首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhao  XinMiao  Wang  Hui  Li  ZhiHan  Liu  FengLin  Evans  Noreen J.  Zhang  HongFu 《Mineralogy and Petrology》2020,114(2):141-159
Mineralogy and Petrology - A detailed study on petrology and mineral chemistry of 12 mantle xenoliths from Late Cretaceous basaltic lava flows at Daxizhuang has been conducted to constrain the...  相似文献   

2.
苏北盘石山、练山地幔捕虏体的PGE地球化学   总被引:3,自引:0,他引:3  
通过锍镍火试金预富集法,分析了位于郯庐断裂带东侧的盘石山、练山地幔橄榄岩包体中铂族元素(PGE)和Au含量.不同于部分熔融残留成因地幔橄榄岩中通常所观察到的负斜率型或平坦型的分布模式,这两地的地幔橄榄岩以Pt、Pd、Ru相对富集,Ir、Rh相对亏损的"燕子型"分布模式为特征.Pt、Pd等不相容元素富集说明上地幔除经历过早期的部分熔融外,还经历了后期富Pt、Pd的高熔/岩比的熔(流)体的层析分离交代作用影响.盘石山地幔橄榄岩的PGE总量比练山高,Os的含量也比原始地幔值高;而练山地幔橄榄岩的Os含量比原始地幔值低,说明交代作用带走了练山地幔橄榄岩中的Os,却没有很大改变盘石山地幔橄榄岩中的Os含量,这可能与交代熔(流)体含硫量饱和程度有关.Rh的负异常可能与部分熔融过程中熔体较低的fo2有关.  相似文献   

3.
本文对马关地区新生代碱性玄武岩中的地幔包体进行了系统的岩石学和地球化学研究,并首次进行了包体的Re-Os同位素测试。马关地区的橄榄岩包体主量成分上表现为饱满肥沃的特征;具有不同程度的轻稀土亏损特征,亏损Nb、Ti和Zr等高场强元素(HFSE)以及Ba等大离子亲石元素(LILE);橄榄岩包体的Nd同位素特征表明橄榄岩包体代表的是不均一的亏损地幔。5个橄榄岩全岩样品的Re-Os同位素分析结果表明,样品的Os含量总体较高(3.29×10-9~3.78×10-9),接近于造山带橄榄岩体的Os含量,Re含量变化范围较大(0.24×10-9~0.54×10-9),与Re的迁移能力较强有关。样品的187Os/188Os值在0.12295~0.12530之间变化,与187Re/188Os值和Al2O3含量之间都不存在较好的相关性,说明Re-Os体系不单纯由熔体抽取过程所控制。橄榄岩包体的Re亏损年龄tRD为254~604Ma,说明马关地区岩石圈地幔形成的时代应该在新元古代之前。马关地区岩石圈地幔并非是由软流圈上涌新增生的地幔,而是经历了如下演化历史:在新元古代之前,由原始地幔的部分熔融和熔体抽取作用形成了岩石圈地幔,之后经历了熔/流体交代和改造而发生了再富集作用,导致部分地幔橄榄岩逐渐从亏损难熔的特征向饱满肥沃转变,而未遭受熔/流体的改造的橄榄岩仍然保持了难熔亏损的特征。这种熔/流体交代和改造作用很可能与晚二叠纪峨眉山地幔柱的活动有关,而新生代以来印度-亚洲大陆碰撞导致地幔物质向东南方向的侧向流动,诱发软流圈上涌和马关地区的钾质岩浆的活动,也对马关地区岩石圈地幔的改造具有重要的影响,但由于喷发时间较新对Os同位素组成的影响还未显现出来。  相似文献   

