首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The Middle Ordovician Granby structure in Sweden is generally considered the result of an asteroidal or cometary collision with Earth, although no hard evidence, i.e., shock metamorphic features or traces of the impactor, have been presented to date. In this study, drill core samples of a sedimentary breccia from the Granby structure have been investigated for microscopic shock metamorphic evidence in an attempt to verify the impact genesis of the structure. The finding of multiple sets of decorated planar deformation features (PDFs) in quartz grains in these samples provides unambiguous evidence that the structure is impact derived. Furthermore, the orientation of the PDFs, e.g., ω {101 }, π {101 } and r, z {101 }, is characteristic for impact deformation. The fact that a majority of the PDFs are decorated implies a water‐bearing target. The shocked quartz grains can be divided into two groups; rounded grains found in the breccia matrix likely originated from mature sandstone, and angular grains in fragments from crystalline target rocks. The absence of melt particles provides an estimated maximum shock pressure for the sedimentary derived quartz of 15–20 GPa and the frequency distribution of PDF orientations in the bedrock quartz implies pressures of the order of 10 GPa.  相似文献   

2.
Abstract— Microscopic planar deformation features (PDFs) in quartz grains are diagnostic of shock meta-morphism during hypervelocity impact cratering. Measurements of the poles of sets of PDFs and the optic axis of 25 quartz grains were carried out for a sample of the Loftarsten deposit from the Lockne area, Sweden. The most abundant PDFs observed in the sample from the Lockne area correspond to those found at known impact craters (i.e., ω (1013} and π (1012). This study confirms the previous suggestion that the Lockne structure is an impact crater. The Loftarsten is, therefore, interpreted as the final stage of resurge deposition after a marine impact at Lockne in the Middle Ordovician.  相似文献   

3.
Yallalie is a ~12 km diameter circular structure located ~200 km north of Perth, Australia. Previous studies have proposed that the buried structure is a complex impact crater based on geophysical data. Allochthonous breccia exposed near the structure has previously been interpreted as proximal impact ejecta; however, no diagnostic indicators of shock metamorphism have been found. Here we report multiple (27) shocked quartz grains containing planar fractures (PFs) and planar deformation features (PDFs) in the breccia. The PFs occur in up to five sets per grain, while the PDFs occur in up to four sets per grain. Universal stage measurements of all 27 shocked quartz grains confirms that the planar microstructures occur in known crystallographic orientations in quartz corresponding to shock compression from 5 to 20 GPa. Proximity to the buried structure (~4 km) and occurrence of shocked quartz indicates that the breccia represents either primary or reworked ejecta. Ejecta distribution simulated using iSALE hydrocode predicts the same distribution of shock levels at the site as those found in the breccia, which supports a primary ejecta interpretation, although local reworking cannot be excluded. The Yallalie impact event is stratigraphically constrained to have occurred in the interval from 89.8 to 83.6 Ma based on the occurrence of Coniacian clasts in the breccia and undisturbed overlying Santonian to Campanian sedimentary rocks. Yallalie is thus the first confirmed Upper Cretaceous impact structure in Australia.  相似文献   

4.
Abstract— Shocked quartz from the ejecta of the Ries impact structure has been investigated by analytical transmission electron microscopy (ATEM). Quartz grains display numerous planar fractures (PFs) and planar deformation features (PDFs). Both are partly or fully replaced by a mineral of the kaolinite group (likely halloysite). Its formation involves fluid circulation into the dense fracture networks, dissolution and removal of the amorphous phase initially present in PDFs, and finally, precipitation and crystallization of the kaolinite group mineral from solutions resulting from the chemical alteration of adjacent minerals (feldspars and biotite). Kaolinite group minerals are typical of hydrothermal alteration at low temperature, in humid climate, and under moderately acid conditions and, thus, this alteration may not be directly related to the impact event itself. However, the weathering features were strongly enhanced by the shock‐generated microstructure, in particular by fractures that provided pathways for fluid circulation.  相似文献   

