首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Comptes Rendus Geoscience》2019,351(2-3):121-128
We present a synchrotron-based, single-crystal X-ray diffraction and Raman spectroscopy study of natural green dioptase (Cu6Si6O18·6H2O) up to ∼30 GPa at room temperature. The lattice parameters of dioptase exhibit continuous compression behavior up to ∼14.5 GPa, whereupon a structural transition is observed. Pressure–volume data below 14.5 GPa were fitted to a second-order Birch–Murnaghan equation of state with V0 = 1440(2) Å3 and K0 = 107(2) GPa, with K0 = 4(fixed). The low-pressure form of dioptase exhibits anisotropic compression with axial compressibility βa > βc in a ratio of 1.14:1.00. Based on the diffraction data and Raman spectroscopy, the new high-pressure phase could be regarded as a dehydrated form of dioptase in the same symmetry group. Pressure-induced dehydration of dioptase contributes broadly to our understanding of the high-pressure crystal chemistry of hydrous silicates containing molecular water groups.  相似文献   

3.
4.
 The stepwise dehydration process of the Ba-exchanged form of the zeolite phillipsite was studied by in situ synchrotron X-ray powder diffraction. A series of structure refinements were performed using the Rietveld method on powder diffraction data measured in the interval between 332 and 712 K. At 482 K, more than half of the water molecules were lost. The continuous water loss causes the Ba cations to migrate inside the zeolite channels in order to achieve a stable coordination with the framework oxygens. The dehydration process was completed at 663 K, where a new, completely dehydrated stable phase was detected. The temperature range of stability of this phase was more than 100 K, thanks to the stable coordination of the Ba cations with the framework oxygens. This phase is the first example of completely dehydrated zeolite containing divalent (barium) cations. Received: 8 January 2001 / Accepted: 1 November 2001  相似文献   

5.
Structural changes during dehydration and subsequent decomposition in thaumasite Ca3Si(SO4)(CO3)(OH)6·12 H2O were studied by in situ synchrotron powder diffraction between 303 and 1,098 K. Evolution of the crystal structure was observed through 28 structure refinements, by full profile Rietveld analysis performed in the P63 space group, between 300 and 417 K, whereupon the thaumasite structure was observed to breakdown. Within this temperature range, the cell parameters of thaumasite increased as a function of temperature in a nearly linear fashion up to about 393 K, at which temperature, a slight slope change was observed. Above 400 K, the thermogravimetric analysis revealed that the dehydration process proceeded very rapidly while the refined occupancy of water molecules dropped below a critical level, leading to instability in the thaumasite structure. At a same time, a remarkable change in the unit cell parameters occurring at about 417 K indicated that the crystal structure of thaumasite collapsed on losing the crystallization water and it turned amorphous. This result indicated that the dehydration/decomposition of thaumasite was induced by the departure of the crystallization water. At about 950 K, anhydrite and cristobalite crystallized from the thaumasite glass.  相似文献   

6.
The elastic behaviour and the high-pressure structural evolution of a natural topaz, Al2.00Si1.05O4.00(OH0.26F1.75), have been investigated by means of in situ single-crystal X-ray diffraction up to 10.55(5) GPa. No phase transition has been observed within the pressure range investigated. Unit-cell volume data were fitted with a third-order Birch-Murnaghan Equation of State (III-BM-EoS). The III-BM-EoS parameters, simultaneously refined using the data weighted by the uncertainties in P and V, are: V 0=345.57(7) Å3, K T0=164(2) GPa and K′=2.9(4). The axial-EoS parameters are: a 0=4.6634(3) Å, K T0(a)=152(2) GPa, K′(a)=2.8(4) for the a-axis; b 0=8.8349(5) Å, K T0(b)=224(3) GPa, K′(b)=2.6(6) for the b-axis; c 0=8.3875(7) Å, K T0(c)=137(2) GPa, K′(c)=2.9(4) for the c-axis. The magnitude and the orientation of the principal Lagrangian unit-strain ellipsoid were determined. At P−P 0=10.55 GPa, the ratios ε123 are 1.00:1.42:1.56 (with ε1||b, ε2||a, ε3||c and |ε3| > |ε2| > |ε1|). Four structural refinements, performed at 0.0001, 3.14(5), 5.79(5) and 8.39(5) GPa describe the structural evolution in terms of polyhedral distortions.  相似文献   

