首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paleo-to Neoarchean granitoid gneisses (ca. 3.30 to 2.49 Ga) are well preserved in the Western Superior Craton. Protoliths of these gneisses are mainly I-type granitoids characterized by high Sr/Y and La/Yb ratios and low Mg#, consistent with Archean tonalite-trondhjemite-granodiorites. Zircons from granitoid gneisses commonly contain three growth phases: inherited cores (zircon I), magmatic rims (zircon II) and outer rims that have undergone Pb-loss (zircon III). The 3.12 Ga to 2.86 Ga zircon I represent early crustal material, that was captured in younger zircons; zircon II preserve crustal re-working and younger crustal additions that are constrained between 2.85 to 2.72 and 2.69 to 2.65 Ga.Zircon II contains both positive and negative εHf(t) values (−6.3 to +8.1), with both depleted-mantle and older crustal signatures. Half of the magmatic rims (II) are characterized by depleted mantle signatures with positive εHf(t) values representing juvenile crust-forming events, whereas the other half are characterized by recycled crustal signatures with negative εHf(t) values. εHf(t) results show that the North Caribou and the Island Lake terranes and the northern Uchi domain are isotopically more enriched than the southern Uchi, English River, Wabigoon and Winnipeg River terranes, suggesting the northern Uchi margin represents a major terrane boundary.Based on mass balance calculations, large volumes of juvenile material at circa 3.0 Ga mixed with smaller amounts of older crust. The vast majority of the granites were derived from a source with about 50% mantle material during the peak crust formation events after 2.8 Ga. The decline in the volume of felsic magmatism in the later Archean is coeval with a reduced supply of both heat and material from depleted mantle sources. Combined with previously published geochemical, geochronological and isotopic data, this suggests an evolution in felsic magma sources consistent with crustal thickening.  相似文献   

2.
The English Lake magmatic complex in the western Superior Province of Canada represents a fragment of early (3.0 Ga) continental crust exposed in oblique cross section through tonalitic upper levels and subjacent quartz diorite, diorite and gabbro, which are cut by late gabbro, anorthosite and hornblendite dykes. Massive, foliated and gneissic units of tonalitic to gabbroic composition, crystallized over a 10 to 18 m.y. period, bear common geochemical attributes, including negative Th, U and Nb anomalies, and only slight LREE and LILE enrichment on NMORB-normalized trace-element profiles. Epsilon Nd values (+0.1 to +1.7) and 18O (+6.7 to +8.0 ) do not co-vary with silica or other crustal contamination indices. High Mg#'s and Ni contents suggest derivation from, or interaction with mantle, and large positive anomalies for Ba, Sr and Pb, as well as high U/Th, suggest metasomatism by hydrous fluids. Trace-element profiles resemble those of primitive intra-oceanic island arc magmas except for the negative Th-U anomaly, which precludes the involvement of either oceanic (sedimentary or basaltic) or continental crust in the petrogenesis of English Lake magmas. In order to account for the unusual geochemical character of the suite, we postulate that water-rich fluids derived from subducted, sea-floor-altered serpentinite provided the flux for melting a depleted mantle wedge. Contemporaneous, proximal high Th/Nb tonalites suggest that the zone of serpentinite subduction occurred within a restricted arc segment possibly due to subduction of either: (a) a seamount chain oriented broadly perpendicular to an arc, or (b) a similarly oriented serpentinite-enclosed oceanic fracture zone or fault.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Editorial responsibility: T.L. Grove  相似文献   