5.
Abstract— Northwest Africa 482 (NWA 482) is a crystalline impact‐melt breccia from the Moon with highlands affinities. The recrystallized matrix and the clast population are both highly anorthositic. Clasts are all related to the ferroan anorthosite suite, and include isolated plagioclase crystals and lithic anorthosites, troctolites, and spinel troctolites. Potassium‐, rare‐earth‐element‐, and phosphorus‐bearing (KREEP) and mare lithologies are both absent, constraining the source area of this meteorite to a highland terrain with little to no KREEP component, most likely on the far side of the Moon. Glass is present in shock veins cutting through the sample and in several large melt pockets, indicating a second impact event. There are two separate events recorded in the 40Ar‐39Ar system: one at ~3750 Ma, which completely reset the K‐Ar system, and one at ?2400 Ma, which caused only partial degassing. These events could represent, respectively, crystallization of the impact‐melt breccia and later formation of the glass, or the formation of the glass and a later thermal event. The terrestrial age of the meteorite is 8.6 ± 1.3 ka. This age corresponds well with the modest amount of weathering in the rock, in the form of secondary phyllosilicates and carbonates. Based on terrestrial age and location, lithology, and chemistry, NWA 482 is unique among known lunar meteorites.  相似文献   

6.
Maohokite, a post‐spinel polymorph of MgFe2O4, was found in shocked gneiss from the Xiuyan crater in China. Maohokite in shocked gneiss coexists with diamond, reidite, TiO2‐II, as well as diaplectic glasses of quartz and feldspar. Maohokite occurs as nano‐sized crystallites. The empirical formula is (Mg0.62Fe0.35Mn0.03)2+Fe3+2O4. In situ synchrotron X‐ray microdiffraction established maohokite to be orthorhombic with the CaFe2O4‐type structure. The cell parameters are = 8.907 (1) Å, = 9.937(8) Å, = 2.981(1) Å; V = 263.8 (3) Å3; space group Pnma. The calculated density of maohokite is 5.33 g cm?3. Maohokite was formed from subsolidus decomposition of ankerite Ca(Fe2+,Mg)(CO3)2 via a self‐oxidation‐reduction reaction at impact pressure and temperature of 25–45 GPa and 800–900 °C. The formation of maohokite provides a unique example for decomposition of Fe‐Mg carbonate under shock‐induced high pressure and high temperature. The mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 2017‐047). The mineral was named maohokite after Hokwang Mao, a staff scientist at the Geophysical Laboratory, Carnegie Institution of Washington, for his great contribution to high pressure research.  相似文献   

7.
The high‐pressure minerals of reidite and coesite have been identified in the moderately shock‐metamorphosed gneiss (shock stage II, 35–45 GPa) and the strongly shock‐metamorphosed gneiss (shock stage III, 45–55 GPa), respectively, from the polymict breccias of the Xiuyan crater, a simple impact structure 1.8 km in diameter in China. Reidite in the shock stage II gneiss displays lamellar textures developed in parental grains of zircon. The phase transformation of zircon to reidite likely corresponds to a martensitic mechanism. No coesite is found in the reidite‐bearing gneiss. The shock stage III gneiss contains abundant coesite, but no reidite is identified in the rock. Coesite occurs as acicular, dendritic, and spherulitic crystals characteristic of crystallization from shock‐produced silica melt. Zircon in the rock is mostly recrystallized. The postshock temperature in the shock stage III gneiss is too high for the preservation of reidite, whereas reidite survives in the shock stage II gneiss because of relatively low postshock temperature. Reidite does not occur together with coesite because of difference in shock‐induced temperature between the shock stage II gneiss and the shock stage III gneiss.  相似文献   

8.
Abstract— Large impact events like the one that formed the Chicxulub crater deliver significant amounts of heat that subsequently drive hydrothermal activity. We report on numerical modeling of Chicxulub crater cooling with and without the presence of water. The model inputs are constrained by data from borehole samples and seismic, magnetic, and gravity surveys. Model results indicate that initial hydrothermal activity was concentrated beneath the annular trough as well as in the permeable breccias overlying the melt. As the system evolved, the melt gradually cooled and became permeable, shifting the bulk of the hydrothermal activity to the center of the crater. The temperatures and fluxes of fluid and vapor derived from the model are consistent with alteration patterns observed in the available borehole samples. The lifetime of the hydrothermal system ranges from 1.5 to 2.3 Myr depending on assumed permeability. The long lifetimes are due to conduction being the dominant mechanism of heat transport in most of the crater, and significant amounts of heat being delivered to the near‐surface by hydrothermal upwellings. The long duration of the hydrothermal system at Chicxulub should have provided ample time for colonization by thermophiles and/or hyperthermophiles. Because habitable conditions should have persisted for longer time in the central regions of the crater than on the periphery, a search for prospective biomarkers is most likely to be fruitful in samples from that region.  相似文献   

