首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We carried out an experimental study to characterize the kinetics of Ostwald ripening in the forsterite-basalt system and in the plagioclase (An65)-andesite system. Eight experiments were done in each system to monitor the evolution of mean grain size and crystal size distribution (CSD) with time t; the experiments were performed in a 1-atmosphere quench furnace, at 1,250°C for plagioclase and 1,300°C for olivine. Very contrasted coarsening kinetics were observed in the two series. In the plagioclase series, the mean grain size increased as log(t), from ≈3 μm to only 8.7 μm in 336 h. The kinetic law in log(t) means that Ostwald ripening was rate-limited by surface nucleation at plagioclase-liquid interfaces. In the olivine series, the mean grain size increased as t 1/3, from ≈3 μm to 23.2 μm in 496 h. A kinetic law in t 1/3 is expected when Ostwald ripening is rate-limited either by diffusion in the liquid or by grain growth/dissolution controlled by a screw dislocation mechanism. The shape of olivine CSDs, in particular their positive skewness, indicates that grain coarsening in the olivine experiments was controlled by a screw dislocation mechanism, not by diffusion. As the degrees of undercooling ΔT (or supersaturation) involved in Ostwald ripening are essentially <1°C, the mechanisms of crystal growth identified in our experiments are expected to be those prevailing during the slow crystallisation of large magma chambers. We extrapolated our experimental data to geological time scales to estimate the effect of Ostwald ripening on the size of crystals in magmas. In the case of plagioclase, Ostwald ripening is only efficient for mean grain sizes of a few microns to 20 μm, even for a time scale of 105 years. It can, however, result in a significant decrease of the number of small crystals per unit volume, and contribute to the development of convex upwards CSDs. For olivine, the mean grain size increases from 2–3 μm to ≈70 μm in 1 year and 700 μm in 103 years; a mean grain size of 3 mm is reached in 105 years. Accordingly, the rate of grain size-dependent processes, such as compaction of olivine-rich cumulates or melt extraction from partially molten peridotites, may significantly be enhanced by textural coarsening.  相似文献   

2.
The Shivar pluton, a large granodiorite–monzonite intrusion in NW Iran, was intruded into Cretaceous sedimentary rocks during the Oligo‐Miocene. Its thermal aureole contains a variety of pelitic, basic and calc‐silicate hornfelses. Mineral parageneses in the pelitic and calc‐silicate hornfelses are studied here and mineralogical zones are determined. The maximum pressure of contact metamorphism is estimated to have been about 2.2 kbar on the basis of mineral parageneses in the pelitic rocks, indicating that the intrusion was emplaced no deeper than 8 km in the crust. Crystal size distribution (CSD) studies in the calc‐silicate hornfelses indicate that the degree of overstepping was high near the igneous contact. Secondary solid phases (SSP) inhibited growth of calcite grains in the calc‐silicate rocks and impure marbles. Garnet had a greater inhibitory effect as a SSP than tremolite or clinopyroxene. The time required for coarsening of calcite is calculated for two samples collected at different distances from the igneous contact. The time required for calcite coarsening is about 33 000 years for the sample 800 m from the contact and about 226 000 years for the sample 120 m from the contact. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
K-feldspar megacrysts in granite and granodiorite plutons are generally inferred to be early crystallizing phases (grown to large sizes when the magma was mostly liquid) owing to their large size, euhedral form, and features that suggest deposition by magmatic sedimentation. However, phase equilibrium experiments and natural examples of crystallization and partial melting demonstrate that K-feldspar is one of the last phases to nucleate and that most crystal growth must occur after the magma has exceeded 50% crystallization and is thus largely incapable of flow and sedimentation. Megacryst size distributions, compositions, and textural relationships from the Cretaceous Tuolumne Intrusive Suite, California, reveal that the gradational transition from equigranular to megacrystic granodiorite likely occurred via textural coarsening caused by thermal cycling. Experimental and theoretical studies demonstrate that rising temperature induces relatively more melting in small crystals than in large ones, whereas linear growth rates during cooling are similar. Thus, during thermal cycling material is transferred from small crystals to larger ones. Megacryst growth via thermal cycling during incremental emplacement is consistent with the required late growth of K-feldspar, explains the presence of megacrysts in the inner parts of theTuolumne Intrusive Suite and elsewhere, and may be a common process in formation of megacrystic granitic rocks.  相似文献   

