首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a petrographic and mineralogical survey of tochilinite/cronstedtite intergrowths (TCIs) in Paris, a new CM chondrite considered to be the least altered CM identified to date. Our results indicate that type‐I TCIs consist of compact tochilinite/cronstedtite rims surrounding Fe‐Ni metal beads, thus confirming kamacite as the precursor of type‐I TCIs. In contrast, type‐II TCIs are characterized by complex compositional zoning composed of three different Fe‐bearing secondary minerals: from the outside inwards, tochilinite, cronstedtite, and amakinite. Type‐II TCIs present well‐developed faces that allow a detailed morphological analysis to be performed in order to identify the precursors. The results demonstrate that type‐II TCIs formed by pseudomorphism of the anhydrous silicates, olivine, and pyroxene. Hence, there is no apparent genetic relationship between type‐I and type‐II TCIs. In addition, the complex chemical zoning observed within type‐II TCIs suggests that the alteration conditions evolved dramatically over time. At least three stages of alteration can be proposed, characterized by alteration fluids with varying compositions (1) Fe‐ and S‐rich fluids; (2) S‐poor and Fe‐ and Si‐rich fluids; and (3) S‐ and Si‐poor, Fe‐rich fluids. The presence of unaltered silicates in close association with euhedral type‐II TCIs suggests the existence of microenvironments during the first alteration stages of CM chondrites. In addition, the absence of Mg‐bearing secondary minerals in Paris TCIs suggests that the Mg content increases during the course of alteration.  相似文献   

2.
Tochilinite/cronstedtite intergrowths are commonly observed as alteration products in CM chondrite matrices, but the conditions under which they formed are still largely underconstrained due to their scarcity in terrestrial environments. Here, we report low temperature (80 °C) anoxic hydrothermal experiments using starting assemblages similar to the constituents of the matrices of the most pristine CM chondrite and S‐rich and S‐free fluids. Cronstedtite crystals formed only in S‐free experiments under circumneutral conditions with the highest Fe/Si ratios. Fe‐rich tochilinite with chemical and structural characteristics similar to chondritic tochilinite was observed in S‐bearing experiments. We observed a positive correlation between the Mg content in the hydroxide layer of synthetic tochilinite and temperature, suggesting that the composition of tochilinite is a proxy for the alteration temperature in CM chondrites. Using this relation, we estimate the mean precipitation temperatures of tochilinite to be 120–160 °C for CM chondrites. Given the different temperature ranges of tochilinite and cronstedtite in our experiments, we propose that Fe‐rich tochilinite crystals resulted from the alteration of metal beads under S‐bearing alkaline conditions at T = 120–160 °C followed by cronstedtite crystals formed by the reaction of matrix amorphous silicates, metal beads, and water at a low temperature (50–120 °C).  相似文献   

3.
Abstract— Results from an inorganic geochemical modeling study support a scenario in which low‐temperature aqueous alteration of an anhydrous CM asteroidal parent body and melt water from H2O and CO2 ices produces the altered assemblage observed in CM carbonaceous chondrites (chrysotile, greenalite, tochilinite, cronstedtite and minor calcite and magnetite). We consider a range of possible precursor mineral assemblages, varying with respect to the Fe‐oxidation state of the initial anhydrous phases. The aqueous solutions produced by this alteration are generally strongly basic and reducing and a large quantity of H2, and possible CH4, gas can be released during aqueous alteration.  相似文献   

