首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dust from comet 81P/Wild 2 was captured at high speed in silica aerogel collectors during the Stardust mission. Studies of deceleration tracks in aerogel showed that a number of cometary particles were poorly cohesive and fragmented during impact. Fragments are now scattered along the walls of impact cavities. Here, we report a transmission electron microscope study of a piece of aerogel extracted from the wall of track 10. We focused on micron‐sized secondary tracks along which fragments of a fine‐grained material are disseminated. Two populations of fragments were identified. The first is made of polycrystalline silicate assemblages (olivine, pyroxene, and spinel) that appear to be chemically related to each other. The second corresponds to silica‐rich glassy clumps characteristic of a mixture of melted cometary material and aerogel. A significant number of fragments have been found with a composition close to chondritic CI for the major elements Fe‐Mg‐S at a submicron scale. These fragments have thus never been chemically differentiated by high‐temperature processes prior to the accretion on the comet, in contrast to terminal particles, which are dominated by larger, denser, and frequently monomineralic components.  相似文献   

2.
Abstract— Four particles extracted from track 80 at different penetration depths have been studied by analytical transmission electron microscopy (ATEM). Regardless of their positions within the track, the samples present a comparable microstructure made of a silica rich glassy matrix embedding a large number of small Fe‐Ni‐S inclusions and vesicles. This microstructure is typical of strongly thermally modified particles that were heated and melted during the hypervelocity impact into the aerogel. X‐ray intensity maps show that the particles were made of Mg‐rich silicates (typically 200 nm in diameter) cemented by a fine‐grained matrix enriched in iron sulfide. Bulk compositions of the four particles suggest that the captured dust particle was an aggregate of grains with various iron sulfide fraction and that no extending chemical mixing in the bulb occurred during the deceleration. The bulk S/Fe ratios of the four samples are close to CI and far from the chondritic meteorites from the asteroidal belt, suggesting that the studied particles are compatible with chondritic‐porous interplanetary dust particles or with material coming from a large heliocentric distance for escaping the S depletion.  相似文献   

3.
In 2006, NASA's Stardust spacecraft delivered to Earth dust particles collected from the coma of comet 81P/Wild 2, with the goal of furthering the understanding of solar system formation. Stardust cometary samples were collected in a low‐density, nanoporous silica aerogel making their study technically challenging. This article demonstrates the identification, exposure, and elemental composition analysis of particles analogous to those collected by NASA's Stardust mission using in‐situ SEM techniques. Backscattered electron imaging is shown by experimental observation and Monte Carlo simulation to be suitable for locating particles of a range of sizes relevant to Stardust (down to submicron diameters) embedded within silica aerogel. Selective removal of the silica aerogel encapsulating an embedded particle is performed by cryogenic NF3‐mediated electron beam–induced etching. The porous, low‐density nature of the aerogel results in an enhanced etch rate compared with solid material, making it an effective, nonmechanical method for the exposure of particles. After exposure, elemental composition of the particle was analyzed by energy‐dispersive X‐ray spectroscopy using a high spectral resolution microcalorimeter. Signals from fluorine contamination are shown to correspond to nonremoved silica aerogel and only in residual concentrations.  相似文献   

4.
Abstract– The Stardust sample return mission to the comet Wild 2 used silica aerogel as the principal cometary and interstellar particle capture and return medium. However, since both cometary dust and interstellar grains are composed largely of silica, using a silica collector complicates the science that can be accomplished with these particles. The use of non‐silica aerogel in future extra‐terrestrial particle capture and return missions would expand the scientific value of these missions. Alumina, titania, germania, zirconia, tin oxide, and resorcinol/formaldehyde aerogels were produced and impact tested with 20, 50, and 100 μm glass microspheres to determine the suitability of different non‐silica aerogels as hypervelocity particle capture mediums. It was found that non‐silica aerogels do perform as efficient hypervelocity capture mediums, with alumina, zirconia, and resorcinol/formaldehyde aerogels proving to be the best of the materials tested.  相似文献   

5.
Abstract– The deceleration tracks in the Stardust aerogel display a wide range of morphologies, which reveal a large diversity of incoming particles from comet 81P/Wild 2. If the large and dense mineral grains survived the extreme conditions of hypervelocity capture, this was not the case for the fine‐grained material that is found strongly damaged within the aerogel. Due to their low mechanical strength, these assemblages were disaggregated, dispersed, and flash melted in the aerogel in walls of bulbous deceleration tracks. Their petrologic and mineralogical properties are found significantly modified by the flash heating of the capture. Originating from a quenched melt mixture of comet material and aerogel, the representative microstructure consists of silica‐rich glassy clumps containing Fe‐Ni‐S inclusions, vesicles and “dust‐rich” patches, the latter being remnants of individual silicate components of the impacting aggregate. The average composition of these melted particle fragments is close to the chondritic CI composition. They might originate from ultrafine‐grained primitive components comparable to those found in chondritic porous IDPs. Capture effects in aerogel and associated sample biases are discussed in terms of size, chemical and mineralogical properties of the grains. These properties are essential for the grain survival in the extremely hot environment of hypervelocity impact capture in aerogel, and thus for inferring the correct properties of Wild 2 material.  相似文献   