4.
The crystal size distributions (CSDs) of plagioclase and amphibolewere determined from andesites of the Soufrière Hillsvolcano, Montserrat. Plagioclase occurs as separate crystalsand as chadocrysts in large amphibole oikocrysts. The chadocrystsrepresent an earlier stage of textural development, preservedby growth of the oikocryst. Seventeen rock and eight chadocrystplagioclase CSDs are considered together as a series of samplesof textural development. All are curved, concave up, and coincident,differing only in their maximum crystal size. Three amphiboleCSDs have a similar shape and behaviour, but at a differentposition from the plagioclase CSDs. A dynamic model is proposedfor the origin of textures in these rocks. Crystallization ofplagioclase started following emplacement of andesite magmaat a depth of at least 5 km. A steep, straight CSD developedby nucleation and growth. This process was interrupted by theinjection of mafic magma into the chamber, or convective overturnof hotter magma. The magma temperature rose until it was buffered,initially by plagioclase solution and later by crystallization.During this period textural coarsening (Ostwald ripening) ofplagioclase and amphibole occurred: small crystals dissolvedsimultaneously with the growth of large crystals. The CSD becameless steep and extended to larger crystal sizes. Early stagesof this process are preserved in coarsened amphibole oikocrysts.Repetitions of this cycle generated the observed family of CSDs.Textural coarsening followed the ‘Communicating Neighbours’model. Hence, each crystal has its own, unique growth–solutionhistory, without appealing to mixing of magmas that crystallizedin different environments. KEY WORDS: Ostwald ripening; textural coarsening; oikocryst; CSD; texture  相似文献   

5.
The kinetics of (Mg, Fe)SiO3 pyroxene layer growth within silicate thin films with total thickness <1 μm was studied experimentally at 0.1 MPa total pressure, controlled fO2 and temperatures from 1,000 to 1,300°C. The starting samples were produced by pulsed laser deposition. Layer thickness before and after the experiments and layer composition as well as microstructures, grain size and shape of the interfaces were determined by Rutherford back scattering and transmission electron microscopy assisted by focused ion beam milling. Due to the miniaturization of the starting samples and the use of high resolution analytical methods the experimentally accessible temperature range for rim growth experiments was extended by about 300°C towards lower temperatures. The thickness of the layers at a given temperature increases proprotional to the square root of time, indicating a diffusion-controlled growth mechanism. The temperature dependence of rim growth yields an apparent activation energy of 426 ± 34 kJ/mol. The small grain size in the orthopyroxene rims implies a significant contribution of grain boundary diffusion to the bulk diffusion properties of the polycrystalline rims. Based on microstructural observations diffusion scenarios are discussed for which the SiO2 component behaves immobile relative to the MgO component. Volume diffusion data for Mg in orthopyroxene from the literature indicate that the measured diffusivity is probably controlled by the mobility of oxygen. The observed reaction rates are consistent with earlier results from dry high-temperature experiments on orthopyroxene rim growth. Compared to high pressure experiments at 1,000°C and low water fugacities, reaction rates are 3–4 orders of magnitude smaller. This observation is taken as direct evidence for a strong effect of small amounts of water on diffusion in silicate polycrystals. In particular SiO2 changes from an immobile component at dry conditions to an extremely mobile component even at very low water fugacities.  相似文献   

6.
Berlinite, AlPO4, is a structural analog of quartz and a number of physical properties are very similar in both materials. It is thus interesting to compare their mechanical properties and investigate the possible role of water. Constant strain rate tests on wet synthetic crystals have been performed at room temperature and at 600 MPa confining pressure. They indicate that \((000){1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0em} 3}\langle 11\bar 20\rangle \) is the easy glide system. Detailled investigation of the crystal structure shows that the corresponding a dislocations can glide in such a way that only the weaker Al—O bonds are broken. This explains why this glide system is much more easily activated in berlinite than in quartz. Deformation experiments at higher temperature and at atmospheric pressure clearly show a thermally activated regime. However the actually available crystals are so rich in water that above 300° C the dislocation structure resulting from deformation is completely hidden by water precipitation and coarsening of the as-grown fluid inclusions. Like for wet quartz this later phenomenon generates numerous bubbles and sessile dislocation loops.  相似文献   