9.
Abar al' Uj (AaU) 012 is a clast‐rich, vesicular impact‐melt (IM) breccia, composed of lithic and mineral clasts set in a very fine‐grained and well‐crystallized matrix. It is a typical feldspathic lunar meteorite, most likely originating from the lunar farside. Bulk composition (31.0 wt% Al2O3, 3.85 wt% FeO) is close to the mean of feldspathic lunar meteorites and Apollo FAN‐suite rocks. The low concentration of incompatible trace elements (0.39 ppm Th, 0.13 ppm U) reflects the absence of a significant KREEP component. Plagioclase is highly anorthitic with a mean of An96.9Ab3.0Or0.1. Bulk rock Mg# is 63 and molar FeO/MnO is 76. The terrestrial age of the meteorite is 33.4 ± 5.2 kyr. AaU 012 contains a ~1.4 × 1.5 mm2 exotic clast different from the lithic clast population which is dominated by clasts of anorthosite breccias. Bulk composition and presence of relatively large vesicles indicate that the clast was most probably formed by an impact into a precursor having nonmare igneous origin most likely related to the rare alkali‐suite rocks. The IM clast is mainly composed of clinopyroxenes, contains a significant amount of cristobalite (9.0 vol%), and has a microcrystalline mesostasis. Although the clast shows similarities in texture and modal mineral abundances with some Apollo pigeonite basalts, it has lower FeO and higher SiO2 than any mare basalt. It also has higher FeO and lower Al2O3 than rocks from the FAN‐ or Mg‐suite. Its lower Mg# (59) compared to Mg‐suite rocks also excludes a relationship with these types of lunar material.  相似文献   

10.
Abstract— Planar features can develop in quartz during comparatively slow tectonic deformation and during very fast dynamic shock metamorphism. Despite their very different structural nature, tectonically induced deformation lamellae have sometimes been mistaken as shock‐induced planar deformation features (PDFs). To understand the formation of deformation lamellae and to address the substantial differences between them and PDFs, we have conducted deformation experiments on single crystals of quartz in a Griggs‐type apparatus, at a temperature of 800 °C, a confining pressure of 12 kbar, and a strain rate of 0.7–1.1 · 10?6. The deformed samples were analyzed with transmission electron microscopy (TEM) and compared to natural PDFs from the Ries Crater, Germany. TEM revealed that tectonic deformation lamellae are associated with numerous sub‐parallel curved subgrain walls, across which the orientation of the crystal changes slightly. The formation of deformation lamellae is due to glide‐ and climb‐controlled deformation in the exponential creep regime. In contrast, the PDFs in shocked quartz from the Ries are perfectly planar, crystallographically controlled features that originally represented amorphous lamellae. Due to post‐shock annealing and hydrothermal activity they are recrystallized and decorated with fluid inclusions.  相似文献   

11.
Abstract— –Literature data show that, among EH chondrites, the Abee impact‐melt breccia exhibits unusual mineralogical characteristics. These include very low MnO in enstatite (<0.04 wt%), higher Mn in troilite (0.24 wt%) and oldhamite (0.36 wt%) than in EH4 Indarch and EH3 Kota‐Kota (which are not impact‐melt breccias), low Mn in keilite (3.6–4.3 wt%), high modal abundances of keilite (11.2 wt%) and silica (~7 wt%, but ranging up to 16 wt% in some regions), low modal abundances of total silicates (58.8 wt%) and troilite (5.8 wt%), and the presence of acicular grains of the amphibole, fluor‐richterite. These features result from Abee's complex history of shock melting and crystallization. Impact heating was responsible for the loss of MnO from enstatite and the concomitant sulfidation of Mn. Troilite and oldhamite grains that crystallized from the impact melt acquired relatively high Mn contents. Abundant keilite and silica also crystallized from the melt; these phases (along with metallic Fe) were produced at the expense of enstatite, niningerite and troilite. Melting of the latter two phases produced a S‐rich liquid with higher Fe/Mg and Fe/Mn ratios than in the original niningerite, allowing the crystallization of keilite. Prior to impact melting, F was distributed throughout Abee, perhaps in part adsorbed onto grain surfaces; after impact melting, most of the F that was not volatilized was incorporated into crystallizing grains of fluor‐richterite. Other EH‐chondrite impact‐melt breccias and impact‐melt rocks exhibit some of these mineralogical features and must have experienced broadly similar thermal histories.  相似文献   

