首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the concentration and spatial distribution of Cu, Zn, Hg and Pb in the surface (0–2 cm) soils of a regional city in Australia. Surface soils were collected from road sides and analysed for their total Cu, Zn, Hg and Pb concentrations in the <180 μm and <2 mm grain size fractions. The average metal concentration of surface soils, relative to local background soils at 40–50 cm depth, are twice as enriched in Hg, more than three times enriched in Cu and Zn, and nearly six times as enriched in Pb. Median surface soil metal concentration values were Cu – 39 mg/kg (682 mg/kg max), Zn – 120 mg/kg (4950 mg/kg max), Hg – 44 μg/kg (14,900 μg/kg max) and Pb – 46 mg/kg (3490 mg/kg max). Five sites exceeded the Australian NEPC (1999) 300 mg/kg guideline for Pb in residential soils. Strong positive correlations between Cu, Zn and Pb, coupled with the spatial distribution of elevated soil concentrations towards the city centre and main roads suggest traffic and older housing as major sources of contamination. No spatial relationships were identified between elevated metal loadings and locations of past or present industries.  相似文献   

2.
A regional soil and sediment geochemical study in northern California   总被引:7,自引:7,他引:0  
Regional-scale variations in soil geochemistry were investigated in a 20,000-km2 study area in northern California that includes the western slope of the Sierra Nevada, the southern Sacramento Valley and the northern Coast Ranges. Over 1300 archival soil samples collected from the late 1970s to 1980 in El Dorado, Placer, Sutter, Sacramento, Yolo and Solano counties were analyzed for 42 elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry following a near-total dissolution. These data were supplemented by analysis of more than 500 stream-sediment samples from higher elevations in the Sierra Nevada from the same study site. The relatively high-density data (1 sample per 15 km2 for much of the study area) allows the delineation of regional geochemical patterns and the identification of processes that produced these patterns. The geochemical results segregate broadly into distinct element groupings whose distribution reflects the interplay of geologic, hydrologic, geomorphic and anthropogenic factors. One such group includes elements associated with mafic and ultramafic rocks including Cr, Ni, V, Co, Cu and Mg. Using Cr as an example, elevated concentrations occur in soils overlying ultramafic rocks in the foothills of the Sierra Nevada (median Cr = 160 mg/kg) as well as in the northern Coast Ranges. Low concentrations of these elements occur in soils located further upslope in the Sierra Nevada overlying Tertiary volcanic, metasedimentary and plutonic rocks (granodiorite and diorite). Eastern Sacramento Valley soil samples, defined as those located east of the Sacramento River, are lower in Cr (median Cr = 84 mg/kg), and are systematically lower in this suite compared to soils from the west side of the Sacramento Valley (median Cr = 130 mg/kg). A second group of elements showing a coherent pattern, including Ca, K, Sr and REE, is derived from relatively silicic rocks types. This group occurs at elevated concentrations in soils overlying volcanic and plutonic rocks at higher elevations in the Sierras (e.g. median La = 28 mg/kg) and the east side of the Sacramento Valley (median 20 mg/kg) compared to soils overlying ultramafic rocks in the Sierra Nevada foothills (median 15 mg/kg) and the western Sacramento Valley (median 14 mg/kg). The segregation of soil geochemistry into distinctive groupings across the Sacramento River arises from the former presence of a natural levee (now replaced by an artificial one) along the banks of the river. This levee has been a barrier to sediment transport. Sediment transport to the Valley by glacial outwash from higher elevations in the Sierra Nevada and, more recently, debris from placer Au mining has dominated sediment transport to the eastern Valley. High content of mafic elements (and low content of silicic elements) in surface soil in the west side of the valley is due to a combination of lack of silicic source rocks, transport of ultramafic rock material from the Coast Ranges, and input of sediment from the late Mesozoic Great Valley Group, which is itself enriched in mafic elements. A third group of elements (Zn, Cd, As and Cu) reflect the impact of mining activity. Soil with elevated content of these elements occurs along the Sacramento River in both levee and adjacent flood basin settings. It is interpreted that transport of sediment down the Sacramento River from massive sulfide mines in the Klamath Mountains to the north has caused this pattern. The Pb, and to some extent Zn, distribution patterns are strongly impacted by anthropogenic inputs. Elevated Pb content is localized in major cites and along major highways due to inputs from leaded gasoline. Zinc has a similar distribution pattern but the source is tire wear.  相似文献   

