首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
裂变径迹年代学测试表明,吉隆地区高喜马拉雅约30km的南北剖面上锆石裂变径迹年龄介于13~2.4Ma之间,磷灰石裂变径迹年龄介于1.9~0.6Ma之间;在空间上,裂变径迹年龄与高程及纬度都具有正相关关系。综合区域热年代学资料,裂变径迹年代学数据揭示出研究区高喜马拉雅经历了3个阶段的冷却剥露过程:①中新世中期至约13Ma,藏南拆离系(STDS)大规模伸展拆离作用引发的高喜马拉雅岩石区域性的构造剥露;②中新世晚期伴随STDS韧性变形的结束,缓慢冷却剥露阶段;③上新世前后,5.8~2.7Ma以来,快速并不断加速的冷却剥露作用。综合对比研究区构造地貌特征及热年代学空间格局,提出上新世以来高喜马拉雅快速并加速的剥露作用,是由流域以河流切蚀为代表的地表作用过程驱动。  相似文献   

2.
嘉黎断裂带两侧晚新生代差异隆升的磷灰石裂变径迹纪录   总被引:5,自引:0,他引:5  
对嘉黎断裂带两侧的磷灰石裂变径迹年代学测试表明,断裂带北侧的磷灰石裂变径迹年龄在5.6~11.7Ma之间,属中新世晚期;断裂带南侧的磷灰石裂变径迹年龄明显较小,6个样品中有5个样品的磷灰石裂变径迹年龄在4.0~5.9Ma之间,属上新世早期.嘉黎断裂带北侧5.6~11.7Ma期间的隆升速率为0.07~0.09mm/a.5.8Ma以来平均剥露速率为0.50mm/a,平均隆升速率1.33mm/a.断裂带南侧4.7Ma以来平均剥露速率为0.62mm/a,平均隆升速率1.68mm/a.两侧样品都反映上新世以来有较强烈的隆升作用,并且南侧比北侧隆升作用更强烈.  相似文献   

3.
涂继耀  季建清  钟大赉  周晶 《地球科学》2021,46(12):4533-4545
为揭示东喜马拉雅构造结及其周边区域完整地质演化过程,对采集自雅鲁藏布江墨脱段10块基岩样品进行黑云母40Ar/39Ar测年,并利用“Pecube”软件对年龄代表隆升剥露速率进行定量计算.样品黑云母40Ar/39Ar年龄范围为11.25~24.04 Ma,对应隆升剥露速率范围为0.25~0.51 km/Ma.雅鲁藏布江墨脱段地壳隆升剥露速率存在明显南北差异,北段隆升剥露速率高出约0.2 km/Ma.年代学数据及计算结果表明,与东喜马拉雅构造结内部相比,雅鲁藏布江下游墨脱段为地壳隆升剥露活动相对较弱区域.与喜马拉雅地体向拉萨地体俯冲过程相关北西、北西西走向逆断层活动,不仅在东喜马拉雅构造结内部区域发育,在其东侧雅鲁藏布江墨脱段也可能发育.   相似文献   

4.
前人已经对西天山及邻区以及阿尔金断裂带进行了大量中—新生代隆升-剥露的研究工作,但对东天山地区的研究工作很少。天山造山带中—新生代期间的隆升-剥露过程是否具有均一性,目前仍没有确切的认识。为了获得东天山地区中生代以来的隆升-剥露信息,对吐哈盆地东南缘雅满苏地区磷灰石裂变径迹进行了研究。研究表明,在不同构造位置采集的花岗岩、砂岩、火山岩样品年龄集中分布在81~53Ma,样品年龄记录了东天山地区晚白垩世—古新世发生的冷却事件。磷灰石裂变径迹平均长度为13.60~14.36μm,接近于磷灰石初始径迹长度约14.5μm,表明径迹形成后没有发生过明显的退火作用。根据地温梯度计算得到东天山晚白垩世以来的平均隆升速率约为4.31×10-2 mm/a。进一步的热史模拟表明,晚白垩世—古新世(80~50Ma)期间东天山地区经历了一次隆升-剥露事件;始新世以后(50 Ma),东天山地区地壳处于稳定状态,东天山隆起带现在的构造面貌基本继承了中生代的特征。  相似文献   