6.
Abstract— We report analyses of aerogel tracks using (1) synchrotron X‐ray computed microtomography (XRCMT), (2) laser confocal scanning microscopy (LCSM), and (3) synchrotron radiation X‐ray fluorescence (SRXRF) of particles and their paths resulting from simulated hypervelocity impacts (1–2), and a single ~1 mm aerogel track from the Stardust cometary sample collector (1–3). Large aerogel pieces can be imaged sequentially, resulting in high spatial resolution images spanning many tomographic fields of view (‘lambda‐tomography’). We report calculations of energy deposited, and tests on aromatic hydrocarbons showing no alteration in tomography experiments. Imaging at resolutions from ~17 to ~1 micron/pixel edge (XRCMT) and to <100 nm/pixel edge (LCSM) illustrates track geometry and interaction of particles with aerogel, including rifling, particle fragmentation, and final particle location. We present a 3‐D deconvolution method using an estimated point‐spread function for aerogel, allowing basic corrections of LCSM data for axial distortion. LCSM allows rapid, comprehensive, non‐destructive, high information return analysis of tracks in aerogel keystones, prior to destructive grain extraction. SRXRF with LCSM allows spatial correlation of grain size, chemical, and mineralogical data. If optical methods are precluded in future aerogel capture missions, XRCMT is a viable 3D imaging technique. Combinations of these methods allow for complete, nondestructive, quantitative 3‐D analysis of captured materials at high spatial resolution. This data is fundamental to understanding the hypervelocity particle‐aerogel interaction histories of Stardust grains.  相似文献   

7.
The mineralogy of comet 81P/Wild 2 particles, collected in aerogel by the Stardust mission, has been determined using synchrotron Fe‐K X‐ray absorption spectroscopy with in situ transmission XRD and X‐ray fluorescence, plus complementary microRaman analyses. Our investigation focuses on the terminal grains of eight Stardust tracks: C2112,4,170,0,0; C2045,2,176,0,0; C2045,3,177,0,0; C2045,4,178,0,0; C2065,4,187,0,0; C2098,4,188,0,0; C2119,4,189,0,0; and C2119,5,190,0,0. Three terminal grains have been identified as near pure magnetite Fe3O4. The presence of magnetite shows affinities between the Wild 2 mineral assemblage and carbonaceous chondrites, and probably resulted from hydrothermal alteration of the coexisting FeNi and ferromagnesian silicates in the cometary parent body. In order to further explore this hypothesis, powdered material from a CR2 meteorite (NWA 10256) was shot into the aerogel at 6.1 km s?1, using a light‐gas gun, and keystones were then prepared in the same way as the Stardust keystones. Using similar analysis techniques to the eight Stardust tracks, a CR2 magnetite terminal grain establishes the likelihood of preserving magnetite during capture in silica aerogel.  相似文献   

8.
Abstract– Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X‐ray absorption near‐edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen‐rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl‐containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule‐like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.  相似文献   

9.
Abstract— Mineral particles analogous to components of cosmic dust were tested to determine if their Raman signatures can be recognized after hypervelocity capture in aerogel. The mineral particles were accelerated onto the silica aerogel by light‐gas‐gun shots. It was found that all the individual minerals captured in aerogel could be identified using Raman (or fluorescence) spectra. The laser beam spot size was ?5 micrometers, and in some cases the captured particles were of a similar small size. In some samples fired into aerogel, a broadening and a shift in the wave numbers of some of the Raman bands was observed, a result of the trapped particles being at elevated temperatures due to laser heating. Temperatures of samples were also estimated from the relative intensities of Stokes and anti‐Stokes Raman bands, or, in the case of corundum particles, from the wave number of fluorescence bands excited by the laser. The temperature varied greatly, dependent upon laser power and the nature of the particle. Most of the mineral particles examined had temperatures below 200 °C at a laser power of about 3 mW at the sample. This temperature is sufficiently low enough not to damage most materials expected to be found captured in aerogel in space. In the worst case, some particles were shown to have temperatures of 500–700 °C. In addition, selected meteorite samples were examined to obtain Raman signatures of their constituent minerals and were then shot into aerogel. It was possible to find Raman signatures after capture in aerogel and obtain a Raman map of a whole grain in situ in the aerogel. It is concluded that Raman analysis is indeed well suited for an in situ analysis of micrometer‐sized materials captured in aerogel.  相似文献   