4.
We report a petrographic and mineralogical survey of Paris, a new CM chondrite considered to be the least‐altered CM identified so far (Hewins et al. 2014 ). Compared to other CMs, Paris exhibits (1) a higher concentration of Fe‐Ni metal beads, with nickel contents in the range 4.1–8.1 wt%; (2) the systematic presence of thin lamellae and tiny blebs of pentlandite in pyrrhotite grains; and (3) ubiquitous tochilinite/cronstedtite associations with higher FeO/SiO2 and S/SiO2 ratios. In addition, Paris shows the highest concentration of trapped 36Ar reported so far for a CM chondrite (Hewins et al. 2014 ). In combination with the findings of previous studies, our data confirm the reliability of (1) the alteration sequence based on the chemical composition of tochilinite/cronstedtite associations to quantify the fluid alteration processes and (2) the use of Cr content variability in type II ferroan chondrule olivine as a proxy of thermal metamorphism. In contrast, the scales based on (1) the Fe3+ content of serpentine in the matrix to estimate the degree of aqueous alteration and (2) the chemical composition of Fe‐Ni metal beads for quantifying the intensity of the thermal metamorphism are not supported by the characteristics of Paris. It also appears that the amount of trapped 36Ar is a sensitive indicator of the secondary alteration modifications experienced by chondrites, for both aqueous alteration and thermal metamorphism. Considering Paris, our data suggest that this chondrite should be classified as type 2.7 as it suffered limited but significant fluid alteration and only mild thermal metamorphism. These results point out that two separated scales should be used to quantify the degree of the respective role of aqueous alteration and thermal metamorphism in establishing the characteristics of CM chondrites.  相似文献   

5.
Fe‐Ni metal is a common constituent of most meteorites and is an indicator of the thermal history of the respective meteorites, it is a diagnostic tool to distinguish between groups/subgroups of meteorites. In spite of over a million micrometeorites collected from various domains, reports of pure metallic particles among micrometeorites have been extremely rare. We report here the finding of a variety of cosmic metal particles such as kamacite, plessite, taenite, and Fe‐Ni beads from deep‐sea sediments of the Indian Ocean, a majority of which have entered the Earth unaffected by frictional heating during atmospheric entry. Such particles are known as components of meteorites but have never been found as individual entities. Their compositions suggest precursors from a variety of meteorite groups, thus providing an insight into the metal fluxes on the Earth. Some particles have undergone heating and oxidation to different levels during entry developing features similar to I‐type cosmic spherules, suggesting atmospheric processing of individual kamacites/taenite grains as another hitherto unknown source for the I‐type spherules. The particles have undergone postdepositional aqueous alteration transforming finally into the serpentine mineral cronstedtite. Aqueous alteration products of kamacite reflect the local microenvironment, therefore they have the potential to provide information on the composition of water in the solar nebula, on the parent bodies or on surfaces of planetary bodies. Our observations suggest it would take sustained burial in water for tens of thousands of years under cold conditions for kamacites to alter to cronstedtite.  相似文献   

6.
The presence of primary iron sulfides that appear to be aqueously altered in CM and CR carbonaceous chondrites provides the potential to study the effects and, by extension, the conditions of aqueous alteration. In this work, we have used SEM, TEM, and EPMA techniques to characterize primary sulfides that show evidence of secondary alteration. The alteration styles consist of primary pyrrhotite altering to secondary pentlandite (CMs only), magnetite (CMs and CRs), and phyllosilicates (CMs only) in grains that initially formed by crystallization from immiscible sulfide melts in chondrules (pyrrhotite‐pentlandite intergrowth [PPI] grains). Textural, microstructural, and compositional data from altered sulfides in a suite of CM and CR chondrites have been used to constrain the conditions of alteration of these grains and determine their alteration mechanisms. This work shows that the PPI grains exhibit two styles of alteration—one to form porous pyrrhotite‐pentlandite (3P) grains by dissolution of precursor PPI grain pyrrhotite and subsequent secondary pentlandite precipitation (CMs only), and the other to form the altered PPI grains by pseudomorphic replacement of primary pyrrhotite by magnetite (CMs and CRs) or phyllosilicates (CMs only). The range of alteration textures and products is the result of differences in conditions of alteration due to the role of microchemical environments and/or brecciation. Our observations show that primary sulfides are sensitive indicators of aqueous alteration processes in CM and CR chondrites.  相似文献   

