首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Natural calcium monoaluminate, CaAl2O4, has been found in a grossite‐rich calcium‐aluminum‐rich inclusion (CAI) from the CH chondrite Northwest Africa 470. The calcium monoaluminate occurs as colorless ~10 μm subhedral grains intergrown with grossite, perovskite, and melilite. Nebular condensation is the most likely origin for the precursor materials of this CAI, but calculations suggest that dust/gas ratios substantially enhanced over solar are required to stabilize CaAl2O4.  相似文献   

2.
The distribution of the short‐lived radionuclide 26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions in CO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearing CAIs in the Dominion Range (DOM) 08006 (CO3.0) and DOM 08004 (CO3.1) chondrites. All minerals in DOM 08006 CAIs as well as hibonite, spinel, and pyroxene in DOM 08004 are uniformly 16O‐rich (Δ17O = ?25 to ?20‰) but grossite and melilite in DOM 08004 CAIs are not; Δ17O of grossite and melilite range from ~ ?11 to ~0‰ and from ~ ?23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial 26Al/27Al ratios (26Al/27Al)0 is seen, with four having (26Al/27Al)0 ≤1.1 × 10?5 and six having (26Al/27Al)0 ≥3.7 × 10?5. Five of the 26Al‐rich CAIs have (26Al/27Al)0 within error of 4.5 × 10?5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10?5 given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the 26Al‐poor CAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in the DOM 08006 CAIs, as well as spinel, hibonite, and Al‐diopside in the DOM 08004 CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where the CO grossite‐bearing CAIs originated. Oxygen isotopic heterogeneity in CAIs from DOM 08004 resulted from exchange between the initially 16O‐rich (Δ17O ~?24‰) melilite and grossite and 16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on the CO chondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic 26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on the CO parent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected most CAIs in CO ≥3.1 chondrites.  相似文献   

3.
Abstract— The CV (Vigarano‐type) chondrites are a petrologically diverse group of meteorites that are divided into the reduced and the Bali‐like and Allende‐like oxidized subgroups largely based on secondary mineralogy (Weisberg et al., 1997; Krot et al., 1998b). Some chondrules and calcium‐aluminum‐rich inclusions (CAIs) in the reduced CV chondrite Vigarano show alteration features similar to those in Allende: metal is oxidized to magnetite; low‐Ca pyroxene, forsterite, and magnetite are rimmed and veined by ferrous olivine (Fs40–50); and plagioclase mesostases and melilite are replaced by nepheline and sodalite (Sylvester et al., 1993; Kimura and Ikeda, 1996, 1997, 1998). Our petrographic observations indicate that Vigarano also contains individual chondrules, chondrule fragments, and lithic clasts of the Bali‐like oxidized CV materials. The largest lithic clast (about 1 times 2 cm in size) is composed of opaque matrix, type‐I chondrules (400–2000 μm in apparent diameter) surrounded by coarse‐grained and fine‐grained rims, and rare CAIs. The matrix‐chondrule ratio is about 1.1. Opaque nodules in chondrules in the clast consist of Cr‐poor and Cr‐rich magnetite, Ni‐ and Co‐rich metal, Ni‐poor and Ni‐rich sulfide; low‐Ni metal nodules occur only inside chondrule phenocrysts. Chromium‐poor magnetite is preferentially replaced by fayalite. Chondrule mesostases are replaced by phyllosilicates; low‐Ca pyroxene and olivine phenocrysts appear to be unaltered. Matrix in the clast consists of very fine‐grained (<1 μm) ferrous olivine, anhedral fayalite grains (Fa80–100), rounded objects of porous Ca‐Fe‐rich pyroxenes (Fs10–50Wo50), Ni‐poor sulfide, Ni‐ and Co‐rich metal, and phyllosilicates; magnetite is rare. On the basis of the presence of the Bali‐like lithified chondritic clast—in addition to individual chondrules and CAIs of both Bali‐like and Allende‐like materials—in the reduced CV chondrite Vigarano, we infer that (1) all three types of materials were mixed during regolith gardening on the CV asteroidal body, and (2) the reduced and oxidized CV materials may have originated from a single, heterogeneously altered asteroid.  相似文献   

4.
Vigarano, a type 3 carbonaceous chondrite, contains a chondrule composed of highly refractory Ca and Al rich glass with minor spinel. The chondrule formed from material similar to the Ca, Al, Ti-rich aggregates that are common in Vigarano and other type 3 chondrites and formation of these refractory aggregates must predate formation of some Vigarano chondrules. Experiments with synthetic analogues and a comparison with studies in the system CaO-MgO-Al2O3-SiO2 indicate a temperature for formation of the chondrule at or above 1700 °C followed by very rapid cooling.  相似文献   