10.
Abstract— Outside the Earth's atmosphere, silica aerogel is one of the best materials to capture finegrained extraterrestrial particles in impacts at hypervelocities. Because silica aerogel is a superior insulator, captured grains are inevitably influenced by frictional heat. Therefore, we performed laboratory simulations of hypervelocity capture by using light‐gas guns to impact into aerogels finegrained powders of serpentine, cronstedtite, and Murchison CM2 meteorite. The samples were shot at >6 km s?1 similar to the flyby speed at comet P/Wild‐2 in the Stardust mission. We investigated mineralogical changes of each captured particle by using synchrotron radiation X‐ray diffraction (SR‐XRD), transmission electron microscope (TEM), and field emission scanning electron microscope (FE‐SEM). SR‐XRD of each grain showed that the majority of the bulk grains keep their original mineralogy. In particular, SR‐XRD and TEM investigations clearly exemplified the presence of tochilinite whose decomposition temperature is about 300 °C in the interior of the captured Murchison powder. However, TEM study of these grains also revealed that all the samples experienced melting and vesiculation on the surface. The cronstedtite and the Murchison meteorite powder show remarkable fracturing, disaggregation, melting, and vesiculation. Steep thermal gradients, about 2500 °C/μm were estimated near the surface of the grains (<2 μm thick) by TEM observation. Our data suggests that the interior of >4 μm across residual grains containing abundant materials that inhibit temperature rise would have not experienced >300 °C at the center.  相似文献   

11.
Abstract– Raman analyses were performed of individual micrometer‐sized fragments of material returned to Earth by the NASA Stardust mission to comet 81P/Wild 2. The studied fragments originated from grains (C2054,0,35,91,0 and C2092,6,80,51,0) of two different penetration tracks that occurred in two different silica aerogel collector cells. All fragments of both particles have Raman spectra characteristic of amorphous sp2‐bonded carbon that are in general agreement with the results published in previous Stardust particle studies. The present study, however, does not focus on the discussion of specific details of the D and G band parameters, but rather reports on additional information that can be obtained from returned Stardust samples via Raman spectroscopy. Most notably, the Raman spectra show that all analyzed fragments of the particles were contaminated with the capture medium (i.e., aerogel). The silica aerogel is laced with organic aliphatic and aromatic hydrocarbon impurities that resulted in strong bands in the ~ 2900 Δcm?1 spectral range (C‐H stretching modes). Aerogel bands are also found in the 1000–1600 Δcm?1 spectral range, where they overlap with the bands of the amorphous sp2‐bonded carbon. The peaks associated with the aerogel contamination differ between the two grains that originated from two different aerogel cells. In addition to the bands due to aerogel contamination and the always present sp2‐bonded carbon bands, fragments of particle C2092,6,80,51,0 also show Raman peaks for pyrrhotite and Fa30Fo70 olivine. Complete (up to 4000 Δcm?1) raw and baseline‐corrected Raman spectra of the Stardust particles are shown and discussed in detail.  相似文献   

12.
Abstract– We investigated three‐dimensional structures of comet Wild 2 coma particle impact tracks using synchrotron radiation (SR) X‐ray microtomography at SPring‐8 to elucidate the nature of comet Wild 2 coma dust particles captured in aerogel by understanding the capture process. All tracks have a similar entrance morphology, indicating a common track formation process near the entrance by impact shock propagation irrespective of impactor materials. Distributions of elements along the tracks were simultaneously measured using SR‐XRF. Iron is distributed throughout the tracks, but it tends to concentrate in the terminal grains and at the bottoms of bulbs. Based on these results, we propose an impact track formation process. We estimate the densities of cometary dust particles based on the hypothesis that the kinetic energy of impacting dust particles is proportional to the track volume. The density of 148 cometary dust particles we investigated ranges from 0.80 to 5.96 g cm?3 with an average of 1.01 (±0.25) g cm?3. Moreover, we suggest that less fragile crystalline particles account for approximately 5 vol% (20 wt%) of impacting particles. This value of crystalline particles corresponds to that of chondrules and CAIs, which were transported from the inner region of the solar system to the outer comet‐forming region. Our results also suggest the presence of volatile components, such as organic material and perhaps ice, in some bulbous tracks (type‐C).  相似文献   