3.
Chloride concentrations in waterways of northern USA are increasing at alarming rates and road salt is commonly assumed to be the cause. However, there are additional sources of Cl in metropolitan areas, such as treated wastewater (TWW) and water conditioning salts, which may be contributing to Cl loads entering surface waters. In this study, the potential sources of Cl and Cl loads in the Illinois River Basin from the Chicago area to the Illinois River’s confluence with the Mississippi River were investigated using halide data in stream samples and published Cl and river discharge data. The investigation showed that road salt runoff and TWW from the Chicago region dominate Cl loads in the Illinois Waterway, defined as the navigable sections of the Illinois River and two major tributaries in the Chicago region. Treated wastewater discharges at a relatively constant rate throughout the year and is the primary source of Cl and other elements such as F and B. Chloride loads are highest in the winter and early spring as a result of road salt runoff which can increase Cl concentrations by up to several hundred mg/L. Chloride concentrations decrease downstream in the Illinois Waterway due to dilution, but are always elevated relative to tributaries downriver from Chicago. The TWW component is especially noticeable downstream under low discharge conditions during summer and early autumn when surface drainage is at a minimum and agricultural drain tiles are not flowing.  相似文献   

4.
Understanding the mechanism of arsenic mobilization from sediments to groundwater is important for water quality management in areas of endemic arsenic poisoning, such as the Hetao Basin in Inner Mongolia, northern China. Aquifer geochemistry was characterized at three field sites (SH, HF, TYS) in Hangjinhouqi County of northwestern Hetao Basin. The results of bulk geochemistry analysis of sediment samples indicated that total As concentrations have a range of 6.8–58.5 mg/kg, with a median of 14.4 mg/kg. The highest As concentrations were found at 15–25 m depth. In the meanwhile, the range of As concentration in the sediments from background borehole is 3–21.8 mg/kg, with a median value of 9 mg/kg. The As sediments concentrations with depth from the SH borehole were correlated with the contents of Fe, Sb, B, V, total C and total S. Generally, the abundance of elements varied with grain size, with higher concentrations in finer fractions of the sediments. Distinct lithology profile and different geochemical characteristics of aquifer sediments indicate the sediments are associated with different sources and diverse sedimentary environments. Up to one third of arsenic in the sediments could be extracted by ammonium oxalate, suggesting that Fe oxyhydroxides may be the major sink of As in the aquifer. Sequential extraction results indicate that arsenic occurs as strongly adsorbed on and/or co-precipitated with amorphous Fe oxyhydroxides in sediments accounting for 35 and 20%, respectively, of the total contents of arsenic. The release of As into groundwater may occur by desorption from the mineral surface driven by reductive dissolution of the Fe oxide minerals. Furthermore, small proportions of As associated with iron sulfides occur in the reductive sediments.  相似文献   