5.
阿尔金北缘EW向山脉新生代隆升剥露的裂变径迹证据   总被引:3,自引:0,他引:3  
本文主要利用磷灰石裂变径迹测年技术探讨了阿尔金北缘EW向山脉隆升的时空差异特征。22个岩体分别采自阿尔金北缘EW向山体中的卓尔布拉克、大平沟和喀腊大湾地区。裂变径迹测试结果显示,样品的径迹年龄介于(62.6±3.5)~(28.3±1.7)Ma,平均径迹长度均介于(13.25±0.15)~(14.29±0.1)μm之间。进一步根据裂变径迹长度和温度数据,开展了磷灰石温度-时间的反演模拟。结果表明,阿尔金北缘山体的隆升呈现一定的规律:在南北方向上,南部率先隆升并向北部扩展,东西方向上,山脉中段大平沟样品径迹年龄较其他样品年龄大且时间局限在古新世和始新世,呈现中间向两侧隆升趋势。所有样品热史模拟曲线形态相对一致,径迹长度分布呈单峰式,表明阿尔金北缘地区可能仅仅新生代经历了古新世—渐新世(65—28 Ma)的快速隆升-剥露事件,中新世及后期的构造隆升-剥露事件在本区不发育。对比分析阿尔金地区的隆升剥露热事件可知,阿尔金山脉新生代的隆升-剥露整体性和差异性共存:古近纪阿尔金山脉隆升具有普遍性和区域性,而中新世至今的隆升和剥露仅仅存在于NEE走向阿尔金主断裂带旁侧的山体和NE向的山体,推测中新世以来阿尔金主断裂带的快速走滑并没有影响阿尔金北缘EW向山体的隆升和剥露。  相似文献   

6.
对昆仑垭口地区小南川岩体7件样品进行磷灰石裂变径迹年代学测试, 分析了岩体的冷却过程及岩体的剥露与构造地貌演化的关系.结果表明东昆仑山区中新世晚期视剥蚀速率极为缓慢, 为0.020~0.035mm/a, 反映的是构造隆升作用微弱、地貌缓和的地质环境, 因而构造隆升速率与低的视剥蚀速率相当.上新世以来小南川岩体突发性快速隆升冷却, 造成超过3km的物质揭顶, 这不是由单纯的剥蚀过程导致, 而是反映了昆仑山上新世以来的强烈构造隆升驱动下的成山作用过程.岩体上新世的裂变径迹年龄与近东西向的昆仑河-野牛沟谷地断裂断陷、昆仑垭口盆地断陷以及后期西大滩谷地断陷的综合构造地貌演化有密切的成因联系.此外裂变径迹年龄的空间分布格局反映了区域性的差异隆升作用, 由南向北、由西向东, 隆升和剥蚀作用逐渐衰减, 这与东昆仑山南北向以及东、西昆仑山之间地貌发育的差异性以及新生代火山作用分布是吻合的.   相似文献   

7.
为揭示东喜马拉雅构造结那木拉断裂带上新世以来强烈活动特征,对采集自那木拉断裂带的三件基岩样品进行黑云母40Ar/39Ar、磷灰石裂变径迹两种热年代学方法测年;并利用"Pecube"软件对测得年龄数据及断裂带两侧已发表年龄数据进行定量模拟计算。测试结果显示黑云母40Ar/39Ar年龄范围为4.44±0.71 Ma~3.45±0.24 Ma,磷灰石裂变径迹年龄范围为3.7±0.4 Ma~1.8±0.2 Ma。年龄数据及其模拟计算结果表明,约3 Ma以前那木拉断裂带南侧地壳隆升最快,隆升速率约2.5 km/Ma,断裂带以正断层运动特征为主;约3 Ma以来那木拉断裂带北侧地壳隆升最快,约为1.3 km/Ma,断裂带以逆断层运动特征为主。那木拉断裂带运动特征变化可能与约8 Ma以来东喜马拉雅构造结快速地壳隆升剥露区域由南向北逐渐迁移有关。   相似文献   

8.
南太行山中新生代隆升过程:磷灰石裂变径迹证据   总被引:2,自引:0,他引:2  
南太行山地区地处华北陆块中部,是研究华北岩石圈减薄、克拉通活化期间山脉隆升与剥露机制的理想场所。本文对太行山南麓的中生代岩浆岩和元古宙变质岩开展了磷灰石裂变径迹低温热年代学研究,获得了相关样品的磷灰石径迹年龄和径迹长度。研究表明,南太行山地区磷灰石裂变径迹表观年龄集中在75~32 Ma之间,峰值径迹长度在11μm以上,为宽带单峰分布。综合考虑裂变径迹反演,南太行山地区初始隆升始于100 Ma前,晚白垩世以来的剥蚀去顶量在3 km以上。100~50 Ma的构造抬升相对平静,50~40 Ma及10 Ma左右以来隆升速度加快,是太行山地区的主要隆升期。南太行山区域上表现为北早南晚的倾伏式差异隆升格局,其新生代隆升与华北东部同期的快速沉降相耦合。以上资料有利于更好认知华北陆块中–新生代冷却史及岩石圈减薄地表响应。  相似文献   