4.
Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism   总被引:1,自引:1,他引:1  
The oxidation state, reflected in the oxygen fugacity (fO2), of the subcratonic lithospheric mantle is laterally and vertically heterogeneous. In the garnet stability field, the Kaapvaal lithospheric mantle becomes progressively more reducing with increasing depth from Δlog fO2 FMQ-2 at 110 km to FMQ-4 at 210 km. Oxidation accompanying metasomatism has obscured this crystal-chemical controlled depth-fO2 trend in the mantle beneath Kimberley, South Africa. Chondrite normalized REE patterns for garnets, preserve evidence of a range in metasomatic enrichment from mild metasomatism in harzburgites to extensive metasomatism by LREE-enriched fluids and melts with fairly unfractionated LREE/HREE ratios in phlogopite-bearing lherzolites. The metasomatized xenoliths record redox conditions extending up to Δlog fO2 = FMQ, sufficiently oxidized that magnesite would be the stable host of carbon in the most metasomatized samples. The most oxidized lherzolites, those in or near the carbonate stability field, have the greatest modal abundance of phlogopite and clinopyroxene. Clinopyroxene is modally less abundant or absent in the most reduced peridotite samples. The infiltration of metasomatic fluids/melts into diamondiferous lithospheric mantle beneath the Kaapvaal craton converted reduced, anhydrous harzburgite into variably oxidized phlogopite-bearing lherzolite. Locally, portions of the lithospheric mantle were metasomatized and oxidized to an extent that conversion of diamond into carbonate should have occurred. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The Cenozoic Haoti kamafugite field (23 Ma) is situated at the western Qinling Orogen, Gansu Province in China, which is a conjunction region of the North China Craton, the Yangtze Craton and the Tibetan Plateau. Fresh peridotitic xenoliths entrained in these volcanic rocks provide an opportunity to study the nature and processes of the lithospheric mantle beneath the western Qinling. These xenoliths can be divided into two groups based on the petrological features and mineral compositions, type 1 and type 2. Type 1 xenoliths with strongly deformed texture have higher Fo (90–92.5) contents in olivines, Mg# (91–94) and Cr# (15–35) of clinopyroxenes, and Cr# (36–67) of spinels than the weakly deformed type 2 xenoliths, which have the corresponding values of 89–90, 89–91.5, 10–15 and 5–15 in minerals, respectively. CaO contents in fine-grained olivines are slightly higher than 0.10 wt% compared with coarse-grained ones (less than 0.10 wt%). Fine-grained clinopyroxenes have low Al2O3 + CaO contents (generally <23 wt%) relative to coarse-grained ones (>23 wt%). Fo contents in fine-grained olivines mainly in the melt pocket of the type 1 xenoliths are higher than those in coarse-grained ones, which is somewhat contrary to the type 2 xenoliths without melt pocket. Clinopyroxenes of the type 2 display higher Na2O contents (1.7–1.9 wt%) than those of the type 1 (<1.4 wt%). P–T estimations reveal that the type 1 xenoliths give temperature in range of 1106–1187 °C and pressure of 21–26 kbar and that relatively low temperature (907 and 1022 °C) and pressure (19.0 and 18.5 kbar) for the type 2 xenoliths. The type 1 xenoliths are characterized by depletion due to high degree of partial melting (>10%), modal metasomatic and deformed characteristics, and may represent the old refractory lithospheric mantle. In contrast, the type 2 peridotites show fertile features with low degree of partial melting (<5%) and may represent the newly-accreted lithospheric mantle. The lithospheric mantle beneath the western Qinling underwent partial melting, recrystallization, deformation and metasomatism due to asthenospheric upwelling and the latest decompression responding to the Cenozoic extensive tectonic environment. These processes perhaps are closely related to the evolution of Tibetan Plateau caused by the India-Asian collision.  相似文献   

6.
A history of decompression and metasomatism is preserved in a suite of highly chromian, garnet-rich peridotitic xenoliths from the diamondiferous Newlands and Bobbejaan kimberlites, South Africa. A high proportion of the garnets and chromites in these rocks plot in the diamond-facies fields on Cr2O3–CaO and Cr2O3–MgO wt% plots, and Cr-rich compositions are found in both the harzburgitic and lherzolitic fields. Petrographic evidence suggests that the earliest known mineralogies were those of olivine-bearing, garnet-rich rocks. These were modified by a decompression event that caused recrystallization of garnets and led to orientated spinel and pyroxene inclusions in garnet. Chemical zonation within garnet is divided into (1) external re-equilibration between garnet and matrix; (2) internal re-equilibration between garnet and its inclusions; and (3) metasomatically induced zoning between garnet core and a metasomatic rim. The compositional trajectories associated with zonations (1) and (2) in Ca–Cr plots may be closely modelled by means of sliding, garnet–spinel transition reactions whose slopes vary with bulk Ca composition; at intermediate Ca compositions, the trajectories closely match the slope of the lherzolite line or harzburgite/lherzolite boundary. The decreasing Cr/(Cr + Al) of the garnet in these zonations is in agreement with the evidence for decompression given by the petrographic recrystallization features, and overall decompression of probably 10–20 kb is indicated. We speculate on the age of these events, and consider the possibility of their association with major orogenic events documented by South African crustal rocks at 2.9–2.7 Ga, and events evidenced by peridotite-xenolith Re–Os model ages at 2.8–2.7 Ga.  相似文献   