5.
The abandoned Hg mine in Podljubelj was in operation with interceptions from 1557 to 1902. The entire operating period yielded about 110 000 tons of ore, from which 360 tons of Hg was produced. The objective of the research project was to establish the contents and spatial distribution of Hg in soils and stream sediments in the vicinity of the mine. On an area of 88 ha the soil was sampled in a 100 × 100 m grid. Two soil horizons (0–5 cm and 20–30 cm) were sampled in order to distinguish between geogenic and anthropogenic Hg sources. It was established that on an area of about 9 ha Hg content in soil exceeds The New Dutchlist action value for Hg (10 mg/kg). Total Hg concentrations in soil samples vary between 0.17 and 719 mg/kg, with a mean of 3.0 mg/kg. Mercury contents in stream sediments range from 0.065 to 1.4 mg/kg, with a mean of 0.64 mg/kg. The highest determined value in soils was found in the area around the former roasting furnace, where the ore was processed. Increased Hg concentrations were also found on the mine waste dump (108 mg/kg). Mercury contents in soils generally decrease with soil profile depth and with the distance from the mine and from the roasting furnace location. Mercury also appears in higher concentrations along the road that runs through the valley, which results from the use of Hg-bearing ore residues in road construction. The average enrichment factor (EF) of Hg in topsoil with respect to subsoil is 3.3. Calculated enrichment factors show higher values also for Cd (3.2), Pb (2.7), Ca (2.4) and P (1.9). The average enrichment factor of Hg in topsoil with regard to the established Slovenian soil averages (EFslo) is 19. EFslo of other determined chemical elements do not exceed 3.0.  相似文献   

6.
The concentration of heavy metals such as Ba, Co, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn, Zr were studied in soils of Balanagar industrial area, Hyderabad to understand heavy metal contamination due to industrialization and urbanization. This area is affected by the industrial activities like steel, petrochemicals, automobiles, refineries, and battery manufacturing generating hazardous wastes. The assessment of the contamination of the soils was based on the geoaccumulation index, enrichment factor (EF), contamination factor, and degree of contamination. Soil samples were collected from Balanagar industrial area from top 10–50 cm layer of soil. The samples were analyzed using X-ray fluorescence spectrometer for heavy metals. The data revealed that the soils in the study area are significantly contaminated, showing high level of toxic elements than normal distribution. The ranges of concentration of Cr (82.2–2,264 mg/kg), Cu (31.3–1,040 mg/kg), Ni (34.3–289.4 mg/kg), Pb (57.5–1,274 mg/kg), Zn (67.5–5819.5 mg/kg), Co (8.6–54.8 mg/kg), and V (66.6–297 mg/kg). The concentration of above-mentioned other elements was similar to the levels in the earth’s crust pointed to metal depletion in the soil as the EF was <1. Some heavy metals showed high EF in the soil samples indicating that there is a considerable heavy metal pollution, which could be correlated with the industries in the area. A contamination site poses significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may results in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems.  相似文献   

7.
This study aims at assessing the extent of total mercury (Hg) contamination in urban and agricultural soils under long-term influence of a chlor-alkali plant, located at about 1 km away from a town centre. Moreover, it aims at identifying the main factors controlling Hg contents’ distribution and associated potential hazards to environment and human health. The median value of total Hg for soil surface layer (0–10 cm) was 0.20 mg/kg (data ranging from 0.050 to 4.5 mg/kg) and for subsurface layer (10–20 cm) 0.18 mg/kg (data ranging from 0.046 to 3.0 mg/kg). The agricultural area showed higher Hg concentrations (ranging from 0.86 to 4.5 mg/kg) than urban area (ranging from 0.05 to 0.61 mg/kg), with some results exceeding target values set by the Dutch guidelines. Mercury concentrations observed in the studied area are more likely to be associated with the influence of the chlor-alkali plant and with the use of historically contaminated sludges and water from a nearby lagoon in agriculture, than to the impacts of urban development. The statistical correlations between Hg concentrations and soil properties suggest that anthropogenic metal sources should influence the spatial distribution more than the geological properties. Although the Hg emissions were drastically reduced 10 years ago, the area under influence of the chlor-alkali plant is still facing potential health and environmental threats arising from soil contamination.  相似文献   