7.
Abstract— –The presence of apparently unaltered, micron‐sized Fe,Ni metal grains, juxtaposed against hydrated fine‐grained rim materials in the CM2 chondrite Yamato (Y‐) 791198 has been cited as unequivocal evidence of preaccretionary alteration. We have examined the occurrence, composition, and textural characteristics of 60 Fe,Ni metal grains located in fine‐grained rims in Y‐791198 using scanning electron microscopy (SEM) and electron microprobe analysis. In addition, three metal grains, prepared by focused ion beam (FIB) sample preparation techniques were studied by transmission electron microscopy (TEM). The metal grains are heterogeneously distributed within the rims. Electron microprobe analyses show that all the metal grains are kamacite with minor element contents (P, Cr, and Co) that lie either within or close to the range for other CM2 metal grains. X‐ray maps obtained by electron microprobe show S, P, and/or Ca enrichments on the outermost parts of many of the metal grains. Z‐contrast STEM imaging of FIB‐prepared Fe,Ni metal grains show the presence of a small amount of a lower Z secondary phase on the surface of the grains and within indentations on the grain surfaces. Energy‐filtered TEM (EFTEM) compositional mapping shows that these pits are enriched in oxygen and depleted in Fe relative to the metal. These observations are consistent with pitting corrosion of the metal on the edges of the grains and we suggest may be the result of the formation of Fe(OH)2, a common oxidation product of Fe metal. The presence of such a layer could have inhibited further alteration of the metal grains. These findings are consistent with alteration by an alkaline fluid as suggested by Zolensky et al. (1989), but the location of this alteration remains unconstrained, because Y‐791198 was recovered from Antarctica and therefore may have experienced incipient terrestrial alteration. However, we infer that the extremely low degree of oxidation of the metal is inconsistent with weathering in Antarctica and that alteration in an extraterrestrial environment is more probable. Although the presence of unaltered or incipiently altered metal grains in these fine‐grained rims could be interpreted as evidence for preaccretionary alteration, we suggest an alternative model in which metal alteration was inhibited by alkaline fluids on the asteroidal parent body.  相似文献   

8.
Abstract– CM chondrites were subjected to aqueous alteration and, in some cases, to secondary metamorphic heating. The effects of these processes vary widely, and have mainly been documented in silicate phases. Herein, we report the characteristic features of Fe‐Ni metal and sulfide phases in 13 CM and 2 CM‐related chondrites to explore the thermal history of these chondrites. The texture and compositional distribution of the metal in CM are different from those in unequilibrated ordinary and CO chondrites, but most have similarities to those in highly primitive chondrites, such as CH, CR, and Acfer 094. We classified the CM samples into three categories based on metal composition and sulfide texture. Fe‐Ni metal in category A is kamacite to martensite. Category B is characterized by pyrrhotite grains always containing blebs or lamellae of pentlandite. Opaque mineral assemblages of category C are typically kamacite, Ni‐Co‐rich metal, and pyrrhotite. These categories are closely related to the degree of secondary heating and are not related to degree of the aqueous alteration. The characteristic features of the opaque minerals can be explained by secondary heating processes after aqueous alteration. Category A CM chondrites are unheated, whereas those in category B experienced small degrees of secondary heating. CMs in category C were subjected to the most severe secondary heating process. Thus, opaque minerals can provide constraints on the thermal history for CM chondrites.  相似文献   