5.
Abstract— The metal‐rich chondrites Hammadah al Hamra (HH) 237 and Queen Alexandra Range (QUE) 94411, paired with QUE 94627, contain relatively rare (<1 vol%) calcium‐aluminum‐rich inclusions (CAIs) and Al‐diopside‐rich chondrules. Forty CAIs and CAI fragments and seven Al‐diopside‐rich chondrules were identified in HH 237 and QUE 94411/94627. The CAIs, ~50–400 μm in apparent diameter, include (a) 22 (56%) pyroxene‐spinel ± melilite (+forsterite rim), (b) 11 (28%) forsterite‐bearing, pyroxene‐spinel ± melilite ± anorthite (+forsterite rim) (c) 2 (5%) grossite‐rich (+spinel‐melilite‐pyroxene rim), (d) 2 (5%) hibonite‐melilite (+spinel‐pyroxene ± forsterite rim), (e) 1 (2%) hibonite‐bearing, spinel‐perovskite (+melilite‐pyroxene rim), (f) 1 (2%) spinel‐melilite‐pyroxene‐anorthite, and (g) 1 (2%) amoeboid olivine aggregate. Each type of CAI is known to exist in other chondrite groups, but the high abundance of pyroxene‐spinel ± melilite CAIs with igneous textures and surrounded by a forsterite rim are unique features of HH 237 and QUE 94411/94627. Additionally, oxygen isotopes consistently show relatively heavy compositions with Δ17O ranging from ?6%0 to ?10%0 (1σ = 1.3%0) for all analyzed CAI minerals (grossite, hibonite, melilite, pyroxene, spinel). This suggests that the CAIs formed in a reservoir isotopically distinct from the reservoir(s) where “normal”, 16O‐rich (Δ17O < ?20%0) CAIs in most other chondritic meteorites formed. The Al‐diopside‐rich chondrules, which have previously been observed in CH chondrites and the unique carbonaceous chondrite Adelaide, contain Al‐diopside grains enclosing oriented inclusions of forsterite, and interstitial anorthitic mesostasis and Al‐rich, Ca‐poor pyroxene, occasionally enclosing spinel and forsterite. These chondrules are mineralogically similar to the Al‐rich barred‐olivine chondrules in HH 237 and QUE 94411/94627, but have lower Cr concentrations than the latter, indicating that they may have formed during the same chondrule‐forming event, but at slightly different ambient nebular temperatures. Aluminum‐diopside grains from two Al‐diopside‐rich chondrules have O‐isotopic compositions (Δ17O ? ?7 ± 1.1 %0) similar to CAI minerals, suggesting that they formed from an isotopically similar reservoir. The oxygen‐isotopic composition of one Ca, Al‐poor cryptocrystalline chondrule in QUE 94411/94627 was analyzed and found to have Δ17O ? ?3 ± 1.4%0. The characteristics of the CAIs in HH 237 and QUE 94411/94627 are inconsistent with an impact origin of these metal‐rich meteorites. Instead they suggest that the components in CB chondrites are pristine products of large‐scale, high‐temperature processes in the solar nebula and should be considered bona fide chondrites.  相似文献   

6.
Abstract— Isheyevo is a metal‐rich carbonaceous chondrite that contains several lithologies with different abundances of Fe,Ni metal (7–90 vol%). The metal‐rich lithologies with 50–60 vol% of Fe,Ni metal are dominant. The metal‐rich and metal‐poor lithologies are most similar to the CBb and CH carbonaceous chondrites, respectively, providing a potential link between these chondrite groups. All lithologies experienced shock metamorphism of shock stage S4. All consist of similar components—Fe,Ni metal, chondrules, refractory inclusions (Ca, Al‐rich inclusions [CAIs] and amoeboid olivine aggregates [AOAs]), and heavily hydrated lithic clasts—but show differences in their modal abundances, chondrule sizes, and proportions of porphyritic versus non‐porphyritic chondrules. Bulk chemical and oxygen isotopic compositions are in the range of CH and CB chondrites. Bulk nitrogen isotopic composition is highly enriched in 15N (δ15N = 1122‰). The magnetic fraction is very similar to the bulk sample in terms of both nitrogen release pattern and isotopic profile; the non‐magnetic fraction contains significantly less heavy N. Carbon released at high temperatures shows a relatively heavy isotope signature. Similarly to CBb chondrites, ~20% of Fe,Ni‐metal grains in Isheyevo are chemically zoned. Similarly to CH chondrites, some metal grains are Ni‐rich (>20 wt% Ni). In contrast to CBb and CH chondrites, most metal grains are thermally decomposed into Ni‐rich and Ni‐poor phases. Similar to CH chondrites, chondrules have porphyritic and non‐porphyritic textures and ferromagnesian (type I and II), silica‐rich, and aluminum‐rich bulk compositions. Some of the layered ferromagnesian chondrules are surrounded by ferrous olivine or phyllosilicate rims. Phyllosilicates in chondrule rims are compositionally distinct from those in the hydrated lithic clasts. Similarly to CH chondrites, CAIs are dominated by the hibonite‐, grossite‐, and melilite‐rich types; AOAs are very rare. We infer that Isheyevo is a complex mixture of materials formed by different processes and under different physico‐chemical conditions. Chondrules and refractory inclusions of two populations, metal grains, and heavily hydrated clasts accreted together into the Isheyevo parent asteroid in a region of the protoplanetary disk depleted in fine‐grained dust. Such a scenario is consistent with the presence of solar wind—implanted noble gases in Isheyevo and with its comparatively old K‐Ar age. We cannot exclude that the K‐Ar system was affected by a later collisional event. The cosmic‐ray exposure (CRE) age of Isheyevo determined by cosmogenic 38Ar is ~34 Ma, similar to that of the Bencubbin (CBa) meteorite.  相似文献   