13.
Abstract— In 2006, the Stardust spacecraft will return to Earth with cometary and perhaps interstellar dust particles embedded in silica aerogel collectors for analysis in terrestrial laboratories. These particles will be the first sample return from a solid planetary body since the Apollo missions. In preparation for the return, analogue particles were implanted into a keystone of silica aerogel that had been extracted from bulk silica aerogel using the optical technique described in Westphal et al. (2004). These particles were subsequently analyzed using analytical techniques associated with the use of a nuclear microprobe. The particles have been analyzed using: a) scanning transmission ion microscopy (STIM) that enables quantitative density imaging; b) proton elastic scattering analysis (PESA) and proton backscattering (PBS) for the detection of light elements including hydrogen; and c) proton‐induced X‐ray emission (PIXE) for elements with Z > 11. These analytical techniques have enabled us to quantify the composition of the encapsulated particles. A significant observation from the study is the variable column density of the silica aerogel. We also observed organic contamination within the silica aerogel. The implanted particles were then subjected to focused ion beam (FIB) milling using a 30 keV gallium ion beam to ablate silica aerogel in site‐specific areas to expose embedded particles. An ion polished flat surface of one of the particles was also prepared using the FIB. Here, we show that ion beam techniques have great potential in assisting with the analysis and exposure of Stardust particles.  相似文献   

14.
Abstract— The Stardust sample return capsule returned to Earth in January 2006 with primitive debris collected from comet 81P/Wild‐2 during the flyby encounter in 2004. In addition to the cometary particles embedded in low‐density silica aerogel, there are microcraters preserved in the aluminum foils (1100 series; 100 μm thick) that are wrapped around the sample tray assembly. Soda lime spheres (?49 μm in diameter) have been accelerated with a light gas gun into flight‐grade aluminum foils at 6.35 km s?1 to simulate the capture of cometary debris. The experimental craters have been analyzed using scanning electron microscopy (SEM) and X‐ray energy dispersive spectroscopy (EDX) to locate and characterize remants of the projectile material remaining within the craters. In addition, ion beam‐induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high‐precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact. This has enabled further detailed elemental characterization that is free from the background contamination of the aluminum foil substrate. The ability to recover “pure” melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the aluminum foils returned by Stardust.  相似文献   

15.
Abstract— In January 2006, NASA's Stardust mission will return with its valuable cargo of the first cometary dust particles captured at hypervelocity speeds in silica aerogel collectors and brought back to Earth. Aerogel, a proven capture medium, is also a candidate for future sample return missions and low‐Earth orbit (LEO) deployments. Critical to the science return of Stardust as well as future missions that will use aerogel is the ability to efficiently extract impacted particles from collector tiles. Researchers will be eager to obtain Stardust samples as quickly as possible; tools for the rapid extraction of particle impact tracks that require little construction, training, or investment would be an attractive asset. To this end, we have experimented with diamond and steel microblades. Applying ultrasonic frequency oscillations to these microblades via a piezo‐driven holder produces rapid, clean cuts in the aerogel with minimal damage to the surrounding collector tile. With this approach, intact impact tracks and associated particles in aerogel fragments with low‐roughness cut surfaces have been extracted from aerogel tiles flown on NASA's Orbital Debris Collector (ODC) experiment. The smooth surfaces produced during cutting reduce imaging artifacts during analysis by scanning electron microscopy (SEM). Some tracks have been dissected to expose the main cavity for eventual isolation of individual impact debris particles and further analysis using techniques such as transmission electron microscopy (TEM) and nano‐secondary ion mass spectrometry (nanoSIMS).  相似文献   

16.
In Stardust tracks C2044,0,38, C2044,0,39, and C2044,0,42 (Brennan et al. 2007 ) and Stardust track 10 (this work) gold is present in excess of its cosmochemical abundance. Ultra‐thin sections of allocation FC6,0,10,0,26 (track 10) show a somewhat wavy, compressed silica aerogel/silica glass interface which challenges exact location identification, i.e., silica glass, compressed silica aerogel, or areas of overlap. In addition to domains of pure silica ranging from SiO2 to SiO3 glass, there is MgO‐rich silica glass with a deep metastable composition, MgO = 14 ± 6 wt%, due to assimilation of Wild 2 Mg‐silicate matter in silica melt. This magnesiosilica composition formed when temperatures during hypervelocity capture reached >2000 °C followed by ultrafast quenching of the magnesiosilica melt when it came into contact with compressed aerogel at ~155 °C. The compressed silica aerogel in track 10 has a continuous Au background as result of the melting point depression of gold particles <5 nm that showed liquid‐like behavior. Larger gold particles are scattered found throughout the silica aerogel matrix and in aggregates up to ~50 nm in size. No gold is found in MgO‐rich silica glass. Gold in track 10 is present at the silica aerogel/silica glass interface. In the other tracks gold was likely near‐surface contamination possibly from an autoclave used in processing of these particular aerogel tiles. So far gold contamination is documented in these four different tracks. Whether they are the only tiles with gold present in excess of its cosmochemical abundance or whether more tiles will show excess gold abundances is unknown.  相似文献   