8.
The concentrations of heavy metals (As, Ba, Co, Cr, Cu, Ni, Mo, Pb, Sr, V and Zn) were studied in soils to understand metal contamination due to industrialization and urbanization around Manali industrial area in Chennai, Southern India. This area is affected by the industrial activity and saturated by industries like petrochemicals, refineries, and fertilizers generating hazardous wastes. The contamination of the soils was assessed on the basis of geoaccumulation index, enrichment factor (EF), contamination factor and degree of contamination. Soil samples were collected from the industrial area of Manali from the top 10-cm-layer of the soil. Soil samples were analyzed for heavy metals by using Philips MagiX PRO-2440 Wavelength dispersive X-ray fluorescence spectrometry. The data revealed elevated concentrations of Chromium (149.8–418.0 mg/kg), Copper (22.4–372.0 mg/kg), Nickel (11.8–78.8 mg/kg), Zinc (63.5–213.6 mg/kg) and Molybdenum (2.3–15.3 mg/kg). The concentrations of other elements were similar to the levels in the earth’s crust or pointed to metal depletion in the soil (EF < 1). The high-EFs for some heavy metals obtained in the soil samples show that there is a considerable heavy metal pollution, which could be correlated with the industries in the area. Contamination sites pose significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may result in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems. In this perspective there is need for a safe dumping of waste disposal in order to minimize environmental pollution.  相似文献   

9.
The objective of this study was to examine the possible natural sources of fluorides and boron in Silurian–Ordovician (S–O) aquifer system, as the anomaly of these elements has been distinguished in groundwater of western Estonia. Water–rock interactions, such as dissolution and leaching of the host rock, are considered to be the main source of high fluoride and boron concentrations in groundwater. Altogether 91 rock samples were analysed to determine if high F and B levels in groundwater could be attributed to certain aquifer forming rock types. Fluorine and boron contents in limestones and dolomites vary from 100 to 500 mg/kg and 5 to 20 mg/kg, reaching up to 1,000 and 150 mg/kg in marlstones, respectively. K-bentonites, altered volcanic ash beds, are rich in fluorine (400–4,500 mg/kg) and boron (50–1,000 mg/kg). Thus, clay-rich sediments, providing ion-exchange and adsorption sites for F and B, are the probable sources of both elements in S–O aquifer system in western Estonia.  相似文献   

10.
A soil geochemical survey was conducted in a 27,000-km2 study area of northern California that includes the Sierra Nevada Mountains, the Sacramento Valley, and the northern Coast Range. The results show that soil geochemistry in the Sacramento Valley is controlled primarily by the transport and weathering of parent material from the Coast Range to the west and the Sierra Nevada to the east. Chemically and mineralogically distinctive ultramafic (UM) rocks (e.g. serpentinite) outcrop extensively in the Coast Range and Sierra Nevada. These rocks and the soils derived from them have elevated concentrations of Cr and Ni. Surface soil samples derived from UM rocks of the Sierra Nevada and Coast Range contain 1700–10,000 mg/kg Cr and 1300–3900 mg/kg Ni. Valley soils west of the Sacramento River contain 80–1420 mg/kg Cr and 65–224 mg/kg Ni, reflecting significant contributions from UM sources in the Coast Range. Valley soils on the east side contain 30–370 mg/kg Cr and 16–110 mg/kg Ni. Lower Cr and Ni concentrations on the east side of the valley are the result of greater dilution by granitic sources of the Sierra Nevada.Chromium occurs naturally in the Cr(III) and Cr(VI) oxidation states. Trivalent Cr is a non-toxic micronutrient, but Cr(VI) is a highly soluble toxin and carcinogen. X-ray diffraction and scanning electron microscopy of soils with an UM parent show Cr primarily occurs within chromite and other mixed-composition spinels (Al, Mg, Fe, Cr). Chromite contains Cr(III) and is highly refractory with respect to weathering. Comparison of a 4-acid digestion (HNO3, HCl, HF, HClO4), which only partially dissolves chromite, and total digestion by lithium metaborate (LiBO3) fusion, indicates a lower proportion of chromite-bound Cr in valley soils relative to UM source soils. Groundwater on the west side of the Sacramento Valley has particularly high concentrations of dissolved Cr ranging up to 50 μg L−1 and averaging 16.4 μg L−1. This suggests redistribution of Cr during weathering and oxidation of Cr(III)-bearing minerals. It is concluded that regional-scale transport and weathering of ultramafic-derived constituents have resulted in enrichment of Cr and Ni in the Sacramento Valley and a partial change in the residence of Cr.  相似文献   