7.
Abstract— Amoeboid olivine aggregates (AOAs) from the reduced CV chondrites Efremovka, Leoville and Vigarano are irregularly‐shaped objects, up to 5 mm in size, composed of forsteritic olivine (Fa<10) and a refractory, Ca, Al‐rich component. The AOAs are depleted in moderately volatile elements (Mn, Cr, Na, K), Fe, Ni‐metal and sulfides and contain no low‐Ca pyroxene. The refractory component consists of fine‐grained calcium‐aluminum‐rich inclusions (CAIs) composed of Al‐diopside, anorthite (An100), and magnesium‐rich spinel (~1 wt% FeO) or fine‐grained intergrowths of these minerals; secondary nepheline and sodalite are very minor. This indicates that AOAs from the reduced CV chondrites are more pristine than those from the oxidized CV chondrites Allende and Mokoia. Although AOAs from the reduced CV chondrites show evidence for high‐temperature nebular annealing (e.g., forsterite grain boundaries form 120° triple junctions) and possibly a minor degree of melting of Al‐diopside‐anorthite materials, none of the AOAs studied appear to have experienced extensive (>50%) melting. We infer that AOAs are aggregates of high‐temperature nebular condensates, which formed in CAI‐forming regions, and that they were absent from chondrule‐forming regions at the time of chondrule formation. The absence of low‐Ca pyroxene and depletion in moderately volatile elements (Mn, Cr, Na, K) suggest that AOAs were either removed from CAI‐forming regions prior to condensation of these elements and low‐Ca pyroxene or gas‐solid condensation of low‐Ca‐pyroxene was kinetically inhibited.  相似文献   

8.
Abstract— We describe the mineralogy, petrology, oxygen, and magnesium isotope compositions of three coarse‐grained, igneous, anorthite‐rich (type C) Ca‐Al‐rich inclusions (CAIs) (ABC, TS26, and 93) that are associated with ferromagnesian chondrule‐like silicate materials from the CV carbonaceous chondrite Allende. The CAIs consist of lath‐shaped anorthite (An99), Cr‐bearing Al‐Ti‐diopside (Al and Ti contents are highly variable), spinel, and highly åkermanitic and Na‐rich melilite (Åk63–74, 0.4–0.6 wt% Na2O). TS26 and 93 lack Wark‐Lovering rim layers; ABC is a CAI fragment missing the outermost part. The peripheral portions of TS26 and ABC are enriched in SiO2 and depleted in TiO2 and Al2O3 compared to their cores and contain relict ferromagnesian chondrule fragments composed of forsteritic olivine (Fa6–8) and low‐Ca pyroxene/pigeonite (Fs1Wo1–9). The relict grains are corroded by Al‐Ti‐diopside of the host CAIs and surrounded by haloes of augite (Fs0.5Wo30–42). The outer portion of CAI 93 enriched in spinel is overgrown by coarse‐grained pigeonite (Fs0.5–2Wo5–17), augite (Fs0.5Wo38–42), and anorthitic plagioclase (An84). Relict olivine and low‐Ca pyroxene/pigeonite in ABC and TS26, and the pigeonite‐augite rim around 93 are 16O‐poor (Δ17O ~ ?1‰ to ?8‰). Spinel and Al‐Ti‐diopside in cores of CAIs ABC, TS26, and 93 are 16O‐enriched (Δ17O down to ?20‰), whereas Al‐Ti‐diopside in the outer zones, as well as melilite and anorthite, are 16O‐depleted to various degrees (Δ17O = ?11‰ to 2‰). In contrast to typical Allende CAIs that have the canonical initial 26Al/27Al ratio of ~5 × 10?5 ABC, 93, and TS26 are 26Al‐poor with (26Al/27Al)0 ratios of (4.7 ± 1.4) × 10?6 (1.5 ± 1.8) × 10?6 <1.2 × 10?6 respectively. We conclude that ABC, TS26, and 93 experienced remelting with addition of ferromagnesian chondrule silicates and incomplete oxygen isotopic exchange in an 16O‐poor gaseous reservoir, probably in the chondrule‐forming region. This melting episode could have reset the 26Al‐26Mg systematics of the host CAIs, suggesting it occurred ~2 Myr after formation of most CAIs. These observations and the common presence of relict CAIs inside chondrules suggest that CAIs predated formation of chondrules.  相似文献   