3.
4.
Spinifex-textured.magnesian(MgO 25 wt.%) komatiites from Mesoarchean Banasandra greenstone belt of the Sargur Group in the Dharwar craton,India were analysed for major and trace elements and~(147,146)Sm-~(143,142)Nd systematics to constrain age,petrogenesis and to understand the evolution of Archean mantle.Major and trace element ratios such as CaO/Al_2O_3.Al_2O_3/TiO_2,Gd/Yb,La/Nb and Nb/Y suggest aluminium undepleted to enriched compositional range for these komatiites.The depth of melting is estimated to be varying from 120 to 240 km and trace-element modelling indicates that the mantle source would have undergone multiple episodes of melting prior to the generation of magmas parental to these komatiites.Ten samples of these komatiites together with the published results of four samples from the same belt yield ~(147)Sm-~(143)Nd isochron age of ca.3.14 Ga with an initial ε_(Nd)(f) value of+3.5.High precision measurements of ~(142)Nd/~(144)Nd ratios were carried out for six komatiite samples along with standards AMES and La Jolla.All results are within uncertainties of the terrestrial samples.The absence of~(142)Nd/~(144)Nd anomaly indicates that the source of these komatiites formed after the extinction of ~(146)Sm,i.e.4.3 Ga ago.In order to evolve to the high ε_(Nd)(t) value of +3.5 by 3.14 Ga the time-integrated ratio of~(147)Sm/~(144)Nd should be 0.2178 at the minimum.This is higher than the ratios estimated,so far,for mantle during that time.These results indicate at least two events of mantle differentiation starting with the chondritic composition of the mantle.The first event occurred very early at ~4.53 Ga to create a global early depleted reservoir with superchondritic Sm/Nd ratio.The source of Isua greenstone rocks with positive ~(142)Nd anomaly was depleted during a second differentiation within the life time of ~(146)Sm,i.e.prior to 4.46 Ga.The source mantle of the Banasandra komatiite was a result of a differentiation event that occurred after the extinction of the ~(146)Sm,i.e.at 4.3 Ga and prior to 3.14 Ga.Banasandra komatiites therefore provide evidence for preservation of heterogeneities generated during mantle differentiation at4.3 Ga.  相似文献   

5.
The hypothesis that much of the lithosphere of the Archaean Tanzania Craton was hydrated, by the dehydration of a buoyant subduction 2 Ga ago is presented in this study. Buoyant subduction is a potential mechanism for thermal erosion and metasomatism of extensive regions of the cold overlying continental lithosphere. This hypothesis could explain why the Tanzania Craton forms an undeformed island within the intensely deformed mobile belts. Furthermore, it would explain the formation of the eclogite and lherzolite bearing kimberlites within the Tanzania Craton far away from the trench. A buoyant, slow subduction is required because this would provide sufficient cooling from the overlying cratonic lithosphere and therefore the dipping slab could retain hydrous minerals such as antigorite in hydrated aureoles in peridotites. To test this hypothesis, the release of water during prograde metamorphism of a flat-subducting plate was modeled. It is shown that water can be transported ~800 km laterally, inboard of the trench, which is close to the north-south extension of the Archaean Tanzania Craton.  相似文献   

6.
The Emeishan flood basalts can be divided into high-Ti (HT) basalt (Ti/Y>500) and low-Ti (LT) basalt (Ti/Y<500). Sr, Nd isotopic characteristics of the lavas indicate that the LT- and the HT-type magmas originated from distinct mantle sources and parental magmas. The LT-type magma was derived from a shallower lithospheric mantle, whereas the HT-type magma was derived from a deeper mantle source that may be possibly a mantle plume. However, few studies on the Emeishan flood basalts involved their Pb isotopes, especially the Ertan basalts. In this paper, the authors investigated basalt samples from the Ertan area in terms of Pb isotopes, in order to constrain the source of the Emeishan flood basalts. The ratios of 206Pb/204Pb (18.31–18.41), 207Pb/204Pb (15.55–15.56) and 208Pb/204Pb (38.81–38.94) are significantly higher than those of the depleted mantle, just lying between EM I and EM II. This indicates that the Emeishan HT basalts (in the Ertan area) are the result of mixing of EMI end-member and EMII end-member.  相似文献   

7.
Two distinct zircon populations, 1,827 ± 17 and 169 ± 2 Ma in age, have been found in the Rubiku granite dyke in the Middle Jurassic Mirdita ophiolite in central Albania. The old inherited zircons represent a homogeneous population formed during a discrete Palaeoproterozoic, likely magmatic, zircon crystallization event. These older zircons were likely incorporated, in large part, into the granite magma that crystallized broadly at the time of the ophiolite emplacement (around 169 Ma). The limited data available do not allow for the construction of an unequivocal petrogenetic model, though several palaeotectonic scenarios are discussed as possible settings for the granite formation. The models refer to recent findings of old inherited zircons in rocks at recent mid-ocean ridge settings, but also consider likely contributions of crustal materials to primary basic ophiolitic magmas within supra-subduction settings and subsequent accretion/collision circumstances. The presence of old zircons in much younger rocks within ophiolite successions runs counter to geodynamic models of interaction between the oceanic lithosphere and continental crust, but constraining their genesis would require further systematic studies on these old inherited zircons, both in mafic (if present) and in felsic rocks of the ophiolites.  相似文献   

