首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Water samples collected for the determination of volatile organic compounds (VOCs) are often preserved with hydrochloric acid (HCl) to inhibit the biotransformation of the analytes of interest until the chemical analyses can he performed. However, it is theoretically possible that residual free chlorine in the HCl can react with dissolved organic carbon (DOC) to form chloroform via the haloform reaction. Analyses of 1501 ground water samples preserved with HCl from the U.S. Geological Survey's National Water-Quality Assessment Program indicate that chloroform was the most commonly detected VOC among 60 VOCs monitored. The DOC concentrations were not significantly larger in samples with detectable chloroform than in those with no delectable chloroform, nor was there any correlation between the concentrations of chloroform and DOC. Furthermore, chloroform was detected more frequently in shallow ground water in urban areas (28.5% of the wells sampled) than in agricultural areas (1.6% of the wells sampled), which indicates that its detection was more related to urban land-use activities than to sample acidification. These data provide strong evidence that acidification with HCl does not lead to the production of significant amounts of chloroform in ground water samples. To verify these results, an acidification study was designed to measure the concentrations of all trihalomethanes (THMs) that can form as a result of HCl preservation in ground water samples and to determine if ascorbic acid (C6H8O6) could inhibit this reaction if it did occur. This study showed that no THMs were formed as a result of HCl acidification, and that ascorbic acid had no discernible effect on the concentrations of THMs measured.  相似文献   

2.
Nitrate-contaminated ground water beneath and adjacent to an intensive swine ( Sus scrofa domesticus ) production facility in the Middle Coastal Plain of North Carolina was analyzed for δ15N of nitrate (δ15N-NO3). Results show that the isotopic signal of animal waste nitrogen is readily identifiable and traceable in nitrate in this ground water. The widespread land application of animal wastes from intensive livestock operations constitutes a potential source of nitrogen contamination to natural water throughout large regions of the United States and other countries. The site of the present study has been suspected as a nitrate contamination source to nearby domestic supply wells and has been monitored for several years by government and private water quality investigators through sampling of observation wells, ditches, and streams. δ15N of nitrate allowed direct identification of animal waste-produced nitrate in 11 of 14 wells sampled in this study, as well as recognition of nitrate contributions from non-animal waste agricultural sources in remaining wells.  相似文献   

3.
Ground-water levels in the Upper Floridan aquifer beneath the southeastern coast of South Carolina have undergone pumpage-induced declines approaching 20 ft below sea level at the southern end of Hilton Head Island. This scenario suggests the potential exists for the inducement of recharge to the Upper Floridan aquifer across the island, which could affect the quality of water being pumped by wells. However, low radiocarbon concentrations in ground-water samples (0.5 to 1.4 ± 0.1 PMC) indicate that most of the water is relict ground water reflecting prepumpage ground-water flow conditions in the Upper Floridan aquifer. The isotopic data indicate long residence times and water-chemistry evolution more characteristic of ground-water recharge occurring farther inland prior to the commencement of pumpage in the late 1800s. Radiocarbon concentrations (as Percent Modern Carbon) and stable carbon isotope ratios (as δ13C in dissolved inorganic carbon) determined during this study and reported in other studies on and around Hilton Head Island varied in a systematic manner. Heavier δ13C values (–2.8 to –1.6 per mil) in ground water beneath southern Hilton Head Island reflect ground-water discharge from prepumpage flowpaths originating over 100 miles away, hence a depletion in radiocarbon concentration with corrected ground-water ages no younger than 16,000 yrs BP. In contrast, lighter δ13C values (–13.9 to –8.67 per mil) beneath the northern part of the island indicate recent recharge as a result of water-level declines, and recharge in areas off the island that have not changed as a result of pumpage (evidenced by enrichment in radiocarbon with corrected ground-water ages no older than 4,000 yrs BP). This suggests that the δ13C composition of ground water in the Upper Floridan aquifer is a useful indicator of mixing between ground waters from different sources, and can be used to delineate recharge-discharge patterns. This approach may be applicable to other aquifers of highly evolved ground-water chemistry in regional carbonate aquifer systems that may be receiving recent recharge. Moreover, this approach could prove useful in delineating the contribution of recent water being captured by pumped wells as part of wellhead protection programs designed to assess aquifer vulnerability from surficial contaminant sources.  相似文献   

4.
5.
6.
7.
Pore water collected from piezometers installed in a thick clay-rich till were used to compare and evaluate four techniques for obtaining δD and δ18O values in these media. The techniques included mechanical squeezing, centrifugation, azeotropic distillation, and a direct soil-water equilibration technique. Direct CO2-core equilibration yielded sufficiently accurate and reproducible δ18O results of pore water in clay-rich tills. In addition, this method eliminated the need for labor-intensive complete extraction of water from the geologic media. Mechanical squeezing and centrifugation produced results similar to direct equilibration. However, both of these methods exhibited a greater degree of variability and were laborious and more time consuming. Small differences in δ18O values between piezometer water and equilibrated, squeezed, and centhfuged samples suggested that each method collected different fractions of the clay-water reservoir. Although these subtle differences were not conclusive, they did suggest the presence of weakly bound water and highlighted the difference between these three techniques for determining the stable isotopic composition of pore water in clay-rich aquitards. Azeotropic distillation produced a high level of discrepancy in δD andδ18O results compared to the other methods. Incomplete extraction was considered the most probable cause of this error. The results of this study suggested that direct equilibration is the best method for determining detailed δD and δ18O values of pore water in clay-rich aquitards.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Micropurge sampling of ground water wells has been suggested as a possible replacement to traditional purge and sample methods. To compare methods, duplicate ground water samples were collected at two field sites using iraditional and micropurge methods. Samples were analyzed for selected organic and inorganic constituents, and the results were compared statistically. Analysis of the data using the nonparametric sign test indicates that within a 95 percent confidence interval, there was no significant difference between the two methods for the site contaminants and the majority of analytes. These analytical results were supported by visual observations with the colloidal borescope, which demonstrated impacts on the flow system in the well when using traditional sampling methods. Under selected circumstances, the results suggest replacing traditional sampling with micropurging based on reliability, cost, and waste minimization.  相似文献   

18.
19.
20.
In this study, bench‐scale experiments were conducted to examine the UV/H2O2 oxidation of 17α‐ethynyestradiol (EE2) in water in a batch operation mode. The EE2 degradation exhibited pseudo‐first‐order kinetics, and the removal was ascribed to the production of hydroxyl radicals (?OH) by the UV/H2O2 system. Typically, the EE2 oxidation rate increased with increasing UV intensity and H2O2 dose, and with deceasing initial EE2 levels and solution pH. At EE20 = 650 µg/L, UV intensity = 154 µW/cm2, H2O2 = 5 mg/L, and neutral pH, the UV/H2O2 treatment was able to remove 90% of the EE2 content within 30 min. Four anions commonly present in water were found to inhibit EE2 degradation to varying degrees: > > Cl? > . Our results demonstrate that the described UV/H2O2 process is an effective method to control EE2 pollution in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号