17.
We present the analyses results of two bulk Terminal Particles, C2112,7,171,0,0 and C2112,9,171,0,0, derived from the Jupiter‐family comet 81P/Wild 2 returned by the Stardust mission. Each particle embedded in a slab of silica aerogel was pressed in a diamond cell. This preparation, as expected, made it difficult to identify the minerals and organic materials present in these particles. This problem was overcome using a combination of three different analytical techniques, viz. FE‐SEM/EDS, IR, and Raman microspectroscopy that allowed identifying the minerals and small amounts of amorphous carbon present in both particles. TP2 and TP3 were dominated by Ca‐free and low‐Ca, Mg‐rich, Mg,Fe‐olivine. The presence of melilite in both particles is supported by IR microspectroscopy, but is not confirmed by Raman microspectroscopy, possibly because the amounts are too small to be detected. TP2 and TP3 show similar silicate mineral compositions, but Ni‐free and low‐Ni, subsulfur (Fe,Ni)S grains are present in TP2 only. TP2 contains indigenous amorphous carbon hot spots; no indigenous carbon was identified in TP3. These nonchondritic particles probably originated in a differentiated body. This work found an unanticipated carbon contamination following the FE‐SEM/EDS analyses. It is suggested that organic materials in the embedding silica aerogel are irradiated during FE‐SEM/EDS analyses creating a carbon gas that develops a strong fluorescence continuum. The combination of the selected analytical techniques can be used to characterize bulk Wild 2 particles without the need of extraction and removal of the encapsulating aerogel. This approach offers a relatively fast sample preparation procedure, but compressing the samples can cause spurious artifacts, viz. silica contamination. Because of the combination of techniques, we account for these artifacts.  相似文献   

18.
Abstract– The Stardust mission captured comet Wild 2 particles in aerogel at 6.1 km s?1. We performed high‐resolution three‐dimensional imaging and X‐ray fluorescence mapping of whole cometary tracks in aerogel. We present the results of a survey of track structures using laser scanning confocal microscopy, including measurements of track volumes, entry hole size, and cross‐sectional profiles. We compare various methods for measuring track parameters. We demonstrate a methodology for discerning hypervelocity particle ablation rates using synchrotron‐based X‐ray fluorescence, combined with mass and volume estimates of original impactors derived from measured track properties. Finally, we present a rough framework for reconstruction of original impactor size, and volume of volatilized material, using our measured parameters. The bulk of this work is in direct support of nondestructive analysis and identification of cometary grains in whole tracks, and its eventual application to the reconstruction of the size, shape, porosity, and chemical composition of whole Stardust impactors.  相似文献   

19.
In a consortium analysis of a large particle captured from the coma of comet 81P/Wild 2 by the Stardust spacecraft, we report the discovery of a field of fine‐grained material (FGM) in contact with a large sulfide particle. The FGM was partially located in an embayment in the sulfide. As a consequence, some of the FGM appears to have been protected from damage during hypervelocity capture in aerogel. Some of the FGM particles are indistinguishable in their characteristics from common components of chondritic‐porous interplanetary dust particles, including glass with embedded metals and sulfides and equilibrated aggregates. The sulfide exhibits surprising Ni‐rich lamellae, which may indicate that this particle experienced a long‐duration heating event after its formation but before incorporation into Wild 2.  相似文献   

20.
Abstract— The NASA Stardust mission brought to Earth micron‐size particles from the coma of comet 81P/Wild 2 using aerogel, a porous silica material, as the capture medium. A major challenge in understanding the organic inventory of the returned comet dust is identifying, unambiguously, which organic molecules are indigenous to the cometary particles, which are produced from carbon contamination in the Stardust aerogel, and which are cometary organics that have been modified by heating during the particle capture process. Here it is shown that 1) alteration of cometary organic molecules along impact tracks in aerogel is highly dependent on the original particle morphology, and 2) organic molecules on test‐shot terminal particles are mostly preserved. These conclusions are based on two‐step laser mass spectrometry (L2MS) examinations of test shots with organic‐laden particles (both tracks in aerogel and the terminal particles themselves).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号