11.
The geochemistry of major, trace, rare earth elements (REEs), with special reference to Ge, Li, and Hg in selected Gondwana and Eocene coals, has been studied. Major oxide and trace element ratios have been utilised to compare the tectonic setting, provenance of source rocks, and paleoweathering conditions that prevailed the during formation of these coals. The Gondwana coals have a higher mean mercury and ash content (244.5 μg/kg and 17.2 %, respectively) than the Eocene coals (142.1 μg/kg, 8.9 % respectively). The major oxides, SiO2, Fe2O3, and Al2O3, in Gondwana and Eocene coals, are enriched relative to the upper continental crust (UCC), Chinese and American coals. The UCC normalized trace element concentration coefficients of the Gondwana and Eocene coals show enrichment in Ge, Se, Th, Co, Mo, Sn, W, and Li. The mean Ge and Li concentrations (mg/kg) in Gondwana (106.7, 154.7) and Eocene (120.0, 252.6) exceed the corresponding values in world coal (2.2, and 12). The Rajmahal coals have the highest mean Ge concentration (168.8 mg/kg) among the Gondwana coals while Eocene coals from East Jaintia Hills have the highest mean value (343.7 mg/kg). The Gondwana coals have a higher mean As concentration (3.5 mg/kg) in comparison to the Eocene coals (1.9 mg/kg). The mean of the rare earth elements in Gondwana (24.1 mg/kg) is higher than that in Eocene coals (11.3 mg/kg) and these values are less than the World coals (68.5 mg/kg). Both the Gondwana and Eocene coals are enriched in light rare earth elements (LREEs). However, among the Eocene coals, the Meghalayan coals show REE enrichment in comparison to Assam coals. Both the Gondwana and Eocene coals were formed in warm and humid climates under oxic conditions with moderate weathering of the source rocks.  相似文献   

12.
Arsenic concentrations are reported for the <2 mm fraction of ca. 2200 soil samples each from agricultural (Ap horizon, 0–20 cm) and grazing land (Gr, 0–10 cm), covering western Europe at a sample density of 1 site/2500 km2. Median As concentrations in an aqua regia extraction determined by inductively coupled plasma emission mass spectrometer (ICP-MS) were 5.7 mg/kg for the Ap samples and 5.8 mg/kg for the Gr samples. The median for the total As concentration as determined by X-ray fluorescence spectrometry (XRF) was 7 mg/kg in both soil materials. Maps of the As distribution for both land-use types (Ap and Gr) show a very similar geographical distribution. The dominant feature in both maps is the southern margin of the former glacial cover seen in the form of a sharp boundary between northern and southern European As concentrations. In fact, the median As concentration in the agricultural soils of southern Europe was found to be more than 3-fold higher than in those of northern Europe (Ap: aqua regia: 2.5 vs. 8.0 mg/kg; total: 3 vs. 10 mg/kg). Most of the As anomalies on the maps can be directly linked to geology (ore occurrences, As-rich rock types). However, some features have an anthropogenic origin. The new data define the geochemical background of As in agricultural soils at the European scale.  相似文献   