7.
An experimental study has been conducted to constrain how thermal history controls crystal size distribution (CSD) of plagioclase in cooling basalts. Data from all experiments are dominated by a log-linear segment of decreasing number density with increasing crystal size, consistent with observations in many natural rocks. The slope of the CSD is found to be a function of cooling rate, faster cooling leading to greater slopes. At constant cooling rate the CSDs flatten as temperature decreases, and are sometimes kinked, characteristics consistent with independent textural observations that crystal agglomeration contributes significantly to crystal “growth”. A downturn is observed toward small size, which suggests Ostwald ripening. Furthermore, we find that thermal history above the liquidus has a major influence on CSDs and on the temperatures of phase appearance. We conclude that near the liquidus heterogeneous nucleation typically dominates. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Critical aspects of the crystallization dynamics of H2O-saturated melts of a typical granitic composition as well as granitic melts enriched in lithium (8800 ppm) were investigated in real-time experiments using the hydrothermal diamond anvil cell at 480–700 °C and 220–960 MPa. Complete crystallization of the charges was achieved within 5–118 h with average crystal growth rates ranging from 3 to 41 cm/year for quartz and from 18 to 58 cm/year for alkali feldspars, demonstrating that crystals formed from a silicate melt in the presence of a coexisting aqueous phase crystallize rapidly. The combination of substantial nucleation delays, low nucleation densities, and rapid growth rates for quartz and alkali feldspars led to the formation of euhedral megacrysts of these minerals in the vicinity of clusters comprised of much smaller muscovite or α-spodumene crystals. Subsolidus replacement processes initiated during crystal–fluid interactions after the silicate melt was consumed were directly observed in the experiments. The experimental results underscore the important role of water as a medium for the transport of essential elements such as Si, Al, Na, and K from the silicate melt to the newly formed crystals, and provide important insights into the crystallization of miarolitic pegmatites.  相似文献   

9.
谭劲  王卫锋等 《岩石学报》2003,19(1):120-124
通过高温熔融,对同结线附近一系列硅酸盐熔体进行淬冷或不同速度冷却,实验获得的样品经过显微拉曼光谱分析,对比研究了AbxAnxDiy系列熔体在不同结线附近熔体结构跨相区变化情况,以及析出晶体对相应熔体结构的继承特点,熔体结构单元相对含量,在相界线两侧有某种程度的突变,熔体结构的变化对熔体的粘度,密度影响不同,拉曼光谱检测显示,硅酸盐玻璃的结构对降温速度变化不敏感,晶体对其相应熔体结构的部分继承作用,可能意味着晶体生长单元与熔体结构单元密切相关。  相似文献   

10.
温度改性水玻璃固化黄土机制研究   总被引:7,自引:0,他引:7  
硅化法是湿陷性黄土地基处理的主要化学方法之一,为了提高固化效果需要对水玻璃溶液进行改性。对温度改性水玻璃溶液固化黄土进行了试验研究,并通过化学组成和矿物成分分析、微观结构分析探讨了温度改性水玻璃固化黄土的机制。试验结果表明:在20~80 ℃范围内,随着温度的升高,水玻璃固化黄土的强度有明显提高;X射线衍射图谱中部分矿物衍射强度降低并出现密集低矮的非晶质物相峰群;SEM图像显示随着温度的升高凝胶薄膜增多;MIP(压汞试验)数据显示,随着温度的升高,孔隙表面积增大。水玻璃溶液固化黄土的强度随温度增加的机制在于:生成的非晶质物相和凝胶薄膜随着温度的升高而增加,促使最可几孔径的减小和小孔隙的增多,强化了骨架颗粒的连接强度,并将骨架颗粒黏结成为一个空间网状整体,从而改善了土体的强度。  相似文献   

11.
We present the results of a series of experiments designed to probe the interactions between Al and the amorphous silica surface as a function of thermodynamic driving forces. The results from 27Al single pulse magic angle spinning (SP/MAS) and 27Al{1H} rotational echo double resonance (REDOR) allow us to identify the reaction products and constrain their structure. In all cases, despite low Al and Si concentrations we observe the formation of metastable aluminosilicates. Results from low temperature experiments indicate that despite thermodynamic driving forces for the formation of gibbsite we observe the precipitation of separate octahedrally coordinated Al (Al[6]) and tetrahedrally coordinated Al (Al[4]) silicate phases. At higher temperatures the Al[4] silicate phase dominates the speciation. Structural models derived from the NMR data are also proposed, and the results are discussed as they relate to previous work on Al/Si cycling.  相似文献   

