首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wave‐induced fluid flow plays an important role in affecting the seismic dispersion and attenuation of fractured porous rocks. While numerous theoretical models have been proposed for the seismic dispersion and attenuation in fractured porous rocks, most of them neglect the wave‐induced fluid flow resulting from the background anisotropy (e.g. the interlayer fluid flow between different layers) that can be normal in real reservoirs. Here, according to the theories of poroelasticity, we present an approach to study the frequency‐dependent seismic properties of more realistic and complicated rocks, i.e. horizontally and periodically layered porous rock with horizontal and randomly orienting fractures, respectively, distributed in one of the two periodical layers. The approach accounts for the dual effects of the wave‐induced fluid flow between the fractures and the background pores and between different layers (the interlayer fluid flow). Because C33 (i.e., the modulus of the normally incident P‐wave) is directly related to the P‐wave velocity widely measured in the seismic exploration, and its comprehensive dispersion and attenuation are found to be most significant, we study mainly the effects of fracture properties and the stiffness contrast between the different layers on the seismic dispersion and attenuation of C33. The results show that the increasing stiffness contrast enhances the interlayer fluid flow of the layered porous rocks with both horizontal and randomly orienting fractures and weakens the wave‐induced fluid flow between the fractures and the background pores, especially for the layered porous rock with horizontal fractures. The modelling results also demonstrate that for the considered rock construction, the increasing fracture density reduces the interlayer fluid flow while improves the dispersion and attenuation in the fracture‐relevant frequency band. Increasing fracture aspect ratio is found to reduce the dispersion and attenuation in the fracture‐relevant frequency band only, especially for the layered porous rock with horizontal fractures.  相似文献   

2.
含混合裂隙、孔隙介质的纵波衰减规律研究   总被引:4,自引:4,他引:0       下载免费PDF全文
地下多孔介质中的孔隙类型复杂多样,既有硬孔又有扁平的软孔.针对复杂孔隙介质,假设多孔介质中同时含有球型硬孔和两种不同产状的裂隙(硬币型、尖灭型裂隙),当孔隙介质承载载荷时,考虑两种不同类型的裂隙对于孔隙流体压力的影响,建立起Biot理论框架下饱和流体情况含混合裂隙、孔隙介质的弹性波动方程,并进一步求取了饱和流体情况下仅由裂隙引起流体流动时的含混合裂隙、孔隙介质的体积模量和剪切模量,随后,在此基础上讨论了含混合裂隙、孔隙介质在封闭条件下地震波衰减和频散的高低频极限表达式.最后计算了给定模型的地震波衰减和频散,发现地震波衰减曲线呈现"多峰"现象,速度曲线为"多频段"频散.针对该模型分析讨论了渗透率参数、裂隙纵横比参数以及流体黏滞性参数对于地震波衰减和频散的影响,表明三个参数均为频率控制参数.  相似文献   

3.
Different theoretical and laboratory studies on the propagation of elastic waves in layered hydrocarbon reservoir have shown characteristic velocity dispersion and attenuation of seismic waves. The wave‐induced fluid flow between mesoscopic‐scale heterogeneities (larger than the pore size but smaller than the predominant wavelengths) is the most important cause of attenuation for frequencies below 1 kHz. Most studies on mesoscopic wave‐induced fluid flow in the seismic frequency band are based on the representative elementary volume, which does not consider interaction of fluid flow due to the symmetrical structure of representative elementary volume. However, in strongly heterogeneous media with unsymmetrical structures, different courses of wave‐induced fluid flow may lead to the interaction of the fluid flux in the seismic band; this has not yet been explored. This paper analyses the interaction of different courses of wave‐induced fluid flow in layered porous media. We apply a one‐dimensional finite‐element numerical creep test based on Biot's theory of consolidation to obtain the fluid flux in the frequency domain. The characteristic frequency of the fluid flux and the strain rate tensor are introduced to characterise the interaction of different courses of fluid flux. We also compare the behaviours of characteristic frequencies and the strain rate tensor on two scales: the local scale and the global scale. It is shown that, at the local scale, the interaction between different courses of fluid flux is a dynamic process, and the weak fluid flux and corresponding characteristic frequencies contain detailed information about the interaction of the fluid flux. At the global scale, the averaged strain rate tensor can facilitate the identification of the interaction degree of the fluid flux for the porous medium with a random distribution of mesoscopic heterogeneities, and the characteristic frequency of the fluid flux is potentially related to that of the peak attenuation. The results are helpful for the prediction of the distribution of oil–gas patches based on the statistical properties of phase velocities and attenuation in layered porous media with random disorder.  相似文献   