8.
The integration of detrital and magmatic U – Pb zircon SHIRMP geochronology with facies analysis has allowed the development of a chronostratigraphic framework for the Leichhardt and Calvert Superbasins of the Western Fold Belt, Mt Isa Inlier. This new event chart recognises three supersequences in the Leichhardt Superbasin: the Guide, Myally and Quilalar Supersequences. The Guide Supersequence spans the interval ca 1800 – 1785 Ma and includes the Bottletree Formation and the Mt Guide Quartzite. Sequence relationships suggest that this sedimentary package represents an asymmetric second-order cycle, recording a thickened transgressive suite of deposits and a comparatively thin second-order highstand. The overlying Myally Supersequence spans the interval ca 1780 – 1765 Ma and includes the Eastern Creek Volcanics and syndepositional Lena Quartzite, and the Myally Subgroup. This package represents a second-order supersequence cycle in which mafic volcanism was initiated during a phase of east – west extension. Following the cessation of volcanism, transgression led to the deposition of the Alsace Quartzite and deeper water Bortala Formation. An increase in the rate of sediment supply over accommodation resulted in progradation and deposition of the Whitworth Quartzite and redbed playa facies of the Lochness Formation as accommodation closed. The Quilalar Supersequence spans the interval ca 1755 – 1740 Ma. Sequence analysis in the eastern part of the Leichhardt River Fault Trough identifies a transgressive suite of facies at the base of this supersequence. Black shales from the upper part of the transgressive deposits characterise the condensed section for this supersequence. Facies analysis indicates that deposition took place in a series of storm-, tide- and wave-dominated shelfal marine depositional systems. Although there are no new depositional age constraints for the younger Bigie Formation, field relationships suggest that it is coeval with, or immediately preceded, the ca 1710 Ma Fiery magmatic event. Therefore, a separate supersequence is defined for the Bigie Formation, the Big Supersequence, even though it may be more genetically related to the Fiery magmatic event. The Big Supersequence, together with the ca 1690 Ma Prize Supersequence, comprise the Calvert Superbasin. The evolution of the Leichhardt and Calvert Superbasins are temporally and spatially related to magmatism. In particular, the new maximum depositional ages for the Guide and Myally Supersequences refine the age of the Eastern Creek Volcanics to ca 1780 – 1775 Ma. The new age for the Weberra Granite is within error of the age for the Fiery Creek Volcanics, indicating that they are both part of the ca 1710 Ma Fiery event. New ages for the Sybella Granite confirm that magmatism associated with this magmatic event is refined to 1680 – 1670 Ma, and is followed by deposition of the Gun Supersequence. Combining the new geochronological constraints with previous work now provides a detailed stratigraphic event framework between 1800 and 1575 Ma for the Western Fold Belt of the Mt Isa Inlier, and allows detailed comparisons and correlations with the Eastern Fold Belt and other Proterozoic terranes.  相似文献   

9.
In January 1840, Dumont d’Urville's expedition landed along the coast of “Terre Adélie” and took three rock specimens, the first ever sampled on the Antarctic continent. The petrological and geochemical study of these samples, stored at the “Muséum national d’histoire naturelle”, in Paris, characterizes them as migmatitic cordierite + microcline-bearing paragneiss and mesocratic quartz + biotite-bearing amphibolite. The paragneiss reached 670 °C at 3.2 kbar, suggesting an abnormal high-T gradient of ca. 60 °C/km during the regional metamorphism that affected the “Terre Adélie” craton 1.7 Ga ago. The studied samples are identical to the rocks observed at the “Rocher du Débarquement”, confirming that this was the actual landing place. On the other hand, quartz diorite and volcanic rocks reportedly sampled in Adélie Land during the same expedition and stored at Le Mans and Toulouse Museums do not originate from Antarctica. The examination of Dumont d’Urville's map suggests an icecap shrinking by 9 km in the landing area since 1840.  相似文献   