12.
Clay minerals record chemical data about the past, acting like natural computer memory chips. To retrieve the data we must understand how they are stored. To achieve this we have examined the isotopic information revealed by two trace elements, lithium and boron, that are incorporated into the common clay minerals illite-smectite (I-S) during diagenesis. We used hydrothermal experiments at 300°C, 100 MPa, to speed up the reaction of smectite to illite that normally occurs during slow (10-100 Ma) sediment burial. During illitization, Li substitutes into the octahedral sites and B enters the tetrahedral sites of the silicate framework. Both Li and B are also adsorbed in the interlayer of smectite, but Li is preferred over B in the exchange sites. To determine the equilibrium isotope fractionation of the two trace elements it is important to remove these adsorbed interlayer species. By measuring the isotopic composition of Li and B in the silicate framework during reaction, we can address the relative timing of element exchange in the different crystallographic sites. Furthermore, because illitization of smectite is a crystal growth process (not an isomorphous replacement) we have examined the effect of crystal size on the isotope fractionation.The results show that Li and B approach an isotopic steady state when R1 ordering occurs, long before oxygen isotopes equilibrate with the fluid. The isotopic fractionation (αmineral-water) for Li (0.989) is similar to that for B (0.984) at 300°C. However, when separated into <0.2, 0.2-2.0, and >2.0 μm fractions, there are significant differences in measured isotope ratios by as much as 9‰. Crystal growth mechanisms and surface energy effects of nanoscale crystals may explain the observed isotopic differences. The fact that different crystals equilibrate at different rates (based on size) may be applied to natural samples to reveal the changing paleofluid history, provided we understand the conditions of equilibrium. This has very important implications for the interpretation of diagenetic environments, fluid flow, and surficial geochemical cycling.  相似文献   

13.
The understanding of the evolution of microstructures in a metamorphic rock requires insights into the nucleation and growth history of individual grains, as well as the coarsening processes of the entire aggregate. These two processes are compared in impure carbonates from the contact metamorphic aureole of the Adamello pluton (N‐Italy). As a function of increasing distance from the pluton contact, the investigated samples have peak metamorphic temperatures ranging from the stability field of diopside/tremolite down to diagenetic conditions. All samples consist of calcite as the dominant matrix phase, but additionally contain variable amounts of other minerals, the so‐called second phases. These second phases are mostly silicate minerals and can be described in a KCMASHC system (K2O, CaO, MgO, Al2O3, SiO2, H2O, CO2), but with variable K/Mg ratios. The modelled and observed metamorphic evolution of these samples are combined with the quantification of the microstructures, i.e. mean grain sizes and crystal size distributions. Growth of the matrix phase and second phases strongly depends on each other owing to coupled grain coarsening. The matrix phase is controlled by the interparticle distances between the second phases, while the second phases need the matrix grain boundary network for mass transfer processes during both grain coarsening and mineral reactions. Interestingly, similar final mean grain sizes of primary second phase and second phases newly formed by nucleation are observed, although the latter formed later but at higher temperatures. Moreover, different kinetic processes, attributed to different driving forces for growth of the newly nucleated grains in comparison with coarsening processes of the pre‐existing phases, must have been involved. Chemically induced driving forces of grain growth during reactions are orders of magnitudes larger compared to surface energy, allowing new reaction products subjected to fast growth rates to attain similar grain sizes as phases which underwent long‐term grain coarsening. In contrast, observed variations in grain size of the same mineral in samples with a similar T–t history indicate that transport properties depend not only on the growth and coarsening kinetics of the second phases but also on the microstructure of the dominant matrix phase during coupled grain coarsening. Resulting microstructural phenomena such as overgrowth and therefore preservation of former stable minerals by the matrix phase may provide new constraints on the temporal variation of microstructures and provide a unique source for the interpretation of the evolution of metamorphic microstructures.  相似文献   

14.
Conclusions 1. Under heat influence, the mobility of Fe-Ni metal was relatively high as compared with silicates. During thermal metamorphism of the Jilin meteorite (T ⩽ 800 °C), fine Fe-Ni metal particles in silicate condrules and matrix aggregated into coarse metal grains, which are as large as 5–10 mm in size,in situ or after a short-distance migration and concentration, and some even aggregated into metal nodules as large as 20–30mm in size, but their chemical composition still remains unchanged. 2. High-temperature and high pressure, as well as shock-loading experiments on Jilin meteorite samples provide further evidence that temperature plays an important role in metal /silicate redistribution and differentiation. The variation of temperature exerts great influence on the mode of metal-silicate redistribution. At about 1000 °C or less, metal particles moved and aggregated into rather coarse grains by thermal diffusion, or through the formation of eutectic melts together with FeS. When the temperature reaches about 1300 °C, full melting take place in the meteorite specimens, and at this time metals and metal sulfides play an important role in the immiscibility and gravitational differentiation of metal-silicate melts, thus leading to the rapid separation of metals or metal-sulfides from silicates, followed by the sinking of pure metals and metal-sulfides to the bottom of the experimental products and the formation of silicate melts almostly with no metals and sulfides in the upper parts.  相似文献   