4.
Broadband (100–4000 Hz) cross‐hole seismic data have been acquired at a borehole test site where extensive hydrological investigations have previously been performed, including in situ estimates of permeability. The rock type is homogeneous chalk and fractures and bedding planes have been identified from well logs. High values of seismic attenuation, Q= 22 ≤ 27 ≤ 33, were observed over a 10 m depth interval where fracture permeability values of 20–50 darcy had been recorded. An attempt has been made to separate the attenuation due to scattering and intrinsic mechanisms. The estimated values of intrinsic attenuation, Q= 31 ≤ 43 ≤ 71, have been reproduced using a number of current theories of seismic‐wave propagation and fluid‐flow‐induced seismic attenuation in cracked and fractured media. A model that considers wavelength‐scale pressure gradients is the preferred attenuation mechanism. Model parameters were obtained from the hydro‐geological and seismic data. However, we conclude that it is not possible to use seismic Q to measure rock permeability remotely, principally because of the inherent uncertainties arising from model parameterisations.  相似文献   

5.
基于Biot理论,考虑液相的黏弹性变形和固液相接触面上的相对扭转,提出了含黏滞流体VTI孔隙介质模型.从理论上推导出,在该模型中除存在快P波、慢P波、SV波、SH波以外,还将存在两种新横波-慢SV波和慢SH波.数值模拟分析了6种弹性波的相速度、衰减、液固相振幅比随孔隙度、频率的变化规律以及快P波、快SV波的衰减随流体性质、渗透率、入射角的变化规律.结果表明慢SV波和慢SH波主要在液相中传播,高频高孔隙度时,速度较高;大角度入射时,快P波衰减表现出明显的各向异性,而快SV波的衰减则基本不变;储层纵向和横向渗透率存在差异时,快SV波衰减大的方向渗透率高.  相似文献   

6.
二氧化碳地质封存是减少温室气体排放和减缓温室效应的重要手段.二氧化碳封存的一个重要组成部分是地震监测,即用地震的方法监测封存后的二氧化碳的分布变化.为了实现这个目标,需要建立储层参数与地震性质之间的关系(岩石物理模型)和从地震监测数据中反演获得储层流体的饱和度等参数.首先,本文以Biot理论为基础,结合多相流模型研究了多个物理参数(孔隙度、二氧化碳饱和度、温度和压力等)对同时含有二氧化碳和水的孔隙介质的波速和衰减等属性的影响.结果表明:孔隙度和二氧化碳饱和度对岩石的频散和衰减属性影响强烈,而温度和压力通过孔隙流体性质对岩石的波速产生影响.然后,本文基于含多相流的Biot理论,应用抗干扰能力强、且具有更好的局部搜索能力和抗早熟能力的自适应杂交遗传算法对实际数据进行了反演研究.对岩心实验数据的反演研究表明了算法的有效性,而且表明含多相流的Biot理论能够很好地解释水和二氧化碳饱和岩石的波速特征.最后,我们将自适应杂交遗传算法应用于实际封存项目的地震监测数据,获得了封存后不同时期的二氧化碳饱和度,达到了用地震方法监测二氧化碳分布的目的.  相似文献   

7.
Wave‐induced oscillatory fluid flow in the vicinity of inclusions embedded in porous rocks is one of the main causes for P‐wave dispersion and attenuation at seismic frequencies. Hence, the P‐wave velocity depends on wave frequency, porosity, saturation, and other rock parameters. Several analytical models quantify this wave‐induced flow attenuation and result in characteristic velocity–saturation relations. Here, we compare some of these models by analyzing their low‐ and high‐frequency asymptotic behaviours and by applying them to measured velocity–saturation relations. Specifically, the Biot–Rayleigh model considering spherical inclusions embedded in an isotropic rock matrix is compared with White's and Johnson's models of patchy saturation. The modeling of laboratory data for tight sandstone and limestone indicates that, by selecting appropriate inclusion size, the Biot‐Rayleigh predictions are close to the measured values, particularly for intermediate and high water saturations.  相似文献   