9.
龙门山冲断隆升及其走向差异的裂变径迹证据   总被引:4,自引:1,他引:3  
大量的低温年代学研究用来讨论龙门山晚新生代的隆升,但很少涉及其走向差异和中生代隆升。本文分别沿龙门山北、中、南段3条剖面进行了锆石和磷灰石裂变径迹测试,结合已有的热年代学数据,以期揭示整个中-新生代期间龙门山隆升历史及其时空变化。中生代以来,龙门山主要有印支期(约200 Ma)、早白垩世末(约100 Ma)、早新生代(65~30 Ma)以及晚中新世(15~9 Ma)等或快或慢的冷却事件,总体上经历了中生代至早新生代的缓慢冷却和晚新生代快速冷却2个阶段,快速剥露开始于15~9 Ma,剥蚀速率由早期的0.1 mm/a增加到0.15~0.3 mm/a左右,局部可达0.9 mm/a左右。走向上,龙门山北段相对偏小的锆石裂变径迹年龄和相对偏大的磷灰石裂变径迹年龄反映其在中生代较中、南段隆升更快,而裂变径迹年龄总体上从北段向中、南段减小,表明中、南段在新生代发生了更快的隆升。倾向上,多种热年代学数据显示新生代期间在北川断裂和彭灌断裂两侧存在明显的差异剥露,这种差异在中、南段表现比北段更为突出。龙门山晚新生代快速隆升和剥露是青藏高原区域隆升背景上叠加的冲断活动所致,而非下地壳流动驱动。  相似文献   

10.
本文利用裂变径迹方法研究藏南定结地区喜马拉雅造山带新生代的隆升和剥露过程,并探讨内动力和外动力地质作用共同塑造地貌形态的耦合性。由于构造活动的阶段性,可能导致大喜马拉雅结晶岩系(GHC)的冷却剥蚀在构造强烈时期主要由构造活动控制,在构造活动平静期主要与外动力地质作用密切相关。在定结地区的GHC选取两个剖面进行磷灰石裂变径迹(AFT)研究,剖面高程跨度为3 800~4 500 m,其年代学结果范围为11~2 Ma,揭示了中新世以来经历了3 个阶段的冷却剥蚀历史。不同的冷却剥蚀阶段具有不同的驱动力,中新世晚期11 Ma左右的隆升剥蚀阶段,主要是由构造活动驱动;7~3 Ma的缓慢冷却剥蚀阶段,构造活动趋于平静,主要与区域内的河流侵蚀作用密切相关;上新世晚期3 Ma以来较快速的冷却剥蚀阶段,以河流侵蚀为主的外动力作用加强。定结GHC在3 Ma以来冷却剥蚀速率迅速增强,并且驱动力主要为外动力地质作用,暗示了GHC经历了中新世强烈的构造隆升之后已经确定了现有地貌格局,在3 Ma已达到显著高度。  相似文献   

11.
喜马拉雅造山带的东、西两端分别有一个构造急剧转向的地区——构造结, 这里是探讨喜马拉雅造山带构造演化的重要场所.区域地质调查资料对比显示这2个构造结有: (1)相似的地貌景观; (2)相似的地质特征和演化历史, 即都缺失喜马拉雅沉积岩(寒武纪—第三纪); (3)结晶岩系中都有高压变质岩, 且在10 Ma以来均发生过深熔与混合岩化作用; (4)25 Ma以来, 特别是10 Ma以来两地都经历了快速剥露和隆升作用; (5)印度板块-欧亚板块的碰撞时间接近, 分别为75 Ma和65 Ma, 均早于喜马拉雅造山带的其他地区.这些相似性表明: 伸展拆离和以河流作用为主的地表过程是喜马拉雅造山带的东、西构造结快速剥露的主导因素; 因强烈剥露减压所致的地壳部分熔融作用形成的岩浆向地表减压处的流动在构造结的演化过程中起着重要作用.   相似文献   

12.
通过青藏高原东部川西地区雀儿山花岗岩体磷灰石裂变径迹分析,新获得了4个磷灰石裂变径迹年龄值,分别为4. 9±0. 3Ma、6. 2±0. 5 Ma、7. 2±0. 4 Ma和7. 3±0. 7 Ma。运用径迹年龄-地形高差法计算出雀儿山花岗岩体新近纪的隆升速率,为0. 15~2 mm/a,平均隆升速率为0. 78mm/a。隆升速率在每个阶段有所不同,但呈现出一种快速隆升→缓慢隆升的过程,为整个青藏高原东缘的隆升过程提供了约束条件。  相似文献   