10.
《Precambrian Research》2004,132(4):327-348
The Saramta massif in the Paleoproterozoic Sharyzhalgai complex, the southwestern margin of the Siberian craton, is mainly composed of spinel-peridotites with garnet-websterites; it is enclosed within granitic gneisses and migmatites with mafic intercalations of granulite-facies grade. The garnet-websterites occur as lenses or layers intercalated within spinel-harzburgite and spinel-lherzolite. They consist mainly of clinopyroxene (Cpx), garnet (Grt), and orthopyroxene (Opx): Grt often includes Cpx, Opx, and pargasite (Prg). Opx also occurs as kelyphite with plagioclase (Pl), spinel, olivine, Prg, and biotite. Relationships between textures and chemical compositions of these minerals suggest the following PT stages: stage 1 (pre-peak), 0.9–1.5 GPa at 640–780 °C; stage 2 (peak), 2.3–3.0 GPa at 920–1030 °C as the minimum estimate; and stage 3 (post-peak), 750–830 °C at 0.5–0.9 GPa. Finally, the garnet-websterites are veined with lower amphibolite- to greenschist-facies minerals (stage 4).These results suggests that the Saramta massif was carried to depths of c. 100 km by subduction, and metamorphosed under eclogite-facies conditions in the Paleoproterozoic, despite the commonly held view that high geothermal gradients in those times would have prevented such deep subduction. Paleoproterozoic plate subduction at the southwestern margin of the Siberian craton might have caused subduction-zone magmatism and mantle metasomatism similar to those in the Phanerozoic.  相似文献   

11.
During the last 50 years, an average of 30 persons per year was killed by avalanches in Austria. About one-third of all avalanche fatalities occurred as a result of so-called ‘catastrophic avalanches’. ‘Catastrophic avalanches’ are spontaneously released avalanches that affect villages and cause damage to property (buildings, roads and other infrastructure). The biggest avalanche events in Austria were in 1950/1951 (135 fatalities), in 1953/1954 (143 fatalities) and in February 1999, when 38 persons were killed in Galtür and Valzur. This article deals with an analysis of nine major avalanche cycles in the last 55 years. An avalanche cycle in this article is defined as 50 recorded avalanches of at least size 3 in two days and/or 5 persons killed in villages within two days. The basis of this study are the well-documented records from Fliri (1998), who analysed natural disasters in the western part of Austria and the Trentino, including floods, mudflows, earthquakes and avalanches. The meteorological data were taken from two relevant observation sites in the northern part of the Austrian Alps, from two sites in an intermediate and continental region, respectively and from one site in the southern part of the Austrian Alps. Atmospheric patterns were analysed by using weather charts for the relevant periods. Both the meteorological data and the weather charts were provided by the Central Institute for Meteorology and Geodynamics (ZAMG). It was found that there was a major cycle every 6 years (on average). Two-thirds of all investigated cycles were characterised by a continuous increase of snow depth over a period of at least three days. In only three periods (1975, 1986, 1988), daily extreme values could be observed. More than 40% of all the cycles occurred in January. In two-thirds, a north-westerly oriented frontal zone was responsible for the formation of a major cycle. The remaining cycles were released by low-pressure areas over Central Europe and the Mediterranean Sea, respectively.  相似文献   

12.
The Meilin porphyritic biotite granite is located along the northern margin of the North China Craton and the northern central orogenic belt. The Meilin granite is complex but is dominated by a porphyritic biotite granite. Isotopic dating using zircon U-Pb LA-ICP-MS analyses indicates that the porphyritic biotite granite was emplaced at 1715.6 ± 9.6 Ma during the Late Paleoproterozoic, rather than during the Permian as previously thought. The Meilin granite is an A-type, and all samples from this granite are characterized by relatively high contents of silica (SiO2 = 69.86–71.70%), alkalis ((Na2O + K2O) = 8.69–9.40%), alumina (Al2O3 = 13.71–14.59%), high ratios of FeOt/MgO, low contents of calcium (CaO = 0.26–0.39%), and a negative Eu anomaly (Eu = 0.47–0.57). Additionally, all samples display strong enrichment in Th, K, La, Ce, and P and depletion in U, Ti, Ta, and Nb. These characteristics indicate that the granite formed in a rift environment, where rifting caused mantle decompression and the formation of basic magma. Underplating of the basic magma provided a heat source, leading to the partial melting of the lower crust. Sr isotopes of the Meilin porphyritic biotite granite suggest that the magma source was the remelting of the metamorphic basement. The granite was therefore emplaced in a non-orogenic extensional tectonic setting, which may have been related to the initial breakup of the Columbia supercontinent during the Late Paleoproterozoic.  相似文献   