9.
We have studied the petrologic characteristics of sulfide‐metal lodes, polymineralic Fe‐Ni nodules, and opaque assemblages in the CR2 chondrite Graves Nunataks (GRA) 06100, one of the most altered CR chondrites. Unlike low petrologic type CR chondrites, alteration of metal appears to have played a central role in the formation of secondary minerals in GRA 06100. Differences in the mineralogy and chemical compositions of materials in GRA 06100 suggest that it experienced higher temperatures than other CR2 chondrites. Mineralogic features indicative of high temperature include: (1) exsolution of Ni‐poor and Ni‐rich metal from nebular kamacite; (2) formation of sulfides, oxides, and phosphates; (3) changes in the Co/Ni ratios; and (4) carbidization of Fe‐Ni metal. The conspicuous absence of pentlandite may indicate that peak temperatures exceeded 600 °C. Opaques appear to have been affected by the action of aqueous fluids that resulted in the formation of abundant oxides, Fe‐rich carbonates, including endmember ankerite, and the sulfide‐silicate‐phosphate scorzalite. We suggest that these materials formed via impact‐driven metamorphism. Mineralogic features indicative of impact metamorphism include (1) the presence of sulfide‐metal lodes; (2) the abundance of polymineralic opaque assemblages with mosaic‐like textures; and (3) the presence of suessite. Initial shock metamorphism probably resulted in replacement of nebular Fe‐Ni metal in chondrules and in matrix by Ni‐rich, Co‐rich Fe metal, Al‐Ti‐Cr‐rich alloys, and Fe sulfides, while subsequent hydrothermal alteration produced accessory oxides, phosphates, and Fe carbonates. An extensive network of sulfide‐metal veins permitted effective exchange of siderophile elements from pre‐existing metal nodules with adjacent chondrules and matrix, resulting in unusually high Fe contents in these objects.  相似文献   

10.
Based on the high abundance of fine‐grained material and its dark appearance, NWA 11024 was recognized as a CM chondrite, which is also confirmed by oxygen isotope measurements. But contrary to known CM chondrites, the typical phases indicating aqueous alteration (e.g., phyllosilicates, carbonates) are missing. Using multiple analytical techniques, this study reveals the differences and similarities to known CM chondrites and will discuss the possibility that NWA 11024 is the first type 3 CM chondrite. During the investigation, two texturally apparent tochilinite–cronstedtite intergrowths were identified within two thin sections. However, the former phyllosilicates were recrystallized to Fe‐rich olivine during a heating event without changing the textural appearance. A peak temperature of 400–600 °C is estimated, which is not high enough to destroy or recrystallize calcite grains. Thus, calcites were never constituents of the mineral paragenesis. Another remarkable feature of NWA 11024 is the occurrence of unknown clot‐like inclusions (UCLIs) within fine‐grained rims, which are unique in this clarity. Their density and S concentration are significantly higher than of the surrounding fine‐grained rim and UCLIs can be seen as primary objects that were not formed by secondary alteration processes inside the rims. Similarities to chondritic and cometary interplanetary dust particles suggest an ice‐rich first‐generation planetesimal for their origin. In the earliest evolution, NWA 11024 experienced the lowest degree of aqueous alteration of all known CM chondrites and subsequently, a heating event dehydrated the sample. We suggest to classify the meteorite NWA 11024 as the first type 3 CM chondrite similar to the classification of CV3 chondrites (like Allende) that could also have lost their matrix phyllosilicates by thermal dehydration.  相似文献   

11.
Abstract— Cooling rate experiments were performed on P‐free Fe‐Ni alloys that are compositionally similar to ordinary chondrite metal to study the taenite ? taenite + kamacite reaction. The role of taenite grain boundaries and the effect of adding Co and S to Fe‐Ni alloys were investigated. In P‐free alloys, kamacite nucleates at taenite/taenite grain boundaries, taenite triple junctions, and taenite grain corners. Grain boundary diffusion enables growth of kamacite grain boundary precipitates into one of the parent taenite grains. Likely, grain boundary nucleation and grain boundary diffusion are the applicable mechanisms for the development of the microstructure of much of the metal in ordinary chondrites. No intragranular (matrix) kamacite precipitates are observed in P‐free Fe‐Ni alloys. The absence of intragranular kamacite indicates that P‐free, monocrystalline taenite particles will transform to martensite upon cooling. This transformation process could explain the metallography of zoneless plessite particles observed in H and L chondrites. In P‐bearing Fe‐Ni alloys and iron meteorites, kamacite precipitates can nucleate both on taenite grain boundaries and intragranularly as Widmanstätten kamacite plates. Therefore, P‐free chondritic metal and P‐bearing iron meteorite/pallasite metal are controlled by different chemical systems and different types of taenite transformation processes.  相似文献   