13.
The Zlata Idka village is a typical mountainous settlement. As a consequence of more than 500 years of mining activity, its environment has been extensively affected by pollution from potentially toxic elements. This paper presents the results of an environmental-geochemical and health research in the Zlata Idka village, Slovakia. Geochemical analysis indicates that arsenic (As) and antimony (Sb) are enriched in soils, groundwater, surface water and stream sediments. The average As and Sb contents are 892 mg/kg and 818 mg/kg in soils, 195 mg/kg and 249 mg/kg in stream sediments, 0.028 mg/l and 0.021 mg/l in groundwater and 0.024 mg/l and 0.034 mg/l in surface water. Arsenic and Sb concentrations exceed upper permissible limits in locally grown vegetables. Within the epidemiological research the As and Sb contents in human tissues and fluids have been observed (blood, urine, nails and hair) in approximately one third of the village’s population (120 respondents). The average As and Sb concentrations were 16.3 μg/l and 3.8 μg/l in blood, 15.8 μg/l and 18.8 μg/l in urine, 3,179 μg/kg and 1,140 μg/kg in nails and 379 μg/kg and 357 μg/kg in hair. These concentrations are comparatively much higher than the average population. Health risk calculations for the ingestion of soil, water, and vegetables indicates a very high carcinogenic risk (>1/1,000) for as content in soil and water. The hazard quotient [HQ=average daily dose (ADD)/reference dose (RfD)] calculation method indicates a HQ>1 for groundwater As and Sb concentrations.  相似文献   

14.
Mineralogical and geochemical studies were undertaken in the volcanic area of Biancavilla (Catania, Italy) with the aim of explaining the nature of the high As and F contents of the area’s rocks. As and F contents in soils and groundwater were also investigated. The metasomatised benmoreite lavas show fluorine and arsenic concentrations up to about 3,000 and 1,000 mg/kg, respectively. Mineralogical analyses show that fluorine occurs mostly in fluoro-edenite and apatite-(CaF) crystals, both abundantly present in the altered rocks, while As is exclusively attributed to the apatite-(CaF) crystals. Specifically, arsenic was observed only at the borders of these apatite crystals. Leaching tests and sequential extraction procedures were carried out to evaluate the potential remobilisation of As and F by the mineral phases and the eventual risks induced by their spreading. The results of the leaching tests suggest that As is almost totally associated with the ‘easily reducible’ fraction and that it is released by the preferential dissolution of the arsenic enriched rims of apatite-(CaF) crystals. In soils, As concentration is relatively low (about 15 mg/kg, on average), while F ranges from 236 to 683 mg/kg. The underground waters supplying the town of Biancavilla show As and F contents lower than the allowed limits for drinking water, (As:10 μg/L, F:1–1.5 mg/L). The limited distribution of these rocks and the relatively limited mobilisation by the minerals both contribute to maintain low As and F values, in soils and groundwaters, despite the high values in metasomatised lava samples.  相似文献   

15.
Vanadium adsorption by soils representing different soil types from Germany has been studied. For 30 soils ‘Freundlich’ type sorption isotherms have been deduced from laboratory vanadium(V) adsorption experiments. The native adsorbed vanadium quantity of a soil (S0) and the Freundlich parameters m and log k have been determined by non linear regression of the experimental data to the Freundlich model. Pronounced differences in vanadium adsorption of different soils exist and could be quantified. The vanadium adsorption data could be generalized by grouping the soils into four classes according to their vanadium adsorption properties. For each class (sandy soils, top soils, sub soils with pH < 5.5, and sub soils with pH > 5.5) mean Freundlich parameters m and log k have been calculated to be 0.59, 0.72, 0.52, 0.57 and 2.55, 2.89, 4.29, 3.41, respectively. These parameters can be used to estimate vanadium sorption properties of soils for which no vanadium sorption experiments are available. Aqua regia soluble vanadium contents of the studied soils (range 1.7–143 mg/kg; median 32 mg/kg) and leached vanadium concentrations from experiments without vanadium addition (range 0.08–37 µg/l; median 2.1 µg/l) are also given.  相似文献   