15.
Chondrules contain foreign objects, including some olivine grains that obviously did not crystallize from their silicate melt. The term recycling is usually applied to chondrules with relict grains, implying that the precursor contained relicts of a previous generation of chondrules. This has given rise to the idea that the pervasive melt droplet formation that affected the early solar system involved repeated events in which chondrules or chondrule debris were reheated. We conducted experiments in which synthetic chondrules generated from fine-grained mineral aggregates were heated and cooled a second time to see what the textural consequences of this reheating would be. Charges were heated to peak temperatures for 1 min and were cooled to near-solidus temperatures over 35 min, for both thermal cycles. We first made microporphyritic olivine charges and on reheating and second cooling observed coarser grain sizes and disappearance of relict grains, if the second peak temperature was the same as or higher than the first (but insufficient for destroying all nuclei). The coarsening was due to the dissolution of the smallest first generation crystals and additional growth on the relicts during cooling. Reheated barred olivine spheres generated barred olivine spheres again, no matter how low the peak temperature. This is because the number of remaining olivine grains or nuclei that acted as sites for regrowth was constant. Generating the observed distribution of chondrule textures, dominantly porphyritic, directly from a fine-grained precursor such as nebular or presolar condensates is impossible with a single event. With reheating of chondrules, generating the texture distribution is possible provided that subsequent heating events have higher peak temperatures than the first, so that total dissolution of the smallest grains occurs, with consequent coarsening. For our thermal history and a reasonable distribution of peak temperatures, multiple recycling events might be needed to make most chondrules porphyritic. Alternatively, the predominance of porphyritic textures in chondrules could be explained by heating times hours long for a fine-grained precursor or by heating of a coarse-grained precursor.The presence of relict grains derived from older chondrules or other material suggests that an aggregate has been heated for the first time, because recycling brings an approach to equilibrium. There appears to be no reliable way to use textures to tell just how many chondrules have been heated more than once. The relict grains simply indicate the nature of the precursors, which were at least in part derived from earlier chondrules, and of the peak temperatures too low for total melting and heating times too short for total dissolution. Rim thicknesses on relict grains depend on number density of crystals and melt composition, and are not a reliable guide to the chondrule cooling rate.  相似文献   

16.
We present an experimental investigation on the dissolution of uniaxially stressed crystals of NaClO3 in contact with brine. The crystals are immersed in a saturated fluid, stressed vertically by a piston and monitored constantly in situ with a CCD camera. The experiments are temperature-controlled and uniaxial shortening of the sample is measured with a high-resolution capacitance analyzer. Once the crystal is stressed it develops dissolution grooves on its free surface. The grooves are oriented with their long axis perpendicular to the direction of compressive stress and the initial distance between the parallel grooves is in accordance with the Asaro-Tiller-Grinfeld instability. We observe a novel, transient evolution of this roughness: The grooves on the crystal surface migrate upwards (against gravity), grow in size and the inter-groove distance increases linearly with time. During the coarsening of the pattern this switches from a one-dimensional geometry of parallel grooves to a two-dimensional geometry with horizontal and vertical grooves. At the end of the experiment one large groove travels across the crystal and the surface becomes smooth again. Uniaxial shortening of the crystal by pressure solution creep decays exponentially with time and shows no long term creep within the range of the resolution of the capacitance analyzer (accuracy of 100nm over a period of 14 days). This indicates that, while active, the fast transient processes on the free surface increase the solution concentration and thereby significantly slow down or stop pressure solution at the top of the crystal. This novel feedback mechanism can explain earlier results of cyclic pressure solution creep and demands development of a more complex theory of pressure-solution creep including processes that act on free surfaces.  相似文献   

17.
Laser-melted magnesium silicate droplets, supercooled 400–750°C below their equilibrium liquidus temperatures before crystallization, were examined to provide a comparison with meteoritic and lunar chondrules and to examine physicochemical parameters that may indicate the conditions of their formation. Internal textures of the spherules strikingly resemble textures observed in some chondrules. Definite trends in crystal morphology, crystal width and texture were established with respect to nucleation temperature and bulk composition. Such trends provide a framework for determining the nucleation temperature of chondrules. The only phase to nucleate from the supercooled forsterite-enstatite normative melts was forsterite, which was present in more-than-normative amounts. Highly siliceous glass (~65wt. % SiO2) was identified interstitially to the forsterite crystals in seven of the spherules and is thought to be present in all. The presence of enstatite and the large proportion of crystals in some meteoritic chondrules implies that they were maintained at temperatures considerably in excess of 600°C at some point in their history.  相似文献   