9.
We report an occurrence of hexagonal CaAl2Si2O8 (dmisteinbergite) in a compact type A calcium‐aluminum‐rich inclusion (CAI) from the CV3 (Vigarano‐like) carbonaceous chondrite Northwest Africa 2086. Dmisteinbergite occurs as approximately 10 μm long and few micrometer‐thick lath‐shaped crystal aggregates in altered parts of the CAI, and is associated with secondary nepheline, sodalite, Ti‐poor Al‐diopside, grossular, and Fe‐rich spinel. Spinel is the only primary CAI mineral that retained its original O‐isotope composition (Δ17O ~ ?24‰); Δ17O values of melilite, perovskite, and Al,Ti‐diopside range from ?3 to ?11‰, suggesting postcrystallization isotope exchange. Dmisteinbergite, anorthite, Ti‐poor Al‐diopside, and ferroan olivine have 16O‐poor compositions (Δ17O ~ ?3‰). We infer that dmisteinbergite, together with the other secondary minerals, formed by replacement of melilite as a result of fluid‐assisted thermal metamorphism experienced by the CV chondrite parent asteroid. Based on the textural appearance of dmisteinbergite in NWA 2086 and petrographic observations of altered CAIs from the Allende meteorite, we suggest that dmisteinbergite is a common secondary mineral in CAIs from the oxidized Allende‐like CV3 chondrites that has been previously misidentified as a secondary anorthite.  相似文献   

10.
Abstract— It was suggested that multilayered accretionary rims composed of ferrous olivine, andradite, wollastonite, salite‐hedenbergitic pyroxenes, nepheline, and Ni‐rich sulfides around Allende calcium‐aluminum‐rich inclusions (CAIs) are aggregates of gas‐solid condensates which reflect significant fluctuations in physico‐chemical conditions in the slowly cooling solar nebula and grain/gas separation processes. In order to test this model, we studied the mineralogy of accretionary rims around one type A CAI (E104) and one type B CAI (E48) from the reduced CV3 chondrite Efremovka, which is less altered than Allende. In contrast to the Allende accretionary rims, those in Efremovka consist of coarse‐grained (20–40 μm), anhedral forsterite (Fa1–8), Fe, Ni‐metal nodules, amoeboid olivine aggregates (AOAs) and fine‐grained CAIs composed of Al‐diopside, anorthite, and spinel, ± forsterite. Although the fine‐grained CAIs, AOAs and host CAIs are virtually unaltered, a hibonite‐spinel‐perovskite CAI in the E48 accretionary rim experienced extensive alteration, which resulted in the formation of Fe‐rich, Zn‐bearing spinel, and a Ca, Al, Si‐hydrous mineral. Forsterites in the accretionary rims typically show an aggregational nature and consist of small olivine grains with numerous pores and tiny inclusions of Al‐rich minerals. No evidence for the replacement of forsterite by enstatite was found; no chondrule fragments were identified in the accretionary rims. We infer that accretionary rims in Efremovka are more primitive than those in Allende and formed by aggregation of high‐temperature condensates around host CAIs in the CAI‐forming regions. The rimmed CAIs were removed from these regions prior to condensation of enstatite and alkalies. The absence of andradite, wollastonite, and hedenbergite from the Efremovka rims may indicate that these rims sampled different nebular regions than the Allende rims. Alternatively, the Ca, Fe‐rich silicates rimming Allende CAIs may have resulted from late‐stage metasomatic alteration, under oxidizing conditions, of original Efremovka‐like accretionary rims. The observed differences in O‐isotope composition between forsterite and Ca, Fe‐rich minerals in the Allende accretionary rims (Hiyagon, 1998) suggest that the oxidizing fluid had an 16O‐poor oxygen isotopic composition.  相似文献   