7.
The dehydration process of the natural zeolite laumontite Ca4Si16Al8O48 · 18 H2O has been studied in situ by means of powder diffraction and X-ray synchrotron radiation. Powder diffraction profiles suitable for Rietveld refinements were accumulated in time intervals of 5 minutes using a position sensitive detector (CPS-120 by INEL), while the temperature increased in steps of about 5 K. The synchronization of accumulation time and temperature plateau allowed collection of 62 temperature-resolved powder patterns in the range 310–584 K, whose analysis produced a dynamic picture of the laumontite structure response to dehydration. The first zeolitic water molecules diffusing out of the channels are those not bonded to the Ca cations and located in the W(1) site, whose occupancy drops smoothly to 10% during heating to 349 K, while the sample in the capillary is still submerged in water. The remaining W(1) and 60% of W(5) water molecules are expelled rather sharply at about 370 K. At this temperature all remaining water submerging the powder crystallites is lost, the structure contains about 13 water molecules/cell, and the crystal structure is that of leonhardite. On continued heating 80% of the water molecules from the W(2) site are lost between 420 and 480 K, while a small amount of the diffusing water is reinserted in the W(5) site. The occupancy factor of the W(8) site decreases starting at 480 K, and reaches a maximum loss of 20% at 584 K. The combined occupancy of the Ca-coordinated W (2) and W (8) water sites never falls much below two, so that the Ca cations in the channels, which are bonded to four framework oxygen atoms, are nearly six-coordinated in the explored temperature range. The water loss is accompanied by large changes in the unit cell dimensions. Except at 367 K, where the excess surrounding water is leaving, all changes in cell dimensions are gradual. The loss of the hydrogen bonded W(1) and W(5) water molecules is related to most of the unit cell volume reduction below 370 K, as shown by the contraction of the a-, b- and c-axes and the increase in the monoclinic angle. Loss of the Ca-coordinated W(2) and W(8) water molecules has a small effect on the unit cell volume as the continued contraction of the a- and c-axes is counter-balanced by a large expansion in the b-axis and a decrease in the monoclinic β angle.  相似文献   

8.
The temperature induced structural evolution and thermoelastic behaviour of a natural (Pbca) orthopyroxene (Opx), with chemical formula M2(Mg0.856Ca0.025Fe2+ 0.119) M1(Mg0.957Fe2+ 0.011Fe3+ 0.016Cr0.011Al0.005)Al0.032Si1.968O6, from a suite of high pressure ultramafic nodules of mantle origin, have been investigated by in-situ neutron powder diffraction at several temperatures starting from 1,200°C down to 150°C. Unit-cell parameter variations as a function of T show no phase transition within this temperature range. The volume thermal expansion coefficient, α = V −1(∂V/∂T) P0, varies linearly with T. The axial thermal expansion coefficients, αj = l j−1(∂l j/∂T)P0, increase non-linearly with T. The principal Lagrangian unit-strain coefficients (ɛ//a, ɛ//b, ɛ//c), increase continuously with T. However, the orientation of the unit-strain ellipsoid appears to change with T. With decreasing T, the values of the unit-strain coefficients along the b and c axes tend to converge. The orientation at ΔT = 1,080°C is maintained down to the lowest temperature (150°C). The two non-equivalent tetrahedral chains, TA n OA3n and TB n OB3n , are kinked differently. At room-T, the TB n OB3n chain is more strongly kinked by about 23° than the TA n OA3n chain. With increasing T, the difference decreases by 3° for the TB n OB3n chain. The intersite cation exchange reaction between M1 and M2 (Mg2+ and Fe2+) shows a slight residual order at 1,200°C followed by reordering with decreasing temperature although seemingly not with a definite progressive trend. At the lowest temperature reached (150°C), reordering has occurred with the same value of partitioning coefficient K D as that before heating. The absence of the expected phase transition is most likely due to the presence of minor amounts of Fe3+, Al, Ca and Cr which must play a crucial role on the thermoelastic behaviour and phase stability fields in natural Opx, with consequent important petrologic and geological implications.  相似文献   