12.
The CM carbonaceous chondrite meteorites experienced aqueous alteration in the early solar system. They range from mildly altered type 2 to almost completely hydrated type 1 chondrites, and offer a record of geochemical conditions on water‐rich asteroids. We show that CM1 chondrites contain abundant (84–91 vol%) phyllosilicate, plus olivine (4–8 vol%), magnetite (2–3 vol%), Fe‐sulfide (<5 vol%), and calcite (<2 vol%). The CM1/2 chondrites contain phyllosilicate (71–88 vol%), olivine (4–20 vol%), enstatite (2–6 vol%), magnetite (2–3 vol%), Fe‐sulfides (1–2 vol%), and calcite (~1 vol%). As aqueous alteration progressed, the abundance of Mg‐serpentine and magnetite in the CM chondrites increased. In contrast, calcite abundances in the CM1/2 and CM1 chondrites are often depleted relative to the CM2s. The modal data support the model, whereby metal and Fe‐rich matrix were the first components to be altered on the CM parent body(ies), before further hydration attacked the coarser Mg‐rich silicates found in chondrules and fragments. Based on the absence of tochilinite, we suggest that CM1 chondrites experienced increased alteration due to elevated temperatures (>120 °C), although higher water/rock ratios may also have played a role. The modal data provide constraints for interpreting the composition of asteroids and the mineralogy of samples returned from these bodies. We predict that “CM1‐like” asteroids, as has been proposed for Bennu—target for the OSIRIS‐REx mission—will have a high abundance of Mg‐rich phyllosilicates and Fe‐oxides, but be depleted in calcite.  相似文献   

13.
Abstract— We report the results of our petrological and mineralogical study of Fe‐Ni metal in type 3 ordinary and CO chondrites, and the ungrouped carbonaceous chondrite Acfer 094. Fe‐Ni metal in ordinary and CO chondrites occurs in chondrule interiors, on chondrule surfaces, and as isolated grains in the matrix. Isolated Ni‐rich metal in chondrites of petrologic type lower than type 3.10 is enriched in Co relative to the kamacite in chondrules. However, Ni‐rich metal in type 3.15–3.9 chondrites always contains less Co than does kamacite. Fe‐Ni metal grains in chondrules in Semarkona typically show plessitic intergrowths consisting of submicrometer kamacite and Ni‐rich regions. Metal in other type 3 chondrites is composed of fine‐ to coarse‐grained aggregates of kamacite and Ni‐rich metal, resulting from metamorphism in the parent body. We found that the number density of Ni‐rich grains in metal (number of Ni‐rich grains per unit area of metal) in chondrules systematically decreases with increasing petrologic type. Thus, Fe‐Ni metal is a highly sensitive recorder of metamorphism in ordinary and carbonaceous chondrites, and can be used to distinguish petrologic type and identify the least thermally metamorphosed chondrites. Among the known ordinary and CO chondrites, Semarkona is the most primitive. The range of metamorphic temperatures were similar for type 3 ordinary and CO chondrites, despite them having different parent bodies. Most Fe‐Ni metal in Acfer 094 is martensite, and it preserves primary features. The degree of metamorphism is lower in Acfer 094, a true type 3.00 chondrite, than in Semarkona, which should be reclassified as type 3.01.  相似文献   