18.
A model for the dust envelope of the protoplanetary nebula LSIV-12°111 is computed using measured fluxes of the object from the UV to the far-IR. It is assumed that the spherically symmetrical envelope is comprised of silicate particles with a standard MRN size distribution, whose number density varies inversely proportional to the square of the distance. The optical depth of the envelope, whose inner boundary is 5.6×1016 cm from the central star, is 0.072 at 0.55 µm. The temperature of the dust grains at the inner boundary of the envelope is 124 K. The estimated distance to LSIV-12°111 is 3.8 kpc. The current mass-loss rate of the object derived from a self-consistent solution for the radiative transport and motion of the dust in the envelope is 1.0×10?5M/yr.  相似文献   

19.
The influence of melt composition and structure on the oxygen isotope fractionation was studied for the multicomponent (SiO2 ± TiO2 + Al2O3 ± Fe2O3 + MgO ± CaO) system at 1500°C and 1 atm. The experiments show that significant oxygen isotope effects can be observed in silicate melts even at such high temperature. It is shown that the ability of silicate melt to concentrate 18O isotope is mainly determined by its structure. In particular, an increase of the NBO/T ratio in the experimental glasses from 0.11 to 1.34 is accompanied by a systematic change of oxygen isotope difference between melt and internal standard by values from–0.85 to +1.29‰. The obtained data are described by the model based on mass-balance equations and the inferred existence of O0, O, and O2– (bridging, non-bridging, and free oxygen) ions in the melts. An application of the model requires the intra-structure isotope fractionation between bridging and non-bridging oxygens. Calculations show that the intra-structure isotope fractionation in our experiments is equal to 4.2 ± 1.0‰. To describe the obtained oxygen isotope effects at the melts relatively to temperature and fraction of non-bridging oxygen a general equation was proposed.  相似文献   

20.
Omphacites from a wide range of geological environments have been examined by transmission electron-microscopy. Their microstructures are sufficiently variable as to be potential indicators of thermal history for blueschist and eclogite metamorphism. In particular, the average size of equiaxed antiphase domains (APD's) arising from cation ordering appears to be a characteristic feature of each environment and increases in the sequence: Franciscan, blueschist (1) ≈ Turkey, blueschist (2) < Guatemala, jadeitic blocks in serpentinite (3) < Syros, blueschist (9) ≈ Red Wine Complex, Canada, amphibolite (1) < Maksyutov Complex, Urals, blueschist (3) ≈ Zermatt-Saas, blueschist (5) ≈ Allalin, metagabbro (4) < Tauern, eclogite (1) ≈ Franciscan, eclogite (5) < Nybö, Norway, eclogite (2) (numbers in brackets indicate the number of hand specimens for which omphacite microstuctures are known). A relationship between APD size, annealing time and temperature has been derived by analogy with the known APD coarsening behaviour in other systems where: (APD size)n $$({\text{APD size)}}^{\text{n}} \propto {\text{e}}^{{\text{(}} - {\text{Q/RT)}}} \cdot {\text{ }}time{\text{.}}$$ . Most omphacites fit into a self-consistent scheme with n=8±2 if the activation energy (Q) is assumed to be that of cation disordering (75 kcal mole?1), available estimates of peak metamorphic temperature (T) are used, and a reasonable geological time-scale is taken as 104–108 years. According to this model, APD sizes are set in a relatively short interval of the total history of a rock when its temperature is close to its peak value. APD sizes are much more sensitive to temperature than to time and may be used as a geothermometer which has the advantage of not being reset by re-equilibration at low temperatures. Petrological implications arising from the model are that Allalin metagabbros were metamorphosed at a similar peak temperature to Zermatt-Saas blueschists, Franciscan eclogites reached higher temperatures than has been previously supposed and that the microstructures in some Sesia-Lanzo omphacites are consistent with a high temperature, pre-blueschist origin. Deviation from an ideal coarsening law with n=2 implies that the APD's are not simply stacking mistakes but have some associated structural or compositional modification locally. Excess titanium concentrated at APD's in Red Wine Complex omphacites may account for their anomalously low observed APD size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号