9.
Thermal behaviour and kinetics of dehydration of gypsum in air have been investigated using in situ real-time laboratory parallel-beam X-ray powder diffraction data evaluated by the Rietveld method. Thermal expansion has been analysed from 298 to 373 K. The high-temperature limits for the cell edges and for the cell volume, calculated using the Einstein equation, are 4.29 × 10−6, 4.94 × 10−5, 2.97 × 10−5, and 8.21 × 10−5. Thermal expansion of gypsum is strongly anisotropic being larger along the b axis mainly due to the weakening of hydrogen bond. Dehydration of gypsum has been investigated in isothermal conditions within the 348–403 K range with a temperature increase of 5 K. Dehydration proceeds through the CaSO4·2H2O → CaSO4·0.5H2O → γ-CaSO4 steps. Experimental data have been fitted with the Avrami equation to calculate the empirical activation energy of the process. No change in transformation mechanism has been observed within the analysed temperature range and the corresponding E a is 109(12) kJ/mol.  相似文献   

10.
Using single-crystal X-ray diffraction from a diamond anvil cell, the compressibility of a synthetic fluorapatite was determined up to about 7?GPa. The compression pattern was anisotropic, with greater change along a than c. Unit cell parameters varied linearly with β a =3.32(8)?10?3 and β c =2.40(5)?10?3 GPa?1, giving a ratio β a c =1.38:1. Data fitted with a third-order Birch-Murnaghan EOS yielded a bulk modulus of K 0=93(4)?GPa with K′=5.8(1.8). The evolution of the crystal structure of fluorapatite was analysed using data collected at room pressure, at 3.04 and 4.72?GPa. The bulk modulus of phosphate tetrahedron is about three times greater than the bulk modulus of calcium polyhedra. The values were 270(10), 100(4) and 86(3) GPa for P, Ca1 (nine-coordinated) and Ca2 (seven-coordinated) respectively. While the calcium polyhedra became more regular with pressure, the distortion of the phosphate tetrahedron remained unchanged. The size of the channel extending along the [001] direction represented the most compressible direction. The Ca2–Ca2 distance decreased from 3.982 to 3.897?Å on compression from 0.0001 to 4.72?GPa. The anisotropic compressional pattern may be understood in terms of the greater compressibility of the channel size over the polyhedral units. The reduction of the channel volume was measured by the evolution of the trigonal prism, having the Ca2–Ca2–Ca2 triangle as its base and the c lattice parameter as its height. This prism volume changed from 47.3?Å3 at room pressure to 44.78?Å3 at 4.72?GPa. Its relatively high bulk moduli, 86(3) GPa, indicated that the channel did not collapse with pressure and the apatite structure could remain stable at very high pressure.  相似文献   

11.
 The cation distribution of Co, Ni, and Zn between the M1 and M2 sites of a synthetic olivine was determined with a single-crystal diffraction method. The crystal data are (Co0.377Ni0.396Zn0.227)2SiO4, M r  = 212.692, orthorhombic, Pbnm, a = 475.64(3), b = 1022.83(8), and c = 596.96(6) pm, V = 0.2904(1) nm3, Z = 4, D x  = 4.864 g cm−3, and F(0 0 0) = 408.62. Lattice, positional, and thermal parameters were determined with MoKα radiation; R = 0.025 for 1487 symmetry-independent reflections with F > 4σ(F). The site occupancies of Co, Ni, and Zn were determined with synchrotron radiation employing the anomalous dispersion effect of Co and Ni. The synchrotron radiation data include two sets of intensity data collected at 161.57 and 149.81 pm, which are about 1 pm longer than Co and Ni absorption edges, respectively. The R value was 0.022 for Co K edge data with 174 independent reflections, and 0.034 for Ni K edge data with 169 reflections. The occupancies are 0.334Co + 0.539Ni + 0.127Zn in the M1 sites, and 0.420Co + 0.253Ni + 0.327Zn in the M2 sites. The compilation of the cation distributions in olivines shows that the distributions depend on ionic radii and electronegativities of constituent cations, and that the partition coefficient can be estimated from the equation: ln [(A/B)M1/(A/B)M2] = −0.272 (IR A -IR B ) + 3.65 (EN A EN B ), where IR (pm) and EN are ionic radius and electronegativity, respectively. Received: 8 April 1999 / Revised, accepted: 7 September 1999  相似文献   