14.
CM chondrites are a group of primitive meteorites that have recorded the alteration history of the early solar system. We report the occurrence, chemistry, and oxygen isotopic compositions of P‐O‐rich sulfide phase in two CM chondrites (Grove Mountains [GRV] 021536 and Murchison). This P‐O‐rich sulfide is a polycrystalline aggregate of nanometer‐size grains. It occurs as isolated particles or aggregates in both CM chondrites. These grains, in the matrix and in type‐I chondrules from Murchison, were partially altered into tochilinite; however, grains enclosed by Ca‐carbonate are much less altered. This P‐O‐rich sulfide in Murchison is closely associated with magnetite, FeNi phosphide, brezinaite (Cr3S4), and eskolaite (Cr2O3). In addition to sulfur as the major component, this sulfide contains ~6.3 wt% O, ~5.4 wt% P, and minor amounts of hydrogen. Analyses of oxygen isotopes by SIMS resulted in an average δ18O value of ?22.5 ‰ and an average Δ17O value of 0.2 ± 9.2 ‰ (2σ). Limited variations in both chemical compositions and electron‐diffraction patterns imply that the P‐O‐rich sulfide may be a single phase rather than a polyphase mixture. Several features indicate that this P‐O‐rich sulfide phase formed at low temperature on the parent body, most likely through the alteration of FeNi metal (a) close association with other low‐temperature alteration products, (b) the presence of hydrogen, (c) high Δ17O values and the presence in altered mesostasis of type‐I chondrules and absence in type‐II chondrules. The textural relations of the P‐O‐rich sulfide and other low‐temperature minerals reveal at least three episodic‐alteration events on the parent body of CM chondrites (1) formation of P‐O‐rich sulfide during sulfur‐rich aqueous alteration of P‐rich FeNi metal, (2) formation of Ca‐carbonate during local carbonation, and (3) alteration of P‐O‐rich sulfide and formation of tochilinite during a period of late‐stage intensive aqueous alteration.  相似文献   

15.
Abstract— We studied the metallography of Fe‐Ni metal particles in 17 relatively unshocked ordinary chondrites and interpreted their microstructures using the results of P‐free, Fe‐Ni alloy cooling experiments (described in Reisener and Goldstein 2003). Two types of Fe‐Ni metal particles were observed in the chondrites: zoned taenite + kamacite particles and zoneless plessite particles, which lack systematic Ni zoning and consist of tetrataenite in a kamacite matrix. Both types of metal particles formed during metamorphism in a parent body from homogeneous, P‐poor taenite grains. The phase transformations during cooling from peak metamorphic temperatures were controlled by the presence or absence of grain boundaries in the taenite particles. Polycrystalline taenite particles transformed to zoned taenite + kamacite particles by kamacite nucleation at taenite/taenite grain boundaries during cooling. Monocrystalline taenite particles transformed to zoneless plessite particles by martensite formation and subsequent martensite decomposition to tetrataenite and kamacite during the same cooling process. The varying proportions of zoned taenite + kamacite particles and zoneless plessite particles in types 4–6 ordinary chondrites can be attributed to the conversion of polycrystalline taenite to monocrystalline taenite during metamorphism. Type 4 chondrites have no zoneless plessite particles because metamorphism was not intense enough to form monocrystalline taenite particles. Type 6 chondrites have larger and more abundant zoneless plessite particles than type 5 chondrites because intense metamorphism in type 6 chondrites generated more monocrystalline taenite particles. The distribution of zoneless plessite particles in ordinary chondrites is entirely consistent with our understanding of Fe‐Ni alloy phase transformations during cooling. The distribution cannot be explained by hot accretion‐autometamorphism, post‐metamorphic brecciation, or shock processing.  相似文献   

16.
To better understand the formation conditions of ferromagnesian chondrules from the Renazzo‐like carbonaceous (CR) chondrites, a systematic study of 210 chondrules from 15 CR chondrites was conducted. The texture and composition of silicate and opaque minerals from each observed FeO‐rich (type II) chondrule, and a representative number of FeO‐poor (type I) chondrules, were studied to build a substantial and self‐consistent data set. The average abundances and standard deviations of Cr2O3 in FeO‐rich olivine phenocrysts are consistent with previous work that the CR chondrites are among the least thermally altered samples from the early solar system. Type II chondrules from the CR chondrites formed under highly variable conditions (e.g., precursor composition, redox conditions, cooling rate), with each chondrule recording a distinct igneous history. The opaque minerals within type II chondrules are consistent with formation during chondrule melting and cooling, starting as S‐ and Ni‐rich liquids at 988–1350 °C, then cooling to form monosulfide solid solution (mss) that crystallized around olivine/pyroxene phenocrysts. During cooling, Fe,Ni‐metal crystallized from the S‐ and Ni‐rich liquid, and upon further cooling mss decomposed into pentlandite and pyrrhotite, with pentlandite exsolving from mss at 400–600 °C. The composition, texture, and inferred formation temperature of pentlandite within chondrules studied here is inconsistent with formation via aqueous alteration. However, some opaque minerals (Fe,Ni‐metal versus magnetite and panethite) present in type II chondrules are a proxy for the degree of whole‐rock aqueous alteration. The texture and composition of sulfide‐bearing opaque minerals in Graves Nunataks 06100 and Grosvenor Mountains 03116 suggest that they are the most thermally altered CR chondrites.  相似文献   