11.
Abstract— We report in situ magnesium isotope measurements of 7 porphyritic magnesium‐rich (type I) chondrules, 1 aluminum‐rich chondrule, and 16 refractory inclusions (14 Ca‐Al‐rich inclusions [CAIs] and 2 amoeboid olivine aggregates [AOAs]) from the ungrouped carbonaceous chondrite Acfer 094 using a Cameca IMS 6f ion microprobe. Both AOAs and 9 CAIs show radiogenic 26Mg excesses corresponding to initial 26Al/27Al ratios between ~5 × 10?5 ~7 × 10?5 suggesting that formation of the Acfer 094 CAIs may have lasted for ~300,000 years. Four CAIs show no evidence for radiogenic 26Mg; three of these inclusions (a corundum‐rich, a grossite‐rich, and a pyroxene‐hibonite spherule CAI) are very refractory objects and show deficits in 26Mg, suggesting that they probably never contained 26Al. The fourth object without evidence for radiogenic 26Mg is an anorthite‐rich, igneous (type C) CAI that could have experienced late‐stage melting that reset its Al‐Mg systematics. Significant excesses in 26Mg were observed in two chondrules. The inferred 26Al/27Al ratios in these two chondrules are (10.3 ± 7.4) × 10?6 (6.0 ± 3.8) × 10?6 (errors are 2σ), suggesting formation 1.6+1.2‐0.6 and 2.2+0.4‐0.3 Myr after CAIs with the canonical 26Al/27Al ratio of 5 × 10?5. These age differences are consistent with the inferred age differences between CAIs and chondrules in primitive ordinary (LL3.0–LL3.1) and carbonaceous (CO3.0) chondrites.  相似文献   

12.
Abstract— –The CH/CB‐like chondrite Isheyevo consists of metal‐rich (70–90 vol% Fe,Ni‐metal) and metal‐poor (7–20 vol% Fe,Ni‐metal) lithologies which differ in size and relative abundance of Fe,Ni‐metal and chondrules, as well as proportions of porphyritic versus non‐porphyritic chondrules. Here, we describe the mineralogy and petrography of Ca,Al‐rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs) in these lithologies. Based on mineralogy, refractory inclusions can be divided into hibonite‐rich (39%), grossite‐rich (16%), melilite‐rich (19%), spinel‐rich (14%), pyroxene‐anorthite‐rich (8%), fine‐grained spinel‐rich CAIs (1%), and AOAs (4%). There are no systematic differences in the inclusion types or their relative abundances between the lithologies. About 55% of the Isheyevo CAIs are very refractory (hibonite‐rich and grossite‐rich) objects, 20–240 μm in size, which appear to have crystallized from rapidly cooling melts. These inclusions are texturally and mineralogically similar to the majority of CAIs in CH and CB chondrites. They are distinctly different from CAIs in other carbonaceous chondrite groups dominated by the spinel‐pyroxene ± melilite CAIs and AOAs. The remaining 45% of inclusions are less refractory objects (melilite‐, spinel‐ and pyroxene‐rich CAIs and AOAs), 40–300 μm in size, which are texturally and mineralogically similar to those in other chondrite groups. Both types of CAIs are found as relict objects inside porphyritic chondrules indicating recycling during chondrule formation. We infer that there are at least two populations of CAIs in Isheyevo which appear to have experienced different thermal histories. All of the Isheyevo CAIs apparently formed at an early stage, prior to chondrule formation and prior to a hypothesized planetary impact that produced magnesian cryptocrystalline and skeletal chondrules and metal grains in CB, and possibly CH chondrites. However, some of the CAIs appear to have undergone melting during chondrule formation and possibly during a major impact event. We suggest that Isheyevo, as well as CH and CB chondrites, consist of variable proportions of materials produced by different processes in different settings: 1) by evaporation, condensation, and melting of dust in the protoplanetary disk (porphyritic chondrules and refractory inclusions), 2) by melting, evaporation and condensation in an impact generated plume (magnesian cryptocrystalline and skeletal chondrules and metal grains; some igneous CAIs could have been melted during this event), and 3) by aqueous alteration of pre‐existing planetesimals (heavily hydrated lithic clasts). The Isheyevo lithologies formed by size sorting of similar components during accretion in the Isheyevo parent body; they do not represent fragments of CH and CB chondrites.  相似文献   

13.
CK chondrites are the only group of carbonaceous chondrites with petrologic types ranging from 3 to 6. Although CKs are described as calcium‐aluminum‐rich inclusion (CAI)‐poor objects, the abundance of CAIs in the 18 CK3–6 we analyzed ranges from zero to approximately 16.4%. During thermal metamorphism, some of the fine‐grained CAIs recrystallized as irregular assemblages of plagioclase + Ca‐rich pyroxene ± olivine ± Ca‐poor pyroxene ± magnetite. Coarse‐grained CAIs display zoned spinel, fassaite destabilization, and secondary grossular and spinel. Secondary anorthite, grossular, Ca‐rich pyroxene, and spinel derive from the destabilization of melilite, which is lacking in all CAIs investigated. The Al‐Mg isotopic systematics measured in fine‐ and coarse‐grained CAIs from Tanezrouft (Tnz) 057 was affected by Mg redistribution. The partial equilibration of Al‐Mg isotopic signatures obtained in the core of a coarse‐grained CAI (CG1‐CAI) in Tnz 057 may indicate a lower peak temperature for Mg diffusion of approximately 540–580 °C, while grossular present in the core of this CAI indicates a higher temperature of around 800 °C for the metamorphic event on the parent body of Tnz 057. Excluding metamorphic features, the similarity in nature and abundance of CAIs in CK and CV chondrites confirms that CVs and CKs form a continuous metamorphic series from type 3 to 6.  相似文献   