13.
本文以青藏高原东缘的三级地貌(川西高原、龙门山和四川盆地)单元为基础,利用裂变径迹定年数据分区块研究了该地区的晚新生代以来的剥蚀速率。研究结果表明,晚白垩世以来青藏高原东缘经历了一个由平缓到突然加速的剥蚀过程,其转折点为中新世。在整个时间段内的平均剥蚀速率,川西高原为0.26mm/yr,龙门山为0.72mm/yr,四川盆地为0.20mm/yr。龙门山的剥蚀速率大约是川西高原的2.8倍,间接反映边缘山脉的隆升并不等同于高原内部的隆升,边缘山脉的隆升可能是构造隆升和剥蚀隆升相叠加的结果。  相似文献   

14.
Apatite fission-track (AFT) and (U+Th)/He (AHe) data, combined with time–temperature inverse modelling, reveal the cooling and exhumation history of the Iberian Massif in eastern Galicia since the Mesozoic. The continuous cooling at various rates correlates with variation of tectonic boundary conditions in the adjacent continental margins. The data provide constraints on the 107 timescale longevity of a relict paleolandscape. AFT ages range from 68 to 174 Ma with mean track lengths of 10.7 ± 2.6 to 12.6 ± 1.8 μm, and AHe ages range from 73 to 147 Ma. Fastest exhumation (≈0.25 km/Ma) occurred during the Late Jurassic to Early Cretaceous main episode of rifting in the adjacent western and northern margins. Exhumation rates have decreased since then and have been approximately one order of magnitude lower. Across inland Galicia, the AFT data are consistent with Early Cretaceous movement on post-Variscan NE trending faults. This is coeval with an extensional episode offshore. The AHe data in this region indicate less than 1.7 km of denudation in the last 100 Ma. This low exhumation suggests the attainment of a mature landscape during Late Cretaceous post-rift tectonic stability, whose remains are still preserved. The low and steady rate of denudation prevailed across inland Galicia despite minor N–S shortening in the northern margin since ≈45 Ma ago. In north Galicia, rock uplift in response to NW strike-slip faulting since Early Oligocene to Early Miocene has caused insufficient exhumation (<3 km) to remove the Mesozoic cooling signal recorded by the AFT data.  相似文献   

15.
喜马拉雅造山带晚新生代构造隆升的裂变径迹证据   总被引:14,自引:2,他引:12  
喜马拉雅造山带的隆升,在地质学研究中是一个非常让人感兴趣的问题,为了对其进行定量研究,揭示隆升历史及幅度等相关问题,运用磷灰石、锆石裂变径迹法对研究区淡色花岗岩进行了分析,所取样品的裂变径迹年龄位于17.0~5.7 Ma之间,小于其地层时代或侵入年龄(40~17 Ma),表明研究区喜马拉雅造山带的强烈隆升开始于晚新生代.用磷灰石裂变径迹年龄来计算可知,研究区内花岗岩5.7 Ma以来的冷却速率和剥蚀速率分别为18.421 ℃/Ma和0.526 mm/a.5.7~9.2 Ma间的相对抬升与剥蚀速率为0.229 mm/a,9.2~17.0 Ma间的相对抬升与剥蚀速率为0.032 mm/a.用锆石裂变径迹年龄来计算知,研究区内花岗岩16.2 Ma以来的冷却速率和剥蚀速率分别为12.963 ℃/Ma和0.370 mm/a,冷却速率和剥蚀速率均小于用磷灰石计算的结果.因此说喜马拉雅造山带从9.2 Ma到现在隆升和剥蚀的速率是处于加快的状态.   相似文献   