7.
8.
Mantle-derived xenoliths of spinel lherzolite, spinel pyroxenite, garnet pyroxenite and wehrlite from Bullenmerri and Gnotuk maars, southwestern Victoria, Australia contain up to 3 vol.% of fluids trapped at high pressures. The fluid-filled cavities range in size from fluid inclusions (1–100 m) up to vugs 11/2 cm across, lined with euhedral high-pressure phases. The larger cavities form an integral part of the mosaic microstructure. Microthermometry and Raman laser microprobe analysis show that the fluids are dominantly CO2. Small isolated inclusions may have densities 1.19 g/cm3, but most inclusions show microstructural evidence of partial decrepitation during eruption, and these have lower fluid densities. Mass-spectrometric analysis of gases released by crushing or heating shows the presence of He, N2, Ar, H2S, COs and SO2 in small quantities; these may explain the small freezing-point depressions observed in some inclusions. Petrographic, SEM and microprobe studies show that the trapped fluids have reacted with the cavity walls (in clinopyroxene grains) to produce secondary amphiboles and carbonates. The trapped CO2 thus represents only a small residual proportion of an original volatile phase, which has undergone at least two stages of modification — first by equilibration with spinel lherzolite to form amphibole (±mica±apatite), then by limited reaction with the walls of the fluid inclusions. The inferred original fluid was a CO2-H2O mixture, with significant contents of (at least) Cl and sulfur species. Generation of this fluid phase in the garnet-peridotite stability field, followed by its migration to the spinel peridotite stability field, would provide an efficient mechanism for metasomatic enrichment of the upper mantle in LIL elements. This migration could involve either a volatile flux or transport in small volumes of silicate melt that crystallize in the spinel peridotite field. These observations suggest that some portions of the subcontinental upper mantle contain large reservoirs of free fluid CO2, which may be liberated during episodes of rifting or magmatism, to induce granulite-facies metamorphism of the lower crust.  相似文献   

9.
位于安徽省境内的女山新生代碱性玄武岩中含有大量而且类型丰富的地幔橄榄岩包体,主要类型有尖晶石相、石榴石相、尖晶石-石榴子石过渡相二辉橄榄岩以及少量的方辉橄榄岩,其中部分尖晶石二辉橄榄岩样品中出现富含挥发分的角闪石、金云母和磷灰石。本文选择该区的尖晶石二辉橄榄岩和方辉橄榄岩包体进行了较为详细的岩石学、矿物学、地球化学研究工作。结果显示,除2个方辉橄榄岩表现难熔特征外,其它25件尖晶石相二辉橄榄岩均具有饱满的主量元素组成。二辉橄榄岩样品的Sr-Nd-Hf同位素均表现为亏损地幔的性质,不同于古老克拉通型难熔、富集的岩石圈地幔。富含挥发份交代矿物的出现以及轻稀土元素不同程度的富集,表明女山岩石圈地幔经历了较为强烈的交代作用,然而Re-Os同位素及PGE分析结果表明交代作用并没有显著改变Os同位素组成。二辉橄榄岩样品均具有较高的Os同位素组成,结合其饱满的主量元素组成,亏损的同位素特征,表明女山地区岩石圈地幔整体为新生岩石圈地幔。但1个方辉橄榄岩样品给出了较低的Os同位素比值0.1184,其Re亏损年龄为1.5Ga,它可能来自于软流圈中残留的古老难熔地幔。  相似文献   