8.
Partially saturated reservoirs are one of the major sources of seismic wave attenuation, modulus defect and velocity dispersion in real seismic data. The main attenuation and dispersion phenomenon is wave induced fluid flow due to the heterogeneity in pore fluids or porous rock. The identification of pore fluid type, saturation and distribution pattern within the pore space is of great significance as several seismic and petrophysical properties of porous rocks are largely affected by fluid type, saturation and fluid distribution pattern. Based on Gassmann-Wood and Gassmann- Hill rock physics models modulus defect, velocity dispersion and attenuation in Jurassic siliclastic partially-saturated rocks are studied. For this purpose two saturation patterns - uniform and patchy - are considered within the pore spaces in two frequency regimes i.e., lower frequency and higher frequency. The results reveal that at low enough frequency where saturation of liquid and gas is uniform, the seismic velocity and bulk modulus are lower than at higher frequency where saturation of fluid mixture is in the form of patches. The velocity dispersion and attenuation is also modeled at different levels of gas saturation. It is found that the maximum attenuation and velocity dispersion is at low gas saturation. Therefore, the dispersion and attenuation can provide a potential way to predict gas saturation and can be used as a property to differentiate low from high gas saturation.  相似文献   

9.
Attempts have previously been made to predict anisotropic permeability in fractured reservoirs from seismic Amplitude Versus Angle and Azimuth data on the basis of a consistent permeability‐stiffness model and the anisotropic Gassmann relations of Brown and Korringa. However, these attempts were not very successful, mainly because the effective stiffness tensor of a fractured porous medium under saturated (drained) conditions is much less sensitive to the aperture of the fractures than the corresponding permeability tensor. We here show that one can obtain information about the fracture aperture as well as the fracture density and orientation (which determines the effective permeability) from frequency‐dependent seismic Amplitude Versus Angle and Azimuth data. Our workflow is based on a unified stiffness‐permeability model, which takes into account seismic attenuation by wave‐induced fluid flow. Synthetic seismic Amplitude Versus Angle and Azimuth data are generated by using a combination of a dynamic effective medium theory with Rüger's approximations for PP reflection coefficients in Horizontally Transversely Isotropic media. A Monte Carlo method is used to perform a Bayesian inversion of these synthetic seismic Amplitude Versus Angle and Azimuth data with respect to the parameters of the fractures. An effective permeability model is then used to construct the corresponding probability density functions for the different components of the effective permeability constants. The results suggest that an improved characterization of fractured reservoirs can indeed be obtained from frequency‐dependent seismic Amplitude Versus Angle and Azimuth data, provided that a dynamic effective medium model is used in the inversion process and a priori information about the fracture length is available.  相似文献   

10.
The simplified macro‐equations of porous elastic media are presented based on Hickey's theory upon ignoring effects of thermomechanical coupling and fluctuations of porosity and density induced by passing waves. The macro‐equations with definite physical parameters predict two types of compressional waves (P wave) and two types of shear waves (S wave). The first types of P and S waves, similar to the fast P wave and S wave in Biot's theory, propagate with fast velocity and have relatively weak dispersion and attenuation, while the second types of waves behave as diffusive modes due to their distinct dispersion and strong attenuation. The second S wave resulting from the bulk and shear viscous loss within pore fluid is slower than the second P wave but with strong attenuation at lower frequencies. Based on the simplified porous elastic equations, the effects of petrophysical parameters (permeability, porosity, coupling density and fluid viscosity) on the velocity dispersion and attenuation of P and S waves are studied in brine‐saturated sandstone compared with the results of Biot's theory. The results show that the dispersion and attenuation of P waves in simplified theory are stronger than those of Biot's theory and appear at slightly lower frequencies because of the existence of bulk and shear viscous loss within pore fluid. The properties of the first S wave are almost consistent with the S wave in Biot's theory, while the second S wave not included in Biot's theory even dies off around its source due to its extremely strong attenuation. The permeability and porosity have an obvious impact on the velocity dispersion and attenuation of both P and S waves. Higher permeabilities make the peaks of attenuation shift towards lower frequencies. Higher porosities correspond to higher dispersion and attenuation. Moreover, the inertial coupling between fluid and solid induces weak velocity dispersion and attenuation of both P and S waves at higher frequencies, whereas the fluid viscosity dominates the dispersion and attenuation in a macroscopic porous medium. Besides, the heavy oil sand is used to investigate the influence of high viscous fluid on the dispersion and attenuation of both P and S waves. The dispersion and attenuation in heavy oil sand are stronger than those in brine‐saturated sandstone due to the considerable shear viscosity of heavy oil. Seismic properties are strongly influenced by the fluid viscosity; thus, viscosity should be included in fluid properties to explain solid–fluid combination behaviour properly.  相似文献   

