator bracketing method to correct the measured Re and Os isotope ratios. The Re and Os concentrations via the isotope dilution method and the 187Os/188Os ratios of two sedimentary rock reference materials (JMS‐2 and JCh‐1) on the basis of the isotope ratios determined by the MC‐ICP‐MS and by negative thermal ionisation mass spectrometry (N‐TIMS) were comparable within their ranges. Based on Os isotope measurement of the IAG reference material [Durham Romil Os (DROsS)], the average difference from the recommended value and precision of Os isotope measurements by the sparging method in combination with multi‐ion‐counters were 0.72% and 0.76% [1RSD (%), n = 29], respectively. The precisions in the 187Os/188Os ratios [1RSD (%)] of JMS‐2, JCh‐1 and DROsS were 0.35–0.71, 1.56–3.31 and 0.99–1.28%, respectively, which depended on their Os ion intensities. No systematic difference was observed between the Re and Os geochemical compositions of JCh‐1 and JMS‐2 obtained by means of digestion with inverse aqua regia and CrO3‐H2SO4 solutions, suggesting that either acid solution can be used for the sparging method of sedimentary rock samples. As CrO3‐H2SO4 solution is believed to liberate predominantly the hydrogenous Re and Os fraction from organic‐rich sediment, the sparging method combined with CrO3‐H2SO4 digestion and multi‐ion‐counters in the mass spectrometry is expected to be a powerful tool for reconstructing the secular change in marine Os isotope compositions with high sample throughput.  相似文献   

3.
A precise, accurate and rapid method for the sequential determination of FeO and Fe2O3 in rocks, soils and some non‐refractory minerals by 1,10‐phenanthroline spectrophotometry is described. Fe(II) and Fe(III) were leached from the sample (?200 mesh) using a mixture of NH4HF2 and H2SO4 at 40–80 °C for 10 min on a hot plate. Both Fe(II) and Fe(III) could be conveniently estimated sequentially from the same reaction mixture at the μg g?1 to percentage level. The method is better than the existing wet chemical methods, including the commonly used Pratt's titrimetric redox method, for Fe(II) and Fe(III) determinations in rock and soil samples in terms of precision, accuracy and rapidity. The throughput of the method was very high; at least forty to fifty samples could be estimated easily in a day. The results obtained compare favourably with those obtained by Pratt's method, as well as for certified/recommended values of a set of eleven certified reference materials having FeO and Fe2O3 contents in the range 0.21–14.63% and 0.58–8.48%, respectively. The optimised 1,10 phenanthroline method was found to be accurate to within 0.21% m/m FeO and 0.30% m/m Fe2O3 compared with the literature values of the certified reference materials studied.  相似文献   

4.
The International Atomic Energy Agency (IAEA) organised a proficiency test (PT), IAEA‐CU‐2010‐02, for the determination of elements in sewage sludge. The PT sample was analysed by semi‐absolute standardless k0‐instrumental neutron activation analysis (k0‐INAA). Results for seven elements (As, Co, Cr, Fe, Hg, Se, Zn) were submitted to the IAEA by our laboratory. All of our results were scored ‘acceptable’ by the ‘result evaluation criteria’ adopted by the IAEA. The same analytical methodology produced quantitative results for twenty‐six additional elements. In total, thirty‐six elements were determined with uncertainty varying from 4 to 11%. This paper presents the provisional mass fractions of twenty‐six additional elements (Ag, Al, Br, Ca, Ce, Cl, Dy, Eu, Ga, Hf, I, K, La, Mg, Mn, Na, Rb, Sb, Sc, Sm, Ta, Tb, Th, V, U, W) not reported by the IAEA. The analytical methodology was discussed with important sources of spectral, nuclear and fission‐product interferences. It was shown that the important components of uncertainties were the k0 factor, Q0 factor, detector efficiency, mass and counting statistics. The methodology was validated by analysing the IAEA‐S7 reference material.  相似文献   

5.
During the Integrated Ocean Drilling Program (IODP) Expedition 338, several methods were tested for the extraction of interstitial water in consolidated, low‐porosity deep‐sea sediments from Site C0002 in the Kumano Basin. On the basis of those tests, we propose a modified ground rock interstitial normative determination (GRIND) method of extraction of interstitial water. In separate runs of the new method, sediment samples were ground in a ball mill with either ultrapure water or a solution of HNO3. The interstitial water was then extracted with a conventional squeezer. Sufficient solution was extracted by this method to analyse most major and a few minor components of interstitial water that were comparable to those previously reported for samples extracted by the conventional squeezing method. The new method requires much smaller amounts of sediment than that of the conventional method and will be useful for analysis of samples recovered during super‐deep drilling programmes.  相似文献   

6.
A selective and sensitive method for the extraction and spectrophotometric determination of gold with N,N′‐6,7,9,10,17,18,20,21‐octahydrodibenzo[b,k][1,4,7,10,13,16] hexaoxacyclo‐octadecine‐2,13–diylbis(2‐chloroacetamide) (ODBOCA) is described. The ODBOCA–Au(III) complex was extracted from a slightly acidic aqueous solution (pH 5) into a chloroform layer and then the absorbance of the extract was measured using a UV–Vis spectrophotometer with 1.0 cm quartz cells at 540 nm. An enrichment factor of 200 was achieved. In the chloroform medium at 540 nm, the molar absorptivity and Sandell’s sensitivity were 4.12 × 103 l mol?1 cm?1 and 0.048 μg cm?2, respectively. Beer’s law was obeyed in the range of 0.5–15 μg ml?1 in the measured solution. The relative standard deviation for ten replicate samples at the 1.0 μg ml?1 level was 3.0%. The limit of detection, based on 3s, was 0.5 μg l?1 in the original sample. The effects of pH, ligand concentration and shaking time were studied. The ratio of the metal ion to ligand molecules in the complex was found to be 1:2 according to the Job Method. The effects of interference by a number of metal ions were investigated. The method was verified with certified reference materials and spiked tests, and quantitative recovery values were obtained. The method was fast, accurate, selective and precise, and was applied to the determination of gold in water and ore with good results.  相似文献   

7.
The results of an international interlaboratory proficiency test for the determination of carbonic species are presented. Eight laboratories analysed twelve water samples (four synthetic waters, one lake water, four geothermal waters, one seawater and two petroleum waters) by two methods: (a) individual laboratory analytical procedure and (b) acid–base titration curves in tabular form following a standardised protocol. In case (b), the concentrations of carbonic species were calculated by the organiser using the (1) Hydrologists' method, (2) Geochemists' method and/or (3) initial pH and total alkalinity method. For synthetic waters, the averaged % trueness and precision of measurement of the two methods were (trueness = 7.6, precision = 9.4) and (9.0, 3.4) for total alkalinity, and (6.6, 31.0) and (7.8, 6.1) for carbonic alkalinity, respectively. This indicates that the total alkalinity calculation procedure is in general correct in the individual laboratory method, but the carbonic alkalinity calculation procedure has serious problems. The measurements of total alkalinity for lake and seawaters were in agreement in both the methods; however, the individual laboratory measurement method for geothermal and petroleum waters was conceptually incorrect. Thus, the analytical procedures for the determination of carbonic species were reviewed. To apply the Hydrologists' and/or Geochemists' methods, the location of NaHCO3EP and H2CO3EP is necessary, even for samples with pH lower than that of NaHCO3EP, and a backward titration curve after complete removal of CO2 must be performed. The initial pH and total alkalinity method is appropriate where a complete analysis of species that contribute to the alkalinity is known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号