16.
Urban soil nitrogen and phosphorus have significant implications for the soil and water quality in urban areas. The concentrations of total nitrogen (TN) and total phosphorus (TP) of soil samples collected from six types of land use, which included residential area (RA), business area (BA), classical garden (CG), culture and education area (CEA), public green space (PGS) and roadside area (RSA) of Beijing urban area, were investigated. Results showed that the geometric mean of TP (857 mg/kg) in urban soils was slightly higher than that (745 mg/kg) in rural soils of Beijing. The concentration of soil TP was higher in the center of the city, and showed an increasing trend with the age of the urban area. The TP concentrations in the six types of land use followed the sequence of CG > BA > RSA > RA > CEA > PGS, which were affected by the use and disposal of phosphorus-containing materials in each type of land use. However, the geometric mean of TN (753.8 mg/kg) in urban soils was much lower than that (1,933.3 mg/kg) in rural soils. TN level in urban soils of Beijing had no correlation with the city’s urbanization history, and was influenced by the coverage of natural vegetation and human activities in each type of land use. This study suggested that the city’s urbanization history and land use were the main factors affecting the distribution of nitrogen and phosphorus in urban soils.  相似文献   

17.
Rapid transport of anthropogenic lead through soils in southeast Missouri   总被引:1,自引:0,他引:1  
To investigate Pb transport and cycling, soils from the forest floor and cores from White Oaks (Quercus alba L.) were collected near a Pb smelter in SE Missouri at varying depths from the surface and varying distances. Lead concentrations in soil samples at the surface drop dramatically with distance from approximately 1500 mg/kg at less than 2 km from the smelter to around 100 mg/kg at localities greater than 2 km from the smelter. Lead contents in tree rings are below 0.5 mg/kg in samples dated prior to 1970, and rapidly increase in 1975–1990 samples. Isotopic compositions of soils and tree rings exhibit systematic variations of Pb isotopic compositions with depth and tree ring age. Distinguishable isotopic signatures for Pb sources allowed quantification of the contribution of smelter Pb to the soils. At depths where Pb concentrations decreased and approached constant values (10–25 cm, 10–30 mg/kg), 50–90%, 40–50% and 10–50% of the Pb could be derived from the smelter for the samples at locations less than 2, 2–4 and over 4 km from the smelter, respectively. The remaining portion was attributable to automobile emission and bedrock sources. Because the smelter operated from 1963 to 2003 and samples were collected in 1999, it is estimated that smelter Pb infiltrates at rates of 1 cm/yr (30 cm in 30 yr). At distances less than 1.5 km from the smelter, even though Pb concentrations become asymptotic at a depth of 30 cm, isotopic evidence suggests that Pb has migrated below this depth, presumably through exchange with naturally occurring Pb in the soil matrix. This implies that soils heavily polluted by Pb can exceed their Pb carrying capacity, which could have potential impacts on shallow groundwater systems and risk further exposure to human and ecological receptors.  相似文献   

18.
This study was carried out to analyze the distribution and soil–plant transfer of selected potential harmful elements (PHEs: As, Hg and Zn) in soils and in two edible horticultural crops (cabbage, Brassica oleracea L., and tomato, Lycopersicon esculentum Mill). randomly sampled in kitchen gardens/small farms around one of the most important and old Portuguese industrial areas (Estarreja Chemical Complex-ECC). The results show that 46% and 11.5% of the soils present high total As (12–532 mg/kg) and Hg (6.6–13.65 mg/kg) concentrations that exceed protective health Canadian soil quality guidelines. Soil As and Zn available fractions are also of concern for groundwater and crops contamination as more than 84% of the samples were above the trigger value proposed by the German legislation for both elements (0.4 and 2 mg/kg, respectively). In the horticultural crops the cabbage leaves concentrate more the PHEs (max.: 3.5, 0.08 and 746 mg/kg dw for As, Hg and Zn, respectively) than the tomato fruit (max.: 0.4, 0.02 and 82 mg/kg dw, respectively). The highest concentration of the study PHEs in soils and horticultural crops were found near sewage outlets that are chiefly related to historical industrial activities mostly from arsenopyrite roasting and a chloralkali plant. The values of estimated bioaccumulation and bioconcentration coefficients suggested exclusion mechanisms for transfer of As to edible cabbage and tomato tissues and cabbage Zn tolerance capacity. The concentration of the PHEs in the edible horticultural crops tissues were not directly related with respective soil total concentration or available fractions, specially for As and Hg. Sampling locations with the highest concentrations of As, Hg, Zn in soil and vegetable foodstuffs should be sites to foregoing research and human daily intakes should be investigated in order to evaluate potential health risks.  相似文献   