11.
吴建鲁  吴国忱 《地球物理学报》2017,60(10):3942-3953
地震波在地下含流体孔隙介质中传播时,会引起中观尺度的"局域流",进而产生地震波震电效应.基于Biot(1941)固结理论的准静态方程,在频率域中采用空间有限差分方法,正演模拟虚岩石物理岩样的地震波衰减和震电效应.与时间域虚岩石物理方法相比,该方法既可以直接求取任一频率下的地震波衰减和电势,便于应用于实际岩样的预测分析,也避免了讨论岩样外表面施加的力源函数表达式及时间剖分稳定性条件等问题.首先利用周期性层状介质模型验证了本文所描述方法的有效性,并进一步求取分析了周期性层状介质两种不同特征单元的渗流电流密度及电势,数值模拟结果表明由中观尺度"局域流"引起的震电效应电势振幅数量级在实验室测量范围之内,随后,分析研究了四种不同高渗介质占比值的地震衰减及震电效应特征.最后,将本文提出的震电效应数值计算方法推广至二维,并求取了二维斑块饱和模型的地震波衰减、速度频散、电势的振幅和相位角数值结果.  相似文献   

12.
Seismic attenuation introduces modifications in the wavelet shape in vertical seismic profiles. These modifications can be quantified by measuring particular signal attributes such as rise-time, period and shape index. Use of signal attributes leads to estimations of a seismic-attenuation log (Q-log). To obtain accurate signal attributes it is important to minimize noise influence and eliminate local interference between upgoing and downgoing waves at each probe location. When tube waves are present it is necessary to eliminate them before performing separation of upgoing and downgoing events. We used a trace-by-trace Wiener filter to minimize the influence of tube waves. The separation of upgoing and downgoing waves was then performed in the frequency domain using a trace-pair filter. We used three possible methods based on signal attribute measurements to obtain g-log from the extracted downgoing wavefield. The first one uses a minimum phasing filter and the arrival time of the first extremum. The two other methods determine the Q-factor from simple relations between the amplitudes of the first extrema and the pseudo-periods of the down-going wavelet. The relations determined between a signal attribute and traveltime over quality factor were then calibrated using field source signature and constant-Q models computed by Ganley's method. Q-logs thus obtained from real data are discussed and compared with geological information, specifically at reservoir level. Analysis of the tube wave arrivals at the level of the reservoir showed a tube wave attenuation that could not be explained by simple transmission effects. There was also a loss of signal coherence. This could be interpreted as tube wave diffusion in the porous reservoir, followed by dispersion. If this interpretation can be verified, tube wave analysis could lead to further characterization of porous permeable zones.  相似文献   

13.
周期性层状含孔隙、裂隙介质模型纵波衰减特征   总被引:2,自引:2,他引:0       下载免费PDF全文
地震波在含孔隙、裂隙斑块饱和介质传播过程中会诱发多个尺度孔隙流体流动而产生衰减和速度频散.在含有宏观尺度“Biot流”和介观尺度“局域流”衰减诱导机制的周期性层状孔隙介质模型基础上,引入了微观尺度硬币型和尖灭型裂隙“喷射流”的影响,构建了周期性层状含孔隙、裂隙介质模型.利用双解耦弹性波动方程的方法数值计算了该模型地震频带的纵波衰减和速度频散并与周期性层状孔隙介质模型做了对比研究.分析了该模型在不同裂隙参数(裂隙密度、裂隙纵横比)及裂隙体积含量下的纵波衰减和频散特征,裂隙密度越高对于纵波衰减和频散的影响越大,裂隙纵横比越小,由裂隙引起的纵波衰减部分向高频段移动,裂隙体积含量越少,纵波衰减先降低后小幅增加再降低,频散速度增加,并逐渐接近于周期性层状孔隙介质模型的纵波衰减和频散速度曲线.最后研究了周期性层状含孔隙、裂隙介质模型有效平面波模量的高低频极限以及流固相对位移在该模型中的分布特征.  相似文献   