12.
 Powder diffraction measurements at simultaneous high pressure and temperature on samples of 2M1 polytype of muscovite (Ms) and paragonite (Pg) were performed at the beamline ID30 of ESRF (Grenoble), using the Paris-Edinburgh cell. The bulk moduli of Ms, calculated from the least-squares fitting of VP data on each isotherm using a second-order Birch–Murnaghan EoS, were: 57.0(6), 55.1(7), 51.1(7) and 48.9(5) GPa on the isotherms at 298, 573, 723 and 873 K, respectively. The value of (∂K T /∂T) was −0.0146(2) GPa K−1. The thermal expansion coefficient α varied from 35.7(3) × 10−6 K−1 at P ambient to 20.1(3) × 10−6 K−1 at P = 4 GPa [(∂α/∂P) T = −3.9(1) × 10−6 GPa−1 K−1]. The corresponding values for Pg on the isotherms at 298, 723 and 823 K were: bulk moduli 59.9(5), 55.7(6) and 53.8(7) GPa, (∂K T /∂T) −0.0109(1) GPa K−1. The thermal expansion coefficient α varied from 44.1(2) × 10−6 K−1 at P ambient to 32.5(2) × 10−6 K−1 at P = 4 GPa [(∂α/∂P) T = −2.9(1) × 10−6 GPa−1 K−1]. Thermoelastic coefficients showed that Pg is stiffer than Ms; Ms softens more rapidly than Pg upon heating; thermal expansion is greater and its variation with pressure is smaller in Pg than in Ms. Received: 28 January 2002 / Accepted: 5 April 2002  相似文献   

13.
This is an exploratory study on the high-pressure (HP) structural evolution of a zeolitic framework (with LEV topology) on the basis of geometric modelling and previously published accurate unit-cell constants measured by means of single-crystal X-ray diffraction. The geometric simulations for 11 P values from 0 to 5 GPa gives more insight into the HP-behaviour of levyne, showing that the anomalous elastic behaviour of this zeolite observed under hydrostatic conditions at low P (P<1 GPa) is due to a double change in the compressional mechanism. Since the geometric simulation is not restricted to using the experimentally determined cell parameters, simulations of uniaxial compression along the [001] direction and of compression in the (001) plane have been performed, shedding more light on the compression mechanisms under non-hydrostatic regimes, which are difficult to access experimentally. The mechanisms associated with compressions along different axes provide insight into the hydrostatic compression mechanisms leading to the anomalous elastic behaviour.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
The high-pressure behaviour of a synthetic P21/c ferrian magnesian spodumene, M2 (Li0.85Mg0.09Fe2+ 0.06)M1(Fe3+ 0.85Mg0.15)Si2O6, has been investigated using in situ single-crystal X-ray diffraction and Raman spectroscopy. No phase transition has been observed within the pressure range investigated. The isothermal equation of state up to 7 GPa was determined. V0, KT0 and K, simultaneously refined with a Murnaghan equation of state, are: V0= 415.66(7) Å3, KT0=83(1) GPa and K=9.6(6). The magnitudes of the principal unit-strain coefficients were calculated and their ratios 1:2:3=1.00:1.85:2.81 at P=6.83 GPa indicate a very strong anisotropy. Monitoring of the intensity of b-type reflections (h+k= 2n+1) confirms that from room conditions up to 7 GPa the primitive lattice is maintained. Raman spectra have been collected up to 7.4 GPa. No change in the number of observed vibrational modes occurs in the pressure range investigated. At high frequency, the Raman doublet relative to the Si–O–Si vibrations of the two distinct tetrahedral chains is a broad band at room pressure, however, the frequency difference between the two modes increases with increasing pressure.Operating system: Windows NT  相似文献   

15.
利用X射线衍射分析结合偏光显微镜观察,通过特征衍射峰和纤维形态可以判断试样中石棉的存在,并可判断石棉类型。该方法用于爽身粉中石棉的鉴定得到满意的结果。  相似文献   

16.
 The thermoelastic parameters of natural andradite and grossular have been investigated by high-pressure and -temperature synchrotron X-ray powder diffraction, at ESRF, on the ID30 beamline. The PVT data have been fitted by Birch-Murnaghan-like EOSs, using both the approximated and the general form. We have obtained for andradite K 0=158.0(±1.5) GPa, (dK/dT )0=−0.020(3) GPa K−1 and α0=31.6(2) 10−6 K−1, and for grossular K 0=168.2(±1.7) GPa, (dK/dT)0=−0.016(3) GPa K−1 and α0=27.8(2) 10−6 K−1. Comparisons between the present issues and thermoelastic properties of garnets earlier determined are carried out. Received: 7 July 2000 / Accepted: 20 October 2000  相似文献   

17.
用X射线衍射分析的方法测定了12个田黄样品,其中,青田石1个,寿山石9个,昌化田黄石2个。确定青田石由叶蜡石(58%)、绢云母(36.1%)和高岭石(5.9%)组成;昌化田黄石由迪开石组成;寿山石分别由迪开石、高岭石、叶蜡石及绢云母组成。  相似文献   