14.
Northwest Africa (NWA) 4898 is the only low‐Ti, high‐Al basaltic lunar meteorite yet recognized. It predominantly consists of pyroxene (53.8 vol%) and plagioclase (38.6 vol%). Pyroxene has a wide range of compositions (En12–62Fs25–62Wo11–36), which display a continuous trend from Mg‐rich cores toward Ca‐rich mantles and then to Fe‐rich rims. Plagioclase has relatively restricted compositions (An87–96Or0–1Ab4–13), and was transformed to maskelynite. The REE zoning of all silicate minerals was not significantly modified by shock metamorphism and weathering. Relatively large (up to 1 mm) olivine phenocrysts have homogenous inner parts with Fo ~74 and sharply decrease to 64 within the thin out rims (~30 μm in width). Four types of inclusions with a variety of textures and modal mineralogy were identified in olivine phenocrysts. The contrasting morphologies of these inclusions and the chemical zoning of olivine phenocrysts suggest NWA 4898 underwent at least two stages of crystallization. The aluminous chromite in NWA 4898 reveals that its high alumina character was inherited from the parental magma, rather than by fractional crystallization. The mineral chemistry and major element compositions of NWA 4898 are different from those of 12038 and Luna 16 basalts, but resemble those of Apollo 14 high‐Al basalts. However, the trace element compositions demonstrate that NWA 4898 and Apollo 14 high‐Al basalts could not have been derived from the same mantle source. REE compositions of its parental magma indicate that NWA 4898 probably originated from a unique depleted mantle source that has not been sampled yet. Unlike Apollo 14 high‐Al basalts, which assimilated KREEPy materials during their formation, NWA 4898 could have formed by closed‐system fractional crystallization.  相似文献   

15.
Abstract— In situ SIMS oxygen isotope data were collected from a coarse‐grained type B1 Ca‐Al‐rich inclusion (CAI) and an adjacent fine‐grained CAI in the reduced CV3 Efremovka to evaluate the timing of isotopic alteration of these two objects. The coarse‐grained CAI (CGI‐10) is a sub‐spherical object composed of elongate, euhedral, normally‐zoned melilite crystals ranging up to several hundreds of Pm in length, coarse‐grained anorthite and Al, Ti‐diopside (fassaite), all with finegrained (~10 μm across) inclusions of spinel. Similar to many previously examined coarse‐grained CAIs from CV chondrites, spinel and fassaite are 16O‐rich and melilite is 16O‐poor, but in contrast to many previous results, anorthite is 16O‐rich. Isotopic composition does not vary with textural setting in the CAI: analyses of melilite from the core and mantle and analyses from a variety of major element compositions yield consistent 16O‐poor compositions. CGI‐10 originated in an 16O‐rich environment, and subsequent alteration resulted in complete isotopic exchange in melilite. The fine‐grained CAI (FGI‐12) also preserves evidence of a 1st‐generation origin in an 16O‐rich setting but underwent less severe isotopic alteration. FGI‐12 is composed of spinel ± melilite nodules linked by a mass of Al‐diopside and minor forsterite along the CAI rim. All minerals are very fine‐grained (<5 μm) with no apparent igneous textures or zoning. Spinel, Al‐diopside, and forsterite are 16O‐rich, while melilite is variably depleted in 16O (δ17,18O from ~‐40‰ to ?5‰). The contrast in isotopic distributions in CGI‐10 and FGI‐12 is opposite to the pattern that would result from simultaneous alteration: the object with finer‐grained melilite and a greater surface area/ volume has undergone less isotopic exchange than the coarser‐grained object. Thus, the two CAIs were altered in different settings. As the CAIs are adjacent to each other in the meteorite, isotopic exchange in CGI‐10 must have preceded incorporation of this CAI in the Efremovka parent body. This supports a nebular setting for isotopic alteration of the commonly observed 16O‐poor melilite in coarse‐grained CAIs from CV chondrites.  相似文献   