16.
The cooling and tectonic history of the Higher Himalayan Crystallines (HHC) in southwest Zanskar (along the Kishtwar-Padam traverse) is constrained by K-Ar biotite and fission-track (FT) apatite and zircon ages. A total of nine biotite samples yields ages in the range of 14–24 Ma, indicating the post-metamorphic cooling of these rocks through ∼ 300°C in the Miocene. Overall, the ages become younger away from the Zanskar Shear Zone (ZSZ), which marks the basement-cover detachment fault between the HHC and the Tethyan sedimentary zone, towards the core of the HHC. The same pattern is also observed for the FT apatite ages, which record the cooling of the rocks through ∼ 120°C. The apatite ages range from 11 Ma in the vicinity of the ZSZ to 4 Ma at the granitic core of the HHC. This pattern of discordant cooling ages across the HHC in southwest Zanskar reveals an inversion of isotherms due to fast uplift-denudation (hence cooling) of the HHC core, which is, in turn, related to domal uplift within the HHC. The Chisoti granite gneiss is the exposed domal structure along the studied traverse. Cooling history of two granite gneisses at the core of the HHC is also quantified with the help of the biotite, zircon and apatite ages; the time-temperatures thus obtained indicate a rapid pulse of cooling at ∼ 6 Ma, related to accelerated uplift-denudation of the HHC core at this time. Long-term denudation rates of 0.5–0.7 mm/yr are estimated for the high-grade rocks of the Higher Himalaya in southwest Zanskar over the past 4.0–5.5 m.yr.  相似文献   

17.
In the Himalayan chain the collision of India into Eurasia has produced some of the most complex crustal interactions along the Himalayan–Alpine Orogen. In NW Bhutan, middle to late Miocene deformation has been partitioned between conjugate strike-slip faulting, E–W extension along the Yadong-Gulu graben and kilometre-scale folding. To better understand the late deformation stages and their implications for the evolution of the eastern Himalayas, the palaeomagnetism in the erosional remnant of the Tethyan Himalayan rocks outcropping in NW Bhutan has been studied. Their position to the south of the trace of the inner South Tibetan Detachment, to the south of the Tibetan Plateau offers a unique possibility to study the Tertiary rotation of the Himalayas. Pyrrhotite is the carrier of the characteristic magnetisation based on 270–325 °C unblocking temperatures. The age of the remanence is ca. 13 Ma indicated by illite 40K/40Ar cooling ages and a negative fold test. Small circle intersection method applied to the pyrrhotite components shows a ca. 32° clockwise rotation with respect to stable India since 13 Ma. We suggest that this clockwise rotation is related to strain partitioning between NE-directed shortening, sinistral-slip along the Lingshi fault, and east–west extension. This represents a field-based explanation and a minimum onset age for present-day eastward motion of the upper-crust of SE-Tibet and NE-Himalayas.  相似文献   

18.
南黄海中部隆起自印支期以来经历显著的构造隆升及剥蚀过程.基于大陆架科学钻探CSDP-2井的钻井岩心,应用磷灰石裂变径迹技术研究了南黄海中部隆起晚白垩世以来的剥蚀过程及响应特征.所获得的8个磷灰石样品的裂变径迹年龄显示出两个年龄组,除单个样品为38±3 Ma外,其余样品都集中在(52±4)~(65±5)Ma范围内,基本反映了同一期构造热事件年龄,并且均远小于样品所处的二叠纪年龄,表明样品完全退火并记录了晚白垩世以来的热历史.样品热史模拟结果表明,基于泥岩镜质体反射率计算的最高古地温处于样品退火带温区范围内,各样品从晚白垩世早期(约100 Ma)以来经历持续的降温过程,在约80~75 Ma开始进入部分退火带.南黄海中部隆起第一期快速冷却降温过程出现在晚白垩世末期,并持续至古新世早期,随后进入古近纪表现为持续相对缓慢的降温过程,降温幅度约30 ℃,渐新世末期到中新世早期存在另一期快速冷却过程.热史模拟结果较好地指示了南黄海中部隆起晚白垩世以来的地层剥蚀响应特征.   相似文献   

19.
造山带穹隆构造记录了陆-陆碰撞及其碰撞后地壳和地表演化过程的信息,是探讨造山带构造演化的重要窗口。康巴穹隆位于藏南特提斯喜马拉雅地区,是北喜马拉雅片麻岩穹隆带(NHGD)的组成部分,其剥露过程及其动力学机制仍然存在争议。通过对康巴穹隆核部花岗片麻岩开展锆石U-Pb、锆石裂变径迹(ZFT)年代学研究和三维数值模拟,获得了康巴穹隆的锆石U-Pb年龄为497.89±1.2Ma,锆石FT年龄(17~11 Ma)明显小于锆石U-Pb结晶年龄,说明这些径迹年龄是岩体冷却抬升形成的。Pecube三维数值模拟对穹窿核部样品的ZFT数据进行反演显示,康巴穹隆核部岩体自中新世以来经历15.9~11.4Ma和ca. 4.2Ma两次快速剥露,结合区域构造演化,提出第一次快速剥露与藏南拆离系(STDS)的活动有关,第二次快速剥露是对气候变化过程的响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号