14.
The presence of fractures in fluid‐saturated porous rocks is usually associated with strong seismic P‐wave attenuation and velocity dispersion. This energy dissipation can be caused by oscillatory wave‐induced fluid pressure diffusion between the fractures and the host rock, an intrinsic attenuation mechanism generally referred to as wave‐induced fluid flow. Geological observations suggest that fracture surfaces are highly irregular at the millimetre and sub‐millimetre scale, which finds its expression in geometrical and mechanical complexities of the contact area between the fracture faces. It is well known that contact areas strongly affect the overall mechanical fracture properties. However, existing models for seismic attenuation and velocity dispersion in fractured rocks neglect this complexity. In this work, we explore the effects of fracture contact areas on seismic P‐wave attenuation and velocity dispersion using oscillatory relaxation simulations based on quasi‐static poroelastic equations. We verify that the geometrical and mechanical details of fracture contact areas have a strong impact on seismic signatures. In addition, our numerical approach allows us to quantify the vertical solid displacement jump across fractures, the key quantity in the linear slip theory. We find that the displacement jump is strongly affected by the geometrical details of the fracture contact area and, due to the oscillatory fluid pressure diffusion process, is complex‐valued and frequency‐dependent. By using laboratory measurements of stress‐induced changes in the fracture contact area, we relate seismic attenuation and dispersion to the effective stress. The corresponding results do indeed indicate that seismic attenuation and phase velocity may constitute useful attributes to constrain the effective stress. Alternatively, knowledge of the effective stress may help to identify the regions in which wave induced fluid flow is expected to be the dominant attenuation mechanism.  相似文献   

15.
Estimation of seismic wave attenuation in the shallow crust in terms of coda wave Q structure previously investigated in the vicinity of Cairo Metropolitan Area was improved using seismograms of local earthquakes recorded by the Egyptian National Seismic Network. The seismic wave attenuation was measured from the time decay of coda wave amplitudes on narrow bandpass filtered seismograms based on the single scattering theory. The frequency bands of interest are from 1.5 to 18 Hz. In general, the values obtained for various events recorded at El-Fayoum and Wadi Hagul stations are very similar for all frequency bands. A regional attenuation law Q c = 85.66 f 0.79 was obtained.  相似文献   

16.
Saturation of porous rocks with a mixture of two fluids has a substantial effect on seismic‐wave propagation. In particular, partial saturation causes significant attenuation and dispersion of the propagating waves due to the mechanism of wave‐induced fluid‐flow. Such flow arises when a passing wave induces different fluid pressures in regions of rock saturated by different fluids. Most models of attenuation and dispersion due to mesoscopic heterogeneities imply that fluid heterogeneities are distributed in a regular way. However, recent experimental studies show that mesoscopic heterogeneities have less idealized distributions and that the distribution itself affects attenuation and dispersion. Based on an approximation for the coherent wavefield in random porous media, we develop a model which assumes a continuous distribution of fluid heterogeneities. As this continuous random media approach assumes that there will be a distribution of different patch sizes, it is expected to be better suited to modelling experimental data. We also show how to relate the random functions to experimentally measurable parameters.  相似文献   

17.
砾岩储层地震波传播方程:三重孔隙结构模型   总被引:1,自引:1,他引:0       下载免费PDF全文
针对砾岩储层的砂、砾、泥三重孔隙结构特征,本文分析砾岩孔隙区域、砂岩孔隙区域以及泥岩孔隙区域相互之间的孔隙流体流动机制,将静态的砾岩骨架本构方程与动态的孔隙流体运动方程联立,提出了复杂砾岩储层的弹性波传播理论方程.采用实测砾岩储层参数,在算例中与双重孔隙介质理论进行对比分析,验证了本文理论方程的合理性;基于三重孔隙介质模型,分析不同储层环境下纵波的传播特征,结果显示:随流体黏滞系数增大,在衰减-频率轴坐标系中,砾与砂、砂与泥孔隙区域间局域流导致的两个衰减峰向低频端移动,而Biot全局流导致的衰减峰向高频端移动;嵌入体尺寸及背景相介质渗透率的变化,主要影响纵波速度频散曲线沿频率轴左、右平移,不影响波速低频、高频极限幅值;嵌入体含量及孔隙度的变化改变了岩石干骨架的弹性、密度参数,不仅影响速度频散曲线沿频率轴平移,而且影响其上、下限幅值;砾包砂包泥三重孔隙介质模型所预测的衰减曲线中,低频段"第一个衰减峰"主要由砾岩孔隙区域与砂岩孔隙区域之间的局域流导致,中间频段"第二个衰减峰"主要由砂岩孔隙区域与泥岩孔隙区域之间的局域流导致,超声频段"第三个衰减峰"由Biot全局流导致.对慢纵波传播特征的分析显示,砂岩骨架(局部孔隙度较大)内部的宏观孔隙流体流动造成的耗散明显强于砾岩与泥岩骨架.  相似文献   