16.
Abstract— The outer portions of many type I chondrules (Fa and Fs <5 mol%) in CR chondrites (except Renazzo and Al Rais) consist of silica‐rich igneous rims (SIRs). The host chondrules are often layered and have a porphyritic core surrounded by a coarse‐grained igneous rim rich in low‐Ca pyroxene. The SIRs are sulfide‐free and consist of igneously‐zoned low‐Ca and high‐Ca pyroxenes, glassy mesostasis, Fe, Ni‐metal nodules, and a nearly pure SiO2 phase. The high‐Ca pyroxenes in these rims are enriched in Cr (up to 3.5 wt% Cr2O3) and Mn (up to 4.4 wt% MnO) and depleted in Al and Ti relative to those in the host chondrules, and contain detectable Na (up to 0.2 wt% Na2O). Mesostases show systematic compositional variations: Si, Na, K, and Mn contents increase, whereas Ca, Mg, Al, and Cr contents decrease from chondrule core, through pyroxene‐rich igneous rim (PIR), and to SIR; FeO content remains nearly constant. Glass melt inclusions in olivine phenocrysts in the chondrule cores have high Ca and Al, and low Si, with Na, K, and Mn contents that are below electron microprobe detection limits. Fe, Ni‐metal grains in SIRs are depleted in Ni and Co relative to those in the host chondrules. The presence of sulfide‐free, SIRs around sulfide‐free type I chondrules in CR chondrites may indicate that these chondrules formed at high (>800 K) ambient nebular temperatures and escaped remelting at lower ambient temperatures. We suggest that these rims formed either by gas‐solid condensation of silica‐normative materials onto chondrule surfaces and subsequent incomplete melting, or by direct SiO(gas) condensation into chondrule melts. In either case, the condensation occurred from a fractionated, nebular gas enriched in Si, Na, K, Mn, and Cr relative to Mg. The fractionation of these lithophile elements could be due to isolation (in the chondrules) of the higher temperature condensates from reaction with the nebular gas or to evaporation‐recondensation of these elements during chondrule formation. These mechanisms and the observed increase in pyroxene/olivine ratio toward the peripheries of most type I chondrules in CR, CV, and ordinary chondrites may explain the origin of olivine‐rich and pyroxene‐rich chondrules in general.  相似文献   

17.
Abstract— Wark‐Lovering rims of six calcium‐aluminum‐rich inclusions (CAIs) representing the main CAI types and groups in Allende, Efremovka and Vigarano were microsurgically separated and analysed by neutron activation analysis (NAA). All the rims have similar ~4x enrichments, relative to the interiors, of highly refractory lithophile and siderophile elements. The NAA results are confirmed by ion microprobe and scanning electron microscope (SEM) analyses of rim perovskites and rim metal grains. Less refractory Eu, Yb, V, Sr, Ca and Ni are less enriched in the rims. The refractory element patterns in the rims parallel the patterns in the outer parts of the CAIs. In particular, the rims on type B1 CAIs have the igneously fractionated rare earth element (REE) pattern of the melilite mantle below the rim and not the REE pattern of the bulk CAI, proving that the refractory elements in the rims were derived from the outer mantle and were not condensates onto the CAIs. The refractory elements were enriched in an Al2O3‐rich residue <50 μm thick after the most volatile ~80% of the outermost 200 μm of each CAI had been volatilized, including much Mg, Si and Ca. Some volatilization occurred below the rim, and created refractory partial melts that crystallized hibonite and gehlenitic melilite. The required “flash heating” probably exceeded 2000 °C, but for only a few seconds, in order to melt only the outer CAI and to unselectively volatilize slow‐diffusing O isotopes which show no mass fractionation in the rim. The volatilization did, however, produce “heavy” mass‐fractionated Mg in rims. In some CAIs this was later obscured when “normal” Mg diffused in from accreted olivine grains at relatively high temperature (not the lower temperature meteorite metamorphism) and created the ~50 μm set of monomineralic rim layers of pyroxene, melilite and spinel.  相似文献   