12.
Abstract– Planar deformation features (PDFs) in quartz are essential proof for the correct identification of meteorite impact structures and related ejecta layers, but can be confused with tectonic deformation lamellae. The only completely reliable method to demonstrate the shock origin of suspected (sub‐) planar microstructures, transmission electron microscope (TEM) observations, is costly and time consuming. We have used a cathodoluminescence (CL) detector attached to a scanning electron microscope (SEM) to image both PDFs and tectonic deformation lamellae in quartz to demonstrate the potential of a simple method to identify PDFs and define characteristics that allow their distinction from tectonic deformation lamellae. In both limited wavelength grayscale and composite color SEM‐CL images, PDFs are easily identified. They are straight, narrow, well‐defined features, whereas tectonic deformation lamellae are thicker, slightly curved, and there is often no clear boundary between lamella and host quartz. Composite color images reveal two types of CL behavior in PDFs: either they emit a red to infrared CL signal or they are nonluminescent. The color of the CL signal emitted by tectonic deformation lamellae ranges from blue to red. For comparison, we also imaged several shocked quartz grains at cryogenic temperature. In most cases, the PDF characteristics in cryo‐CL images do not differ significantly from those in images recorded at room temperature. We conclude that SEM‐CL imaging, especially when color composites are used, provides a promising, practical, low cost, and nondestructive method to distinguish between PDFs and tectonic lamellae, even when the simplest CL techniques available are used.  相似文献   

13.
Abstract– Northwest Africa 4859 (NWA 4859) is a meteorite of LL chondrite parentage that shows unusual igneous features and contains widely distributed pentlandite. The most obvious unusual feature is a high proportion of large (≤3 cm diameter) igneous‐textured enclaves (LITEs), interpreted as shock melts that were intruded into an LL chondrite host. One such LITE appears to have been produced by whole rock melting of LL chondrite, initial rapid partial crystallization, and subsequent slow cooling of the residual melt in the host to produce a differentiated object. Other unusual features include mm‐sized “overgrowth objects,” fine‐grained plagioclase‐rich bands, and coarse troilite (≤7 mm across) grains. All these features are interpreted as having crystallized from melts produced by a single transient shock event, followed by slow cooling. A subsequent shock event of moderate (S3) intensity produced veining and transformed some of the pyroxene into the clinoenstatite polytype. Pentlandite (together with associated troilite) in NWA 4859 probably formed by the breakdown of a monosulfide precursor phase at low temperature (≤230 °C) following the second shock event. NWA 4859 is interpreted to be an unusual impact‐melt breccia that contains shock melt which crystallized in different forms at depth within the parent body.  相似文献   

14.
Abstract— Sayh al Uhaymir (SaU) 300 comprises a microcrystalline igneous matrix (grain size <10 μm), dominated by plagioclase, pyroxene, and olivine. Pyroxene geothermometry indicates that the matrix crystallized at ?1100 °C. The matrix encloses mineral and lithic clasts that record the effects of variable levels of shock. Mineral clasts include plagioclase, low‐ and high‐Ca pyroxene, pigeonite, and olivine. Minor amounts of ilmenite, FeNi metal, chromite, and a silica phase are also present. A variety of lithic clast types are observed, including glassy impact melts, impact‐melt breccias, and metamorphosed impact melts. One clast of granulitic breccia was also noted. A lunar origin for SaU 300 is supported by the composition of the plagioclase (average An95), the high Cr content in olivine, the lack of hydrous phases, and the Fe/Mn ratio of mafic minerals. Both matrix and clasts have been locally overprinted by shock veins and melt pockets. SaU 300 has previously been described as an anorthositic regolith breccia with basaltic components and a granulitic matrix, but we here interpret it to be a polymict crystalline impact‐melt breccia with an olivine‐rich anorthositic norite bulk composition. The varying shock states of the mineral and lithic clasts suggest that they were shocked to between 5–28 GPa (shock stages S1–S2) by impact events in target rocks prior to their inclusion in the matrix. Formation of the igneous matrix requires a minimum shock pressure of 60 GPa (shock stage >S4). The association of maskelynite with melt pockets and shock veins indicates a subsequent, local 28–45 GPa (shock stage S2–S3) excursion, which was probably responsible for lofting the sample from the lunar surface. Subsequent fracturing is attributed to atmospheric entry and probable breakup of the parent meteor.  相似文献   