18.
 The structural behavior of stuffed derivatives of quartz within the Li1− x Al1− x Si1+ x O4 system (0 ≤ x ≤ 1) has been studied in the temperature range 20 to 873 K using high-resolution powder synchrotron X-ray diffraction (XRD). Rietveld analysis reveals three distinct regimes whose boundaries are defined by an Al/Si order-disorder transition at x=∼0.3 and a β–α displacive transformation at x=∼0.65. Compounds that are topologically identical to β-quartz (0 ≤ x < ∼0.65) expand within the (0 0 1) plane and contract along c with increasing temperature; however, this thermal anisotropy is significantly higher for structures within the regime 0 ≤ x < ∼0.3 than for those with compositions ∼0.3 ≤ x < ∼0.65. We attribute this disparity to a tetrahedral tilting mechanism that occurs only in the ordered structures (0 ≤ x < ∼0.3). The phases with ∼0.65 ≤ x ≤ 1 adopt the α-quartz structure at room temperature, and they display positive thermal expansion along both a and c from 20 K to their α–β transition temperatures. This behavior arises mainly from a rotation of rigid Si(Al)-tetrahedra about the <100> axes. Landau analysis provides quantitative evidence that the charge-coupled substitution of Li+Al for Si in quartz dampens the α–β transition. With increasing Li+Al content, the low-temperature modifications exhibit a marked decrease in spontaneous strain; this behavior reflects a weakening of the first-order character of the transition. In addition, we observe a linear decrease in the α–β critical temperature from 846 K to near 0 K as the Li+Al content increases from x=0 to x=∼0.5. Received: 26 June 2000 / Accepted: 1 December 2000  相似文献   

19.
The unit-cell parameters of two columbite samples along the (Fe,Mn)Nb2O6 solid solution were measured by means of high-pressure single-crystal X-ray diffraction up to pressures of 7 GPa. The compressional behaviour of these minerals was studied as a function of composition and degree of order. The P–V data of all the samples were fitted with a third-order Birch–Murnaghan equation of state. For the two samples with different compositions but identical degree of order the substitution of Mn for Fe causes a decrease of the bulk modulus K T0, from 153(1) to 146(1) GPa, without any effect on the pressure first derivative K′. For the two samples with the same composition, cation ordering causes an increase of the bulk modulus from 149(1) to 153(1) GPa and of the pressure first derivative from 4.1(2) to 4.8(3). The compressional behaviour is anisotropic with a linear axial compressibility scheme β b > β c β a for all samples, regardless of composition and degree of order. Such anisotropy increases sligthly with increasing Mn content.  相似文献   

20.
The thermal response of the natural ferroan phlogopite-1M, K2(Mg4.46Fe0.83Al0. 34Ti0.22)(Si5.51Al2. 49)O20[OH3.59F0.41] from Quebec, Canada, was studied with an in situ neutron powder diffraction. The in situ temperature conditions were set up at ?263, 25, 100°C and thereafter at a 100°C intervals up to 900°C. The crystal structure was refined by the Rietveld method (R p=2.35–2.78%, R wp=3.01–3.52%). The orientation of the O–H vector of the sample was determined by the refinement of the diffraction pattern. With increasing temperature, the angle of the OH bond to the (001) plane decreased from 87.3 to 72.5°. At room temperature, a = 5.13 Å, b = 9.20 Å, c = 10.21 Å, β = 100.06° and V(volume) = 491.69 Å3. The expansion rate of the unit cell dimensions varied discontinuously with a break at 500°C. The shape of the M-octahedron underwent some significant changes such as flattening at 500°C. At temperatures above 500°C, the octahedral thickness and mean distance was decreased, while the octahedral flattening angle increased. Those results were attributed to the Fe oxidation and dehydroxylation processes. The dehydroxylation mechanism of the ferroan phlogopite was studied by the Fourier transform infrared spectroscopy (FTIR) after heated at temperatures ranging from 25 to 800°C with an electric furnace in a vacuum. In the OH stretching region, the intensity of the OH band associated with Fe2+(N B-band) begun to decrease outstandingly at 500°C. The changes of the IR spectra confirmed that dehydroxylation was closely related to the oxidation in the vacuum of the ferrous iron in the M-octahedron. The decrease in the angle of the OH bond to the (001) plane, with increasing temperature, might be related to the imbalance of charge in the M-octahedra due to Fe oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号