17.
Abstract— Approximately 275 mineral species have been identified in meteorites, reflecting diverse redox environments, and, in some cases, unusual nebular formation conditions. Anhydrous ordinary, carbonaceous and R chondrites contain major olivine, pyroxene and plagioclase; major opaque phases include metallic Fe-Ni, troilite and chromite. Primitive achondrites are mineralogically similar. The highly reduced enstatite chondrites and achondrites contain major enstatite, plagioclase, free silica and kamacite as well as nitrides, a silicide and Ca-, Mg-, Mn-, Na-, Cr-, K- and Ti-rich sulfides. Aqueously altered carbonaceous chondrites contain major amounts of hydrous phyllosilicates, complex organic compounds, magnetite, various sulfates and sulfides, and carbonates. In addition to kamacite and taenite, iron meteorites contain carbides, elemental C, nitrides, phosphates, phosphides, chromite and sulfides. Silicate inclusions in IAB/IIICD and IIE iron meteorites consist of mafic silicates, plagioclase and various sulfides, oxides and phosphates. Eucrites, howardites and diogenites have basaltic to orthopyroxenitic compositions and consist of major pyroxene and calcic plagioclase and several accessory oxides. Ureilites are made up mainly of calcic, chromian olivine and low-Ca clinopyroxene embedded in a carbonaceous matrix; accessory phases include the C polymorphs graphite, diamond, lonsdaleite and chaoite as well as metallic Fe-Ni, troilite and halides. Angrites are achondrites rich in fassaitic pyroxene (i.e., Al-Ti diopside); minor olivine with included magnesian kirschsteinite is also present. Martian meteorites comprise basalts, lherzolites, a dunite and an orthopyroxenite. Major phases include various pyroxenes and olivine; minor to accessory phases include various sulfides, magnetite, chromite and Ca-phosphates. Lunar meteorites comprise mare basalts with major augite and calcic plagioclase and anorthositic breccias with major calcic plagioclase. Several meteoritic phases were formed by shock metamorphism. Martensite (α2-Fe,Ni) has a distorted body-centered-cubic structure and formed by a shear transformation from taenite during shock reheating and rapid cooling. The C polymorphs diamond, lonsdaleite and chaoite formed by shock from graphite. Suessite formed in the North Haig ureilite by reduction of Fe and Si (possibly from olivine) via reaction with carbonaceous matrix material. Ringwoodite, the spinel form of (Mg,Fe)2SiO4, and majorite, a polymorph of (Mg,Fe)SiO3 with the garnet structure, formed inside shock veins in highly shocked ordinary chondrites. Secondary minerals in meteorite finds that formed during terrestrial weathering include oxides and hydroxides formed directly from metallic Fe-Ni by oxidation, phosphates formed by the alteration of schreibersite, and sulfates formed by alteration of troilite.  相似文献   

18.
Abstract– Perryite [(Fe,Ni)x(Si,P)y], schreibersite [(Fe,Ni)3P], and kamacite (αFeNi) are constituent minerals of the metal‐sulfide nodules in the Sahara 97072 (EH3) enstatite chondrite meteorite. We have measured concentrations of Ni, Cu, Ga, Au, Ir, Ru, and Pd in these minerals with laser ablation, inductively coupled plasma mass spectrometry (ICP‐MS). We also measured their Fe, Ni, P, Si, and Co concentrations with electron microprobe. In kamacite, ratios of Ru/Ir, Pd/Ir, and Pd/Ru cluster around their respective CI values and all elements analyzed plot near the intersection of the equilibrium condensation trajectory versus Ni and the respective CI ratios. In schreibersite, the Pd/Ru ratio is near the CI value and perryite contains significant Cu, Ga, and Pd. We propose that schreibersite and perryite formed separately near the condensation temperatures of P and Si in a reduced gas and were incorporated into Fe‐Ni alloy. Upon further cooling, sulfidation of Fe in kamacite resulted in the formation of additional perryite at the sulfide interface. Still later, transient heating re‐melted this perryite near the Fe‐FeS eutectic temperature during partial melting of the metal‐sulfide nodules. The metal‐sulfide nodules are pre‐accretionary objects that retain CI ratios of most siderophile elements, although they have experienced transient heating events.  相似文献   