13.
The Archaean block of southern Greenland constitutes the core of the North Atlantic craton (NAC) and is host to a large number of Precambrian mafic intrusions and dyke swarms, many of which are regionally extensive but poorly dated. For southern West Greenland, we present a U–Pb zircon age of 2990 ± 13 Ma for the Amikoq mafic–ultramafic layered intrusion (Fiskefjord area) and four baddeleyite U–Pb ages of Precambrian dolerite dykes. Specifically, a dyke located SE of Ameralik Fjord is dated at 2499 ± 2 Ma, similar to a previously reported 40Ar/39Ar age of a dyke in the Kangâmiut area. For these and related intrusions of ca. 2.5 Ga age in southern West Greenland, we propose the name Kilaarsarfik dykes. Three WNW-trending dykes of the MD3 swarm yield ages of 2050 ± 2 Ma, 2041 ± 3 Ma and 2029 ± 3 Ma. A similar U–Pb baddeleyite age of 2045 ± 2 Ma is also presented for a SE-trending dolerite (Iglusuataliksuak dyke) in the Nain Province, the rifted western block of the NAC in Labrador. We speculate that the MD3 dykes and age-equivalent NNE-trending Kangâmiut dykes of southern West Greenland, together with the Iglusuataliksuak dyke (after closure of the Labrador Sea) represent components of a single, areally extensive, radiating swarm that signaled the arrival of a mantle plume centred on what is presently the western margin of the North Atlantic craton. Comparison of the magmatic ‘barcodes’ from the Nain and Greenland portions of the North Atlantic craton with the established record from the north-eastern Superior craton shows matches at 2500 Ma, 2214 Ma, 2050–2030 Ma and 1960–1950 Ma. We use these new age constraints, together with orientations of the dyke swarms, to offer a preliminary reconstruction of the North Atlantic craton near the north-eastern margin of the Superior craton during the latest Archaean and early Palaeoproterozoic, possibly with the Core Zone craton of eastern Canada intervening.  相似文献   

14.
The Uatumã silicic large igneous province (SLIP) has covered about 1,500,000 km2 of the Amazonian craton at ca. 1880 Ma, when the Columbia/Nuna supercontinent has been assembled. Paleomagnetic and geochronological data for this unit were obtained for the Santa Rosa and Sobreiro Formations in the Carajás Province, southwestern Amazonian craton (Central-Brazil Shield). AF and thermal demagnetizations revealed northern (southern) directions with high upward (downward) inclinations (component SF1), which passes a ‘B’ reversal test, and is carried by magnetite and SD hematite with high-blocking temperature. This component is present on well-dated 1877.4 ± 4.3 Ma (U-Pb zrn - LA-ICPMS) rhyolitic lava flows, providing the SF1 key paleomagnetic pole (Q = 6) located at 319.7°E, 24.7°S (A95 = 16.9°). A second southwestern (northeastern) direction with low inclination (Component SF2) was obtained for a well-dated 1853.7 ± 6.2 Ma (U-Pb zrn - LA-ICPMS) dike of the Velho Guilherme Suite. This component also appears as a secondary component in the host rhyolites of the Santa Rosa Fm and andesites of the Sobreiro Fm at the margins of the dike previously dated. Its primary origin is confirmed by a positive baked contact test, where a Velho Guilherme dike crosscuts the 1880 Ma andesite from the Sobreiro Formation. The corresponding SF2 key pole is located at 220.1°E, 31.1°S (A95 = 5°) and is classified with a reliability criterion Q = 7. The large angular distance between the almost coeval (difference of ~ 25 Ma) SF1 and SF2 poles implies high plate velocities (~ 39.3 cm/yr) which are not consistent with modern plate tectonics. The similar significant discrepancy of paleomagnetic poles with ages between 1880 and 1860 Ma observed in several cratons could be explained by a true polar wander (TPW) event. This event is the consequence of the reorganization of the whole mantle convection, and is supported by paleomagnetic reconstructions at 1880 Ma and 1860 Ma and also by geological/geochronological evidence.  相似文献   

15.
Geochemical and petrological studies of the well-preserved greywacke horizon of the ‘Middle Aravalli Group’ were carried out to constrain the early evolution of the Aravalli basin. Petrological and geochemical attributes of Middle Aravalli greywackes (MAGs) such as very poor sorting, high angularity of framework grains, presence of fresh plagioclase and K-feldspars, variable Chemical Index of Alteration (CIA) index (46.7–74.5, avg. 61), and high Index of Compositional Variability (ICV) value (~1.05) suggest rapid physical erosion accompanying an active tectonic regime. The sediments record post-depositional K-metasomatism and extraneous addition of 0–25% (avg. ~10%) K is indicated. Assuming close system behaviour of immobile elements during sedimentation, various diagnostic element ratios such as Th/Sc, La/Sc, Zr/Sc, and Co/Th, Eu anomaly and rare earth element patterns of MAG suggest that the Archaean Banded Gneissic Complex (BGC) basement was not the major source of sediments. In conjunction with the dominant 1.8–1.6 Ga detrital zircon age peaks of Middle Aravalli clastic rocks, these data rather indicate that the sediments were derived from a young differentiated continental margin-type arc of andesite–dacite–rhyodacite composition. A highly fractionated mid-oceanic-ridge-basalt-normalized trace element pattern of MAGs, with characteristic enrichment of large-ion lithophile elements (LILEs), depletion of heavy rare earth elements, negative Nb-Ta, Ti and P anomalies, positive Pb anomaly, and distinctive Nb/Ta, Zr/Sm, Th/Yb, and Ta/Yb, Ce/Pb ratios envelop the composition of modern continental arc magmas (andesite–dacite) of the Andes, suggesting a subduction zone tectonic setting for precursor magma. High magnitude of LILE enrichment and high Th/Yb ratios in these sediments indicate that thick continental crust (~70 km) underlay the ‘Middle Aravalli’ continental arc, similar to the Central Volcanic Zone of the modern Andes. We propose that eastward subduction of Delwara oceanic crust beneath the BGC continent led to the formation of a continental volcanic arc, which supplied detritus to the forearc basin situated to the west. This model also explains the opening of linear ensialic basins in the Bhilwara terrain, such as in Rajpura–Dariba and Rampura–Agucha in a classical back-arc extension regime, similar to the Andean continental margin of the Mesozoic. On the basis of the recent 207Pb/206Pb detrital zircon age of Middle Aravalli sediment, a time frame between 1772 and 1586 Ma can be assigned for Middle Aravalli continental arc magmatism.  相似文献   

16.
Mg-rich and Fe-rich metatholeiites intruded the Willyama Supergroup of the southern Australian Curnamona Province in the Late Palaeoproterozoic at ca 1700 Ma and 1685 Ma, respectively. Intrusion of the Fe-rich metatholeiites occurred during a period of punctuated extension in the Willyama basin. Major-element concentrations are variable (SiO2 45.4 – 56.5 wt%; Fe2O3? 8.5 – 20.7; TiO2 0.46 – 2.52 wt%; Mg# 70.5 – 29.1) and, in conjunction with trace-element data, support near-closed-system fractionation of a mantle-derived melt with little or no replenishment. Fractionation produced progressively Fe-rich derivative melts. Crystallising phases were dominated by clinopyroxene and olivine, whereas Fe – (Ti) oxide crystallisation was hindered. Primitive mantle-normalised immobile trace elements are characterised by variable Th, Nb, Sr, P and Ti anomalies. Chondrite-normalised rare-earth element patterns for the most primitive, Mg-rich samples from the western Broken Hill Domain have LaN/SmN < 1, whereas the most evolved Fe-rich samples from the Olary Domain have ratios of LaN/SmN > 1. Initial εNd values range between – 2.2 and + 2.7 for the majority of the samples, with the isotopic compositions showing no correlation with differentiation or assimilation. The combined geochemical and isotopic data suggest that the southern Curnamona Province metatholeiites were extracted from a depleted mantle in the western Broken Hill Domain, and a variably enriched, heterogeneous subcontinental lithospheric mantle in the Olary Domain. Magmatism most likely occurred in a backarc basin or intracontinental setting. It is speculated that the geochemically enriched mantle component was derived from subduction-related processes, probably related to pre-Willyama basin accretionary processes along the southern and eastern margins of the North Australian Craton.  相似文献   