18.
We measured the extensional‐mode attenuation and Young's modulus in a porous sample made of sintered borosilicate glass at microseismic to seismic frequencies (0.05–50 Hz) using the forced oscillation method. Partial saturation was achieved by water imbibition, varying the water saturation from an initial dry state up to ~99%, and by gas exsolution from an initially fully water‐saturated state down to ~99%. During forced oscillations of the sample effective stresses up to 10 MPa were applied. We observe frequency‐dependent attenuation, with a peak at 1–5 Hz, for ~99% water saturation achieved both by imbibition and by gas exsolution. The magnitude of this attenuation peak is consistently reduced with increasing fluid pressure and is largely insensitive to changes in effective stress. Similar observations have recently been attributed to wave‐induced gas exsolution–dissolution. At full water saturation, the left‐hand side of an attenuation curve, with a peak beyond the highest measured frequency, is observed at 3 MPa effective stress, while at 10 MPa effective stress the measured attenuation is negligible. This observation is consistent with wave‐induced fluid flow associated with mesoscopic compressibility contrasts in the sample's frame. These variations in compressibility could be due to fractures and/or compaction bands that formed between separate sets of forced‐oscillation experiments in response to the applied stresses. The agreement of the measured frequency‐dependent attenuation and Young's modulus with the Kramers–Kronig relations and additional data analyses indicate the good quality of the measurements. Our observations point to the complex interplay between structural and fluid heterogeneities on the measured seismic attenuation and they illustrate how these heterogeneities can facilitate the dominance of one attenuation mechanism over another.  相似文献   

19.
由于介观尺度的孔隙流体流动,弹性波传播过孔隙岩层时在地震频段表现出较强的频散和衰减。Johnson理论给出了在任意孔隙形状的条件下,部分气水饱和孔隙介质的理论相速度和品质因子的解析解。本文在Johnson模型的基础上,通过对Q值曲线的低频和高频近似,推导了Q值曲线的近似公式,以及基于孔隙介质基本地球物理参数和孔隙斑块几何形态参数T和比表面积S/V的最大衰减Qmin近似公式。通过与理论值的对比,对Qmin近似公式存在的线性误差进行改正,进一步提高了精度。复杂的斑块形态对最大衰减Qmin和过渡频率ftr的都产生一定影响,且对ftr影响更大。因为数值模拟直接求解介观尺度的Biot孔隙介质方程需要极大的计算量,我们使用Zener模型建立了等效粘弹模型,有效地模拟了地震频带内的衰减和频散现象。  相似文献   

20.
In a previous study published in this journal, the authors developed a comprehensive methodology for modelling the shear wave velocity profile in crustal rock, for purposes of seismic hazard assessment. The derived shear wave velocity profile was used to estimate the amplification and attenuation mechanisms in the transmission of seismic waves. The ability to conduct seismic hazard assessments in regions of low and moderate seismicity is greatly enhanced by this new modelling approach, given that developing a local attenuation model based on curve-fitting strong motion data is generally not feasible under such conditions. This paper reports a follow-up study conducted to evaluate the significance of near-surface attenuation in bedrock (as distinct from attenuation in unconsolidated soft soil sediments). The κ parameter is used to characterize the extent of this attenuation mechanism. Empirical correlations of κ with two forms of near-surface shear wave velocity parameter in crustal rock have been developed, employing information obtained from global sources in conjunction with that from local studies. The resulting development of two simple equations to predict median values of κ as functions of readily available shear wave velocity parameters represents the key outcome of this study. Applications of the proposed empirical approaches to determine κ have been provided, taking Hong Kong and Melbourne as case studies to illustrate different aspects of the proposed methodology. Consistency between the results obtained by the two recommended approaches has thereby been demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号