10.
Peridotite xenoliths entrained in Plio-Pleistocene alkali basalts from Sardinia represent fragments of the uppermost lithospheric mantle, and are characterised by an anhydrous four-phase mineral assemblage. They range in bulk rock composition from fertile spinel-lherzolites to residual spinel-harzburgites. The Sr-Nd isotope and trace element composition of clinopyroxene mineral separates varies between LREE-depleted samples with 87Sr/86Sr as low as 0.70262 and 143Nd/144Nd up to 0.51323 and LREE-enriched samples with 87Sr/86Sr up to 0.70461 and 143Nd/144Nd down to 0.51252. The available data suggest that all the studied peridotite samples suffered variable degrees of partial melting during Pre-Mesozoic times (based on Nd model ages relative to CHUR and DMM). The overprinted enrichment is related to a subsequent metasomatism, induced by fluids rising through the lithosphere that preferentially percolated the originally most depleted domains. Despite the occurrence of orogenic volcanism in the area, preferential enrichment in elements typically associated with slab derived fluids/melts (K, Rb, Sr, Th) relative to LREE has not been detected, and metasomatism seems to be more likely related to the infiltration of highly alkaline basic melts characterised by an EM-like Sr-Nd isotopic composition. Similar 87Sr/86Sr-143Nd/144Nd compositions, characterised by an EM signature, are observed in anorogenic mafic lavas and peridotite xenoliths from widespread localities within the "European" plate, whereas they have not previously been recorded in peridotite xenoliths and associated alkaline mafic lavas from the stable "African" lithospheric domain.  相似文献   

11.
With the aim to better understand the cause of the iron isotope heterogeneity of mantle-derived bulk peridotites, we compared the petrological, geochemical and iron isotope composition of four xenolith suites from different geodynamic settings; sub-arc mantle (Patagonia); subcontinental lithospheric mantle (Cameroon), oceanic mantle (Kerguelen) and cratonic mantle (South Africa). Although correlations were not easy to obtain and remain scattered because these rocks record successive geological events, those found between δ57Fe, Mg#, some major and trace element contents of rocks and minerals highlight the processes responsible for the Fe isotope heterogeneity. While partial melting processes only account for moderate Fe isotope variations in the mantle (<0.2 ‰, with bulk rock values yielding a range of δ57Fe ± 0.1 ‰ relative to IRMM-14), the main cause of Fe isotope heterogeneity is metasomatism (>0.9 ‰). The kinetic nature of rapid metasomatic exchanges between low viscosity melts/fluids and their wall-rocks peridotite in the mantle is the likely explanation for this large range. There are a variety of responses of Fe isotope signatures depending on the nature of the metasomatic processes, allowing for a more detailed study of metasomatism in the mantle with Fe isotopes. The current database on the iron isotope composition of peridotite xenoliths and mafic eruptive rocks highlights that most basalts have their main source deeper than the lithospheric mantle. Finally, it is concluded that due to a complex geological history, Fe isotope compositions of mantle xenoliths are too scattered to define a mean isotopic composition with enough accuracy to assess whether the bulk silicate Earth has a mean δ57Fe that is chondritic, or if it is ~0.1 ‰ above chondrites as initially proposed.  相似文献   

12.
The Mesozoic lithospheric mantle beneath the North China craton remains poorly constrained relative to its Palaeozoic and Cenozoic counterparts due to a lack of mantle xenoliths in volcanic rocks. Available data show that the Mesozoic lithospheric mantle was distinctive in terms of its major, trace element, and isotopic compositions. The recent discovery of mantle peridotitic xenoliths in Late Cretaceous mafic rocks in the Jiaodong region provides an opportunity to further quantify the nature and secular evolution of the Mesozoic lithospheric mantle beneath the region. These peridotitic xenoliths are all spinel-facies nodules and two groups, high-Mg# and low-Mg# types, can be distinguished based on textural and mineralogical features. High-Mg# peridotites have inequigranular textures, high Mg# (up to 92.2) in olivines, and high Cr# (up to 55) in spinels. Clinopyroxenes in the high-Mg# peridotites are generally LREE-enriched ((La/Yb)N>1) with variable REE concentrations, and have enriched Sr–Nd isotopic compositions (87Sr/86Sr = 0.7046–0.7087; 143Nd/144Nd = 0.5121–0.5126). We suggest that the high-Mg# peridotites are fragments of the Archaean and/or Proterozoic lithospheric mantle that underwent extensive interaction with both carbonatitic and silicate melts prior to or during Mesozoic time. The low-Mg# peridotites are equigranular, are typified by low Mg# ( < 90) in olivines, and by low Cr# ( < 12) in spinels. Clinopyroxenes from low-Mg# peridotites have low REE abundances (ΣREE = 12 ppm), LREE-depleted REE patterns ((La/Yb)N < 1), and depleted Sr–Nd isotopic features, in contrast to the high-Mg# peridotites. These geochemical characteristics suggest that the low-Mg# peridotites represent samples from the newly accreted lithospheric mantle. Combined with the data of mantle xenoliths from the Junan and Daxizhuang areas, a highly heterogeneous, secular evolution of the lithosphere is inferred for the region in Late Cretaceