首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 459 毫秒
1.
We analyse the two-dimensional distribution of quasars for clustering. In an area of 40 square degrees centered at α = 1h44m, δ = −40°00', we found 1092 quasar candidates in a systematic search with slitless spectra. A two-dimensional power spectrum analysis gave the result that the quasars are weakly clustered, with a clustering scale of about 0.5°. This corresponds to 35 Mpc at the mean redshift of 2.  相似文献   

2.
We present the R c-band light curves for components A and B of the gravitationally lensed quasar SBS 1520+530 obtained during 2001–2005 with the 1.5-m Russian-Turkish Telescope (RTT-150) at the TUBITAK National Observatory (Turkey). Based on an analysis of the data for the period 2001–2002, we have estimated the time delay of the brightness fluctuations between components A and B of the quasar to be 128 days. This time delay agrees with its previously published values for the periods 1999–2001 and 2003–2004. Using all of the published data on the brightnesses of components A and B of SBS 1520+530 for the 6-year period, we have found at least two microlensing events. One event has the pattern of a long-term linear trend; the duration of the other event is several hundred days.  相似文献   

3.
Rotational motions of twin quasar images due to the motion of a gravitational lens galaxy are studied. A weak gravity field and a point mass lens are assumed. Twin images of a quasar appear and rotate when a lens galaxy passes near a straight line connecting the observer with the quasar. The positions and velocities of the quasar images are calculated using various sets of parameters.Conclusions: (1) Quasar images move a few hundred milli-arc-seconds per year or more, if the lens galaxy passes within a thousandth parsec from the line connecting the observer with the quasar, (2) the distance between the galactic center and the quasar images is about ten kilo-parsec at the most.As an example, the velocities of 0957+561 A, B1 and B2 are calculated. Even the fastest case, they are 1.5, 1.8, and 1.6×10–5 milli-arc-second per year, respectively.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

4.
Using a homogenous sample of 1962 quasars with redshift 3.0≤z≲4.5 drawn from the Sloan Digital Sky Survey (SDSS), we study the relationships between radio loudness, virial black hole (BH) mass and Eddington ratio (accretion rate relative to the Eddington limit). For the radio-detected objects, we find a significant (>99.5 per cent) anticorrelation between radio loudness R parameter and BH mass, consistent with previous studies of low-redshift radio-loud quasars. The truly radio-loud quasars (R>30) are found to be confined to M BH≲1010 M within our sample. We also find that R is only weakly correlated with Eddington ratio L bol/L Edd. Combined with previous results on the low-redshift RL bol/L Edd relation, this result indicates no strong L bol/L Edd dependence of R at L bol/L Edd≳10−2. On the other hand, the large scatter in these relationships suggests that other physical properties such as BH spin and quasar clustering must also play an important role in quasar radio emission.  相似文献   

5.
In this paper a non-stationary model of the emission-line region of a quasar is considered. The motions of the emitting clouds in the quasar envelope are examined. The clouds are assumed to move radial-symmetrical relative to the core of the quasar. The density distribution in the atmosphere of a quasar, which is following from the supposition of a non-stationary model, is estimated. The resulting Hβ-emission line profiles are calculated for six velocity distributions and three different masses of quasars. Furthermore, emission-line profiles originating from ejections of clouds in a special direction are calculated. The theoretically obtained profiles agree satisfactory with those observed in SEYFERT galaxise in case of the model with μ = 2 ṁ 1043 g and a GAUSS ian distribution of the velocities with v0 = 3000 km s−1.  相似文献   

6.
The recent level population calculations for Ne v by Aggarwal are used to determine the theoretical emission line ratios R 1 = I(2s2p 3 1Do - 2s22p2 1De)/I(2s2p3 3D 2 0 - 2s22p2 3P 1 e ) and R 2 = I(2s2p 3 1Do-2s22p2 1De)/I(2s2p 3 3D 3 0 -2s22p2 3P 2 e ). A comparison of these with observational data for a solar flare and erupting prominence obtained with the NRL XUV spectrograph on board Skylab reveals that R 1 and R 2 are in their predicted high density limits. Although the ratios cannot be used as density diagnostics for values of n e typical of the solar transition region, it is shown that they are temperature sensitive and hence may be employed to determine the electron temperatures of Ne v line emitting regions.  相似文献   

7.
We examine spectral properties of the SDSS quasar J093201.60 + 031858.7, in particular the presence of strong blue peaks in the Balmer emission lines offset from the narrow lines by approximately 4200 km s?1. Asymmetry in the broad central component of the Hβ line indicates the presence of a double-peaked emitter. However, the strength and sharpness of the blue Hβ and blue Hγ peaks make this quasar spectrum unique among double-peaked emitters identified from SDSS spectra. We fit a disk model to the Hβ line and compare this object with other unusual double-peaked quasar spectra, particularly candidate binary supermassive black holes (SMBHs). Under the binary SMBH scenario, we test the applicability of a model in which a second SMBH may produce the strong blue peak in the Balmer lines of a double-peaked emitter. If there were only one SMBH, a circular, Keplerian disk model fit would be insufficient, indicating some sort of asymmetry is required to produce the strength of the blue peak. In either case, understanding the nature of the complex line emission in this object will aid in further discrimination between a single SMBH with a complex accretion disk and the actual case of a binary SMBH.  相似文献   

8.
An independent analysis of the molecular hydrogen absorption system at redshift z abs = 2.059 in the spectrum of the quasar J 2123?0050 is presented. The H2 system consists of two components (A and B) with column densities \(\log N_{{H_2}}^A = 17.94 \pm 0.01\) and \(N_{{H_2}}^B = 15.16 \pm 0.02\). The spectrum exhibits the lines of HDmolecules (logN HD A = 13.87±0.06) and the neutral speciesCI and Cl I associated with the H2 absorption system. For the molecular hydrogen lines near the quasar’s Lyβ and OVI emission lines, we detect a nonzero residual flux, ~3% of the total flux, caused by the effect of partial coverage of the quasar’s broad-line region by an H2 cloud. Due to the smallness of the residual flux, the effect does not affect the H2 column density being determined but increases the statistics of observations of the partial coverage effect to four cases. The uniqueness of the system being investigated is manifested in a high abundance of the neutral species H2 and CI at the lowest HI column density, logN HI = 19.18 ± 0.15, among the highredshift systems. The H2 and CI column densities in the system being investigated turn out to be higher than those in similar systems in our Galaxy and theMagellanic Clouds by two or three orders ofmagnitude. The \(N_{HD} /2N_{H_2 }\) ratio for component A has turned out to be also unusually high, (4.26 ± 0.60) × 10?5, which exceeds the deuterium abundance (D/H) for high-redshift systems by a factor of 1.5. Using the HI, H2, HD, and CI column densities as well as the populations of excited H2 and CI levels, we have investigated the physical conditions in components A and B. Component A represents the optically thick case; the gas has a low number density (~30 cm?3) and a temperature T ~ 140 K. In component B, the mediumis optically thin with n H ≤ 100 cm?3 and T ≥ 100 K. The ultraviolet (UV) background intensity in the clouds exceeds the mean intensity in our Galaxy by almost an order ofmagnitude. A high gas ionization fraction, \(n_{H^ + } /n_H \sim 10^{ - 2}\), which can be the result of partial shielding of the systemfrom hard UV radiation, is needed to describe the high HD and CI column densities. Using our simulations with the PDRMeudon code, we can reconstruct the observed column densities of the species within the model with a constant density (n H ~ 40 cm?3). A high H2 formation rate (higher than the mean Galactic value by a factor of 10?40) and high gas ionization fraction and UV background intensity are needed in this case.  相似文献   

9.
Relative level populations for O III, derived using electron impact excitation rates calculated with the R-matrix code, are used to deduce the electron-temperature-sensitive emission-line ratioR=I(2s 22p2 1D–2s22p21S)/I(2s2 2p23P1,2–2s22p2 1D) =I(4363 Å)/I(4959 + 5007 Å) for a range ofTe = (7500–20000 K) applicable to planetary nebulae. Electron temperatures deduced from the observed values ofR in several planetary nebulae are in excellent agreement with those determined fromTe-sensitive line ratios in other species, including CIII]/C [II], [NII] and [ArIII], which provides support for the accuracy of the atomic data adopted in the level population calculations.  相似文献   

10.
The 325-MHz observations of the quasar OH 471 (z=3.4) in 1985–1996 revealed variability of its radio emission. Over this period, its radio flux density increased by a factor of 1.6. A steep-spectrum radio source was identified $2_.^\prime 5$ north of the quasar. Its radio flux density is 1.46 mJy at 5 GHz and 14.5 mJy at 350 MHz.  相似文献   

11.
The measurement of the variations of absorption lines over time is a good method to study the physical conditions of absorbers. In this paper, we measure the variations of the line strength of 36 narrow Mg IIλλ2796,2803 associated absorption doublets, which are imprinted on 31 quasar spectra with two observations of the Sloan Digital Sky Survey (SDSS). The timescales of these quasar span 1.1–5.5 years at the quasar rest-frame. On these timescales, we find that these narrow Mg II associated absorption doublets are stable, with no one λ2796 line showing strength variation beyond 2 times error (2σ).  相似文献   

12.
The X-ray luminosity function of distant (3 < z < 5.1) type 1 quasars has been measured. A sample of distant high-luminosity (1045 erg s?1LX,2?10 < 7.5×1045 erg s?1 in the 2–10 keV energy band) quasars from the catalog by Khorunzhev et al. (2016) compiled from the data of the 3XMM-DR4 catalog of the XMM-Newton serendipitous survey and the Sloan Digital Sky Survey (SDSS) has been used. This sample consists of 101 sources. Most of them (90) have spectroscopic redshifts zspec ? 3; the remaining ones are quasar candidates with photometric redshift estimates zphot ? 3. The spectroscopic redshifts of eight sources have been measured with the BTA and AZT-33IK telescopes. Owing to the record sky coverage area (?250 sq. deg at X-ray fluxes ~10?14 erg s?1 cm?2 in the 0.5–2 keVband) from which the sample was drawn, we have managed to obtain reliable estimates of the space density of distant X-ray quasars with luminosities LX,2?10 > 2×1045 erg s?1 for the first time. Their comoving space density remains constant as the redshift increases from z = 3 to 5 to within a factor of 2. The power-law slope of the X-ray luminosity function of distant quasars at its bright end (above the break) has been reliably constrained for the first time. The range of possible slopes for the quasar luminosity and density evolution model is γ2 = 2.72 ?0.12 +0.19 ± 0.21, where initially the lower and upper boundaries of γ2 with the remaining uncertainty in the detection completeness of X-ray sources in SDSS and subsequently the statistical error of the slope are specified.  相似文献   

13.
We report the Balmer broad absorption lines (BALs) in the quasar SDSS J2220 + 0109 discovered from the SDSS data, and present a detailed analysis of the peculiar absorption line spectrum, including the He I* multiplet at λλ3189, 3889 arising from the metastable 23s-state helium and the Balmer Hα and Hβ lines from the excited hydrogen H I of n = 2 level, which are rarely seen in quasar spectra, as well as many absorption lines arising from the excited Fe II* of the levels 7 955 cm−1, 13 474 cm−1 and 13 673 cm−1 in the wavelength range 3100∼3300 Å. Ca II H, K absorption line doublets also clearly appear in the SDSS spectrum. All absorption lines show a similar blueshifted velocity structure of Δv ≈ − 1500 ∼ 0 km·s−1 relative to the quasar's systematic redshift determined from the emission lines. Detailed analysis suggests that the Balmer absorption lines should arise from the partially ionized region with a column density of NHI ≈ 1021 cm−2 for an electron density of ne ∼ 106 cm−3; and that the hydrogen n = 2 level may be populated via collisional excitation with Lyα pumping.  相似文献   

14.
Having analyzed the spectrum of the quasar PKS 1232+0.82 taken by Petitjean et al. (2000), we identified HD molecular lines in an absorption system at redshift z=2.3377. We estimated the column density of HD molecules in this system, N(HD) = (1?4) × 1014cm?2. The excitation temperature of the first rotational level J=1 relative to the ground state J=0 is T ex=70 ± 7 K. As far as we know, this is the first detection of HD molecules at high redshift.  相似文献   

15.
The velocity distribution of hydrogen atoms in the terrestrial exosphere was measured as a function of radial distance (up to 7 Earth radii, ER) with the help of a Lyman-α hydrogen absorption cell, flown in 1968 on board the OGO-5 satellite. This paper contains the final analysis of the measurements. As a basis of comparison, the theory for the calculation of projected velocity distribution along a line of sight is established for the theoretical exospheric model of Chamberlain (1963). Self-absorption of Lyman-α photons along a line of sight is included to derive Lyman-α line profiles emerging from the geocorona. The effect of the hydrogen absorption cell, measured by the reduction factor R(p) is predicted as a function of impact parameter p of the line of sight, for various values of the parameters of a Chamberlain's model, nc (density of exobase level), Tc (temperature at the exobase level), and rcs (satellite critical radius). This predicted reduction factor R(p) is compared to the measured Rm(p), with the following findings: the Ly-α line width decreases with radial distance, as expected from the “evaporation and escape” theory of Chamberlain; the measured temperature Tc = 1080 K is in very good agreement with the exospheric temperature prediction from satellite drag data. An upper limit of 8 × 104at. cm?3 is imposed on nc, regardless of photometric absolute calibration. A good fit to data requires the presence of atoms in satellite orbits, distributed in a different fashion than that described by the concept of satellite critical radius. Lyman-alpha radiation pressure is thought to be the cause of this departure from the exospheric theory of Chamberlain (1963), otherwise perfectly confirmed.The same scientific rationale will be applied to exospheric hydrogen of the planets Mars and Venus in subsequent papers.  相似文献   

16.
In 2013–2015 the Laboratory of spectroscopy and photometry of extragalactic objects (LS-PEO) of the Special Astrophysical Observatory together with Armenian specialists upgraded the 1-m Schmidt telescope of the Byurakan Astrophysical Observatory of the National Academy of Sciences of Armenia. We completely redesigned the control system of the telescope: we replaced the actuating mechanisms, developed telescope control software, and made the guiding system. We reworked and prepared a 4k × 4k Apogee (USA) liquid-cooled CCD with RON ~ 11.1 e?, a pixel size of 0.″868, and field of view of about 1□°, and in October 2015 mounted it in the focus of the telescope. The detector is equipped with a turret bearing 20 intermediate-band filters (FWHM = 250 Å) uniformly covering the 4000–9000 Å wavelength range, five broadband filters (u, g, r, i, z SDSS), and three narrow-band filters (5000 Å, 6560 Å and 6760 Å, FWHM = 100 Å). During the first year of test operation of the 1-m telescope we performed pilot observations within the framework of three programs: search for young stellar objects, AGNevolution, and stellar composition of galaxy disks.We confirmed the possibility of efficiently selecting of young objects using observations performed in narrow-band Hα and [SII] filters and the intermediate-band 7500 Å filter. Three-hours long exposures with SDSS g-, r-, and i-band filters allow us to reach the surface brightness level of 28m/□″ when investigating the stellar content of galaxy disks for a sample of nine galaxies. We used observations performed with the 1-m telescope in five broadband (SDSS u, g, r, i, and z) and 15 intermediate-band filters (4000–7500 Å) to construct a sample of quasar candidates with 0.5 < z < 5 (330 objects) in about one-sq. degree SA68 field complete down to RAB = 23m. Spectroscopic observations of 29 objects (19.m5 < R < 22m) carried out at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences confirmed the quasar nature of 28 objects.  相似文献   

17.
Quasars, pulsars and other cosmic sources of intense radiation are known to have large brightness temperature (kT b?mc 2) and relativistic electron density values. In this case the induced Compton scattering by relativistic electrons should be considered. The probability of scattering with decreasing radiation frequency is derived for isotropic radiation scattering. When induced scattering takes place, the relativistic electron obtains its energy by transforming high-frequency quanta into the low-frequency ones. In the most intensive sources electrons would receive energiesE?mc 2 ××(kT b/mc 2)1/7 due to the heating rate proportional toE ?5 with the cooling rate proportional toE 2. Considerable distortion of the quasar spectrum is possible for reasonably large values of relativistic electron density (N?106cm?3) notwithstanding that the heating is negligible. In pulsars relativistic electron heating and spectrum distortion appear to depend more on the induced Compton scattering.  相似文献   

18.
In this paper we present a new class of nonsingular solutions representing time dependent balls of perfect fluid with matter-radiation in general relativity. The solution of the class is suitable for interior modeling of a quasar i.e. a massive radiating star. The interior solution is matched with a zero pressure Vaidya metric. From this solution we constructed a quasar model by assuming the life time of the quasar of ≈107 year. We obtained a mass of the quasar of ≈109 M θ , linear dimension ≈1017 km and a rate of emission L ≈1047 erg/s.  相似文献   

19.
Recent computer simulations by Haggerty (1974) and Haggerty and Janin (1974) on the gravitational clumping of bodies into clusters and superclusters in Newtonian cosmology have given an approximate value of Θ=1.9 for the thinning factor (defined for two systems of sizesR 1,R 2 and densities? 1,? 2 by? 1/? 2 = (R 2/R 1)θ), close to the observed value of Θ=1.7. To get an almost exact value of Θ in a general relativistic hierarchy, algebraic conditions on the metric tensor are employed: the result is Θ=2, with the hierarchy characterized by a dimensionless constantη 1 (?G?b 2/c2) of valueη 1 ? 2 x 10-7 (?=density,b=characteristic dimension, of any system at any level of the hierarchy). A condition on the rotation of systems is also found for objects of sufficiently high angular momentum.  相似文献   

20.
Theoretical electron-density-sensitive C III emission line ratios are presented forR 1 =I(2s2p 3 P – 2p 2 3 P)/I(2s2p 1 P – 2p 2 1 S) =I(1176 Å)/I(1247 Å),R 2 =I(2s2p 3 P – 2p 2 3 P)/I(2s 2 1 S – 2s2p 3 P 1) =I(1176 Å)/I(1908 Å), andR 3 =I(2s2p 1 P – 2p 2 1 S)/I(2s 2 1 S – 2s2p 3 P 1) =I(1247 Å)/I(1908 Å). These are significantly different from those deduced previously, principally due to the adoption of improved electron impact excitation rates in the present analysis. Electron densities deduced from the present theoretical line ratios, in conjunction with observed values ofR 1,R 2, andR 3 measured from solar spectra obtained by the Naval Research Laboratory's S082B instrument on boardSkylab, are found to be generally compatible. In contrast, previous diagnostic calculations imply electron densities fromR 1,R 2, andR 3 that differ by up to two orders of magnitude. These results provide observational support for the accuracy of the atomic physics adopted in the present calculations, and the methods employed in the derivation of the theoretical line ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号