17.
An undated high-pressure low-temperature tectonic mélange in the Elekda area (central Pontides, N Turkey) comprises blocks of MORB-derived lawsonite eclogite within a sheared serpentinite matrix. In their outer shells, some of the eclogite blocks contain large (up to 6 cm) tourmaline crystals. Prograde inclusions in poikiloblastic garnet from a well-preserved eclogite block are lawsonite, epidote/clinozoisite, omphacite, rutile, glaucophane, chlorite, Ba-bearing phengite, minor actinolite, winchite and quartz. In addition, glaucophane, lawsonite and rutile occur as inclusions in omphacite. These inclusion assemblages document the transition from a garnet-lawsonite-epidote-bearing blueschist to a lawsonite eclogite with the peak assemblage garnet + omphacite I + lawsonite + rutile. Peak metamorphic conditions are not well-constrained but are estimated approximately 400–430°C and >1.35 GPa, based on Fe–Mg exchange between garnet and omphacite and the coexistence of lawsonite + omphacite + rutile. During exhumation of the eclogite–serpentinite mélange in the hanging wall of a subduction system, infiltration of B-rich aqueous fluids into the rims of eclogite blocks caused retrogressive formation of abundant chlorite, titanite and albite, followed by growth of tourmaline at the expense of chlorite. At the same time, omphacite I (XJd=0.24–0.44) became unstable and partially replaced by omphacite II characterized by higher XJd (0.35–0.48), suggesting a relatively low silica activity in the infiltrating fluid. Apart from Fe-rich rims developed at the contact to chlorite, tourmaline crystals are nearly homogeneous. Their compositions correspond to Na-rich dravite, perhaps with a small amount of excess (tetrahedral) boron (~5.90 Si and 3.10 B cations per 31 anions). 11 B values range from –2.2 to +1.7. The infiltrating fluids were most probably derived from subducting altered oceanic crust and sediments.  相似文献   

18.
19.
Basal iguanodontians (“iguanodontids”) were a successful group of ornithopod dinosaurs that attained a near global distribution by the late Early Cretaceous. Despite their body fossils being known in abundance from the uppermost Jurassic and Lower Cretaceous of the western United States, their remains have never been found in western Canada. With its extensive, terrestrial sedimentary record for the whole of the Early Cretaceous, the expectation is that these dinosaurs would have been present in western Canada. This paper reports the finding of a fossil footprint from the Gladstone Formation in southwestern Alberta that is interpreted to have been made by an iguanodontid. This identification is based on the late Barremian age of the hosting rock, gross footprint details that match the skeletal foot structure of Iguanodon bernissartensis, and similarities to Early Cretaceous dinosaur footprints found elsewhere in the world that are attributed to iguanodontids. This finding fills a noticeable gap in the iguanodontian fossil record, and is consistent with the clade's attainment of global distribution during the Early Cretaceous.  相似文献   

20.
Three dimensional (3D) photorealistic models of geological outcrops have the potential to enhance the teaching of earth sciences by providing scale models in a virtual reality environment. These models can be run on low-cost desktop computers. Photorealistic models for geological outcrops are a digital illustration of outcrop photographs with either a point cloud representation or Triangular Irregular Network (TIN) mesh of the outcrop surface. The level of detail for these models is dependent on the target resolutions (physical and optical) that were used during data acquisition. In addition, the technique in which the data is rendered as a digital model affects the level of detail that can be observed by the geologists. A colored point cloud representation is suitable for large-scale features, but fine details are lost when the geologist zooms in to view the model close up. In contrast, a photorealistic model that is constructed from photographs draped onto a triangle mesh surface derived from Light Detection and Ranging (LiDAR) point clouds provides a level of detail that is restricted only by the resolution of the photographs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号