18.
The petrologic and oxygen isotopic characteristics of calcium‐aluminum‐rich inclusions (CAIs) in CO chondrites were further constrained by studying CAIs from six primitive CO3.0‐3.1 chondrites, including two Antarctic meteorites (DOM 08006 and MIL 090010), three hot desert meteorites (NWA 10493, NWA 10498, and NWA 7892), and the Colony meteorite. The CAIs can be divided into hibonite‐bearing inclusions (spinel‐hibonite spherules, monomineralic grains, hibonite‐pyroxene microspherules, and irregular/nodular objects), grossite‐bearing inclusions (monomineralic grains, grossite‐melilite microspherules, and irregular/nodular objects), melilite‐rich inclusions (fluffy Type A, compact type A, monomineralic grains, and igneous fragments), spinel‐pyroxene inclusions (fluffy objects resembling fine‐grained spinel‐rich inclusions in CV chondrites and nodular/banded objects resembling those in CM chondrites), and pyroxene‐anorthite inclusions. They are typically small (98.4 ± 54.4 µm, 1SD) and comprise 1.54 ± 0.43 (1SD) area% of the host chondrites. Melilite in the hot desert and Colony meteorites was extensively replaced by a hydrated Ca‐Al‐silicate during terrestrial weathering and converted melilite‐rich inclusions into spinel‐pyroxene inclusions. The CAI populations of the weathered COs are very similar to those in CM chondrites, suggesting that complete replacement of melilite by terrestrial weathering, and possibly parent body aqueous alteration, would make the CO CAIs CM‐like, supporting the hypothesis that CO and CM chondrites derive from similar nebular materials. Within the CO3.0‐3.1 chondrites, asteroidal alteration significantly resets oxygen isotopic compositions of CAIs in CO3.1 chondrites (?17O: ?25 to ?2‰) but left those in CO3.0‐3.05 chondrites mostly unchanged (?17O: ?25 to ?20‰), further supporting the model whereby thermal metamorphism became evident in CO chondrites of petrologic type ≥3.1. The resistance of CAI minerals to oxygen isotope exchange during thermal metamorphism follows in the order: melilite + grossite < hibonite + anorthite < spinel + diopside + forsterite. Meanwhile, terrestrial weathering destroys melilite without changing the chemical and isotopic compositions of melilite and other CAI minerals.  相似文献   

19.
Palisade bodies, mineral assemblages with spinel shells, in coarse‐grained Ca‐, Al‐rich inclusions (CAIs) have been considered either as exotic “mini‐CAIs” captured by their host inclusions (Wark and Lovering 1982 ) or as in situ crystallization products of a bubble‐rich melt (Simon and Grossman 1997 ). In order to clarify their origins, we conducted a comprehensive study of palisade bodies in an Allende Type B CAI (BBA‐7), using electron backscatter diffraction (EBSD), micro‐computed tomography (Micro‐CT), electron probe microanalysis (EPMA), and secondary ion mass spectrometry (SIMS). New observations support the in situ crystallization mechanism: early/residual melt infiltrated into spinel‐shelled bubbles and crystallized inside. Evidence includes (1) continuous crystallography of anorthite from the interior of the palisade body to the surrounding host; (2) partial consolidation of two individual palisade bodies revealed by micro‐CT; (3) a palisade body was entirely enclosed in a large anorthite crystal, and the anorthite within the palisade body shows the same crystallographic orientation as the anorthite host; and (4) identical chemical and oxygen isotopic compositions of the constituent minerals between the palisade bodies and the surrounding host. Oxygen isotopic compositions of the major minerals in BBA‐7 are bimodal‐distributed. Spinel and fassaite are uniformly 16O‐rich with ?17O = ?23.3 ± 1.5‰ (2SD), and melilite and anorthite are homogeneously 16O‐poor with ?17O = ?3.2 ± 0.7‰ (2SD). The latter ?17O value overlaps with that of the Allende matrix (?17O ~ ?2.87‰) (Clayton and Mayeda 1999 ), which could be explained by secondary alteration with a 16O‐poor fluid in the parent body. The mobility of fluid could be facilitated by the high porosity (1.56–2.56 vol%) and connectivity (~0.17–0.55 vol%) of this inclusion.  相似文献   

20.
Abstract— Terminal particles and mineral fragments from comet 81P/Wild 2 were studied in 16 aerogel tracks by transmission and secondary electron microscopy. In eight tracks clinopyroxenes with correlated Na2O and Cr2O3 contents as high as 6.0 wt% and 13.0 wt%, respectively, were found. Kosmochloric (Ko) clinopyroxenes were also observed in 4 chondritic interplanetary dust particles (IDPs). The Ko‐clinopyroxenes were often associated with FeO‐rich olivine ± Cr‐rich spinel ± aluminosilicate glass or albitic feldspar, assemblages referred to as Kool grains (Ko = kosmochloric Ca‐rich pyroxene, ol = olivine). Fine‐grained (submicron) Kool fragments have textures suggestive of crystallization from melts while coarse‐grained (>1 μm) Kool fragments are often glass‐free and may have formed by thermal metamorphism in the nebula. Average major and minor element distributions between clinopyroxenes and coexisting FeO‐rich olivines are consistent with these phases forming at or near equilibrium. In glass‐bearing fine‐grained Kool fragments, high concentrations of Na in the clinopyroxenes are inconsistent with existing experimentally determined partition coefficients at equilibrium. We speculate that the availability of Cr in the melt increased the clinopyroxene Na partition coefficient via a coupled substitution thereby enhancing this phase with the kosmochlor component. The high temperature minerals, fine‐grain sizes, bulk compositions and common occurrence in the SD tracks and IDPs support the idea that Kool grains could have been precursors to type II chondrules in ordinary chondrites. These grains, however, have not been observed in these meteorites suggesting that they were destroyed during chondrule formation and recycling or were not present in the nebula at the time and location where meteoritic chondrules formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号