19.
Abstract— Four different types of calcium- and aluminium-rich inclusions (CAIs) have been identified in the CM2 chondrite Murray, three of which contain alteration products. Two types of altered CAIs, spinel inclusions and spinel-pyroxene inclusions, contain primary spinel (± perovskite ± hibonite ± diopside) and secondary Fe-rich serpentine phyllosilicates (± tochilinite ± calcite). Original melilite in these CAIs is inferred to have been altered during aqueous activity in the parent body and Fe-rich serpentines, tochilinite and calcite were formed in its place. The other type of altered CAI is represented by one inclusion, here called MCA-1. This CAI contains primary spinel, perovskite, fassaite and diopside with secondary calcite, paragonite, Mg-Al-Fe phyllosilicates and a Mg-Al-Fe sulphate. Importantly, MCA-1 is similar in both primary and secondary mineralogy to a small number of altered CAIs described from other CM2 meteorites including Essebi, Murchison and a CM2 clast from Plainview. Features that these CAIs have in common include an unusually large size, a CV3-like primary mineralogy and the presence of secondary aluminosilicates and calcite. The Al-rich alteration products in MCA-1 are also reminiscent of secondary minerals in refractory inclusions from CV3 meteorites, which have previously been interpreted to form by interaction of the inclusions with solar nebula gases. In common with the other types of altered CAIs in Murray, MCA-1 is inferred to have experienced its main phase of alteration in a parent body environment. The Mg-Al-Fe phyllosilicates, calcite and the Mg-Al-Fe sulphate formed following aqueous alteration of an Al-rich precursor, possibly Ca dialuminate. This episode of parent body alteration may have overprinted an earlier phase of alteration in a solar nebula environment from which only paragonite remains.  相似文献   

20.
We report in situ O isotope and chemical compositions of magnetite and olivine in chondrules of the carbonaceous chondrites Watson‐002 (anomalous CK3) and Asuka (A)‐881595 (ungrouped C3). Magnetite in Watson‐002 occurs as inclusion‐free subhedral grains and rounded inclusion‐bearing porous grains replacing Fe,Ni‐metal. In A‐881595, magnetite is almost entirely inclusion‐free and coexists with Ni‐rich sulfide and less abundant Ni‐poor metal. Oxygen isotope compositions of chondrule olivine in both meteorites plot along carbonaceous chondrite anhydrous mineral (CCAM) line with a slope of approximately 1 and show a range of Δ17O values (from approximately ?3 to ?6‰). One chondrule from each sample was found to contain O isotopically heterogeneous olivine, probably relict grains. Oxygen isotope compositions of magnetite in A‐881595 plot along a mass‐dependent fractionation line with a slope of 0.5 and show a range of Δ17O values from ?2.4‰ to ?1.1‰. Oxygen isotope compositions of magnetite in Watson‐002 cluster near the CCAM line and a Δ17O value of ?4.0‰ to ?2.9‰. These observations indicate that magnetite and chondrule olivine are in O isotope disequilibrium, and, therefore, not cogenetic. We infer that magnetite in CK chondrites formed by the oxidation of pre‐existing metal grains by an aqueous fluid during parent body alteration, in agreement with previous studies. The differences in Δ17O values of magnetite between Watson‐002 and A‐881595 can be attributed to their different thermal histories: the former experienced a higher degree of thermal metamorphism that led to the O isotope exchange between magnetite and adjacent silicates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号