19.
Heavy metals in soils are of great environmental concern, in order to evaluate heavy metal contents and their relationships in the surface soil of industrial area of Baoji city, and also to investigate their influence on the soils. Soil samples were collected from 50 sites, and the concentration of Pb, Zn, Cu, Cr, Ni heavy metals and the contents of characteristics in soil from industrial area of Baoji city were determined with X-ray fluorescence method. The concentrations of Pb, Zn, Cu, Cr and Ni in the investigated soils reached the amount of 2,682.00–76,979.42, 169.30–8,288.58, 62.24–242.36, 91.96–110.54 and 36.14–179.28 mg kg−1, respectively. The major element Pb contents of the topsoils were determined. to highlight the influence of ‘anthropic’ features on the heavy metal concentrations and their distributions. To compare, all values of elements were much higher than those of unpolluted soils in the middle of Shaanxi province that average 16.0–26.5, 67.1–120.0, 17.8–57.0, 46.9–65.6 and 24.7–34.6 mg kg−1 for Pb, Zn, Cu, Cr and Ni, respectively. An ensemble of basic and relativity analysis was performed to reduce the precipitate of Pb in soil was extremely high and greatly relativity with other elements. Meanwhile, Pb, Zn, Cu, Cr, Ni heavy metals were typical elements of anthropic activities sources, so it was easy to infer to the tracers of anthropic pollutions from the factorial analysis, which was coming from the storage battery manufactory pollutions. The pollutant distributions were constructed for the urban area which identified storage battery manufactory soot precipitate as the main source of diffuse pollution and also showed the contribution of the topsoils of industrial area of Baoji city as the source point of pollution. Consequently, the impact of heavy metals on soil was proposed and discussed. These results highlight the need for instituting a systematic and continuous monitoring of heavy metals and other forms of pollutants in Baoji city to ensure that pollution does not become a serious problem in the future.  相似文献   

20.
The main purposes of this study are the textural, chemical and mineralogical characterization of the urban soils of Lisbon and the identification of probable relations between the several soil properties. The results are used to infer which soil properties control the superficial dispersion of potential harmful elements to human health. Soil sampling was carried out in 51 selected sites all through the city, under the criterion that such sites should be spaces usually frequented by children. The concentrations of 42 elements in the >2 mm soil size fraction were determined at a commercial laboratory in Canada (ActLabs, LTD), by ICP-MS/ICP-OES after an acid digestion with aqua regia. The soil mineralogy was determined by X-ray diffraction in the <2 and <62 μm size fractions. The results indicate that the urban soils have mainly a sandy texture and a main mineralogical assemblage of quartz, K-feldspar, plagioclase and calcite. In terms of clay minerals, smectite, illite and kaolinite are the main clays in the soil. Smectite and illite show a dichotomy in their distribution, with the smectites prevailing in the soils of the volcanic complex of Lisbon, which are classified as being residual, and illite prevailing in the remaining soils, which are considered mainly as man-made soils. Smectite seems to exert an important role in the fixation of Ni and Cr. The results of the geochemical study show that Ni and Cr have concentrations above the soil guideline value established to the UK and pose a probable risk to human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号