15.
Abstract– The microstructures of lunar zircon grains from breccia samples 72215, 73215, 73235, and 76295 collected during the Apollo 17 mission have been characterized via optical microscopy, cathodoluminescence imaging, and electron backscatter diffraction mapping. These zircon grains preserve deformation microstructures that show a wide range in style and complexity. Planar deformation features (PDFs) are documented in lunar zircon for the first time, and occur along {001}, {110}, and {112}, typically with 0.1–25 μm spacing. The widest PDFs associated with {112} contain microtwin lamellae with 65°/<110> misorientation relationships. Deformation bands parallel to {100} planes and irregular low‐angle (<10°) boundaries most commonly have <001> misorientation axes. This geometry is consistent with a dislocation glide system with <100>{010} during dislocation creep. Nonplanar fractures, recrystallized domains with sharp, irregular interfaces, and localized annealing textures along fractures are also observed. No occurrences of reidite were detected. Shock‐deformation microstructures in zircon are explained in terms of elastic anisotropy of zircon. PDFs form along a limited number of specific {hkl} planes that are perpendicular to directions of high Young’s modulus, suggesting that PDFs are likely to be planes of longitudinal lattice damage. Twinned {112} PDFs also contain directions of high shear modulus. A conceptual model is proposed for the development of different deformation microstructures during an impact event. This “shock‐deformation mechanism map” is used to explain the relative timing, conditions, and complexity relationships between impact‐related deformation microstructures in zircon.  相似文献   

16.
Abstract— The Vredefort Granophyre represents impact melt that was injected downward into fractures in the floor of the Vredefort impact structure, South Africa. This unit contains inclusions of country rock that were derived from different locations within the impact structure and are predominantly composed of quartzite, feldspathic quartzite, arkose, and granitic material with minor proportions of shale and epidiorite. Two of the least recrystallized inclusions contain quartz with single or multiple sets of planar deformation features. Quartz grains in other inclusions display a vermicular texture, which is reminiscent of checkerboard feldspar. Feldspars range from large, twinned crystals in some inclusions to fine‐grained aggregates that apparently are the product of decomposition of larger primary crystals. In rare inclusions, a mafic mineral, probably biotite or amphibole, has been transformed to very fine‐grained aggregates of secondary phases that include small euhedral crystals of Fe‐rich spinel. These data indicate that inclusions within the Vredefort Granophyre were exposed to shock pressures ranging from <5 to 8–30 GPa. Many of these inclusions contain small, rounded melt pockets composed of a groundmass of devitrified or metamorphosed glass containing microlites of a variety of minerals, including K‐feldspar, quartz, augite, low‐Ca pyroxene, and magnetite. The composition of this devitrified glass varies from inclusion to inclusion, but is generally consistent with a mixture of quartz and feldspar with minor proportions of mafic minerals. In the case of granitoid inclusions, melt pockets commonly occur at the boundaries between feldspar and quartz grains. In metasedimentary inclusions, some of these melt pockets contain remnants of partially melted feldspar grains. These melt pockets may have formed by eutectic melting caused by inclusion of these fragments in the hot (650 to 1610 °C) impact melt that crystallized to form the Vredefort Granophyre.  相似文献   

17.
Sedimentological (line‐logging) analysis of two drill cores, FC77‐3 and FC67‐3, situated, respectively, in the northwestern and southeastern quadrants of the Flynn Creek impact structure's crater‐moat area reveals that the ~27 m thick crater moat‐filling breccia consists of three subequal parts. These parts, which were deposited during early modification stage of this marine‐target impact structure, are distinguished on the basis of vertical trends in sorting, grain size, and counts of clasts per meter in comparison with other well‐known marine‐target impact structures, namely Lockne, Tvären, and Chesapeake Bay. The lower part is interpreted to represent mainly slump deposits, and the middle part is interpreted to represent a stage intermediate between slump and marine resurge, that is, a traction flow driven by overriding suspension flow. The upper part (size graded, and relatively well sorted and fine grained) is interpreted to represent marine resurge flow only. The upper part is capped by a relatively thin and relatively fine‐grained calcarenite to calcisiltite deposit.  相似文献   

18.
Abstract— The well‐preserved Kärdla impact crater, on Hiiumaa Island, Estonia, is a 4 km diameter structure formed in a shallow Ordovician sea ?455 Ma ago into a target composed of thin (?150 m) unconsolidated sedimentary layer above a crystalline basement composed of migmatite granites, amphibolites and gneisses. The fractured and crushed amphibolites in the crater area are strongly altered and replaced with secondary chloritic minerals. The most intensive chloritization is found in permeable breccias and heavily shattered basement around and above the central uplift. Alteration is believed to have resulted from convective flow of hydrothermal fluids through the central areas of the crater. Chloritic mineral associations suggest formation temperatures of 100–300 °C, in agreement with the most frequent quartz fluid inclusion homogenization temperatures of 150–300 °C in allochthonous breccia. The rather low salinity of fluids in Kärdla crater (<13 wt% NaCleq) suggests that the hydrothermal system was recharged either by infiltration of meteoric waters from the crater rim walls raised above sea level after the impact, or by invasion of sea water through the disturbed sedimentary cover and fractured crystalline basement. The well‐developed hydrothermal system in Kärdla crater shows that the thermal history of the shock‐heated and uplifted rocks in the central crater area, rather than cooling of impact melt or suevite sheets, controlled the distribution and intensity of the impact‐induced hydrothermal processes.  相似文献   

19.
Abstract— Results of a detailed paleomagnetic and rock magnetic study of samples of the impact breccia sequence cored in the Yaxcopoil‐1 (Yax‐1) borehole between about 800 m and 896 m are presented. The Yax‐1 breccia sequence occurs from 794.63 m to 894.94 m and consists of redeposited melt‐rich, clast‐size sorted, fine‐grained suevites; melt‐rich, no clast‐size sorting, medium‐grained suevites; coarse suevitic melt agglomerates; coarse melt‐rich heterogeneous suevites; brecciated suevites; and coarse carbonate and silicate melt suevites. The low‐field susceptibility ranges from ?0.3 to 4018 times 10?6 SI, and the NRM intensity ranges from 0.02 mA/m up to 37510 mA/m. In general, the NRM intensity and magnetic susceptibility present wide ranges and are positively correlated, pointing to varying magnetic mineral contents and textures of the melt‐rich breccia sequence. The vectorial composition and magnetic stability of NRM were investigated by both stepwise alternating field and thermal demagnetization. In most cases, characteristic single component magnetizations are observed. Both upward and downward inclinations are present through the sequence, and we interpret the reverse magnetization as the primary component in the breccias. Both the clasts and matrix forming the breccia appear to have been subjected to a wide range of temperature/pressure conditions and show distinct rock magnetic properties. An extended interval of remanence acquisition and secondary partial or total remagnetization may explain the paleomagnetic results.  相似文献   

20.
The Villalbeto de la Peña meteorite that fell in 2004 in Spain was originally classified as a moderately shocked L6 ordinary chondrite. The recognition of fragments within the Villalbeto de la Peña meteorite clearly bears consequences for the previous classification of the rock. The oxygen isotope data clearly show that an exotic eye‐catching, black, and plagioclase‐(maskelynite)‐rich clast is not of L chondrite heritage. Villalbeto de la Peña is, consequently, reclassified as a polymict chondritic breccia. The oxygen isotope data of the clast are more closely related to data for the winonaite Tierra Blanca and the anomalous silicate‐bearing iron meteorite LEW 86211 than to the ordinary chondrite groups. The REE‐pattern of the bulk inclusion indicates genetic similarities to those of differentiated rocks and their minerals (e.g., lunar anorthosites, eucritic, and winonaitic plagioclases) and points to an igneous origin. The An‐content of the plagioclase within the inclusion is increasing from the fragment/host meteorite boundary (approximately An10) toward the interior of the clast (approximately An52). This is accompanied by a successive compositionally controlled transformation of plagioclase into maskelynite by shock. As found for plagioclase, compositions of individual spinels enclosed in plagioclase (maskelynite) also vary from the border toward the interior of the inclusion. In addition, huge variations in oxygen isotope composition were found correlating with distance into the object. The chemical and isotopical profiles observed in the fragment indicate postaccretionary metamorphism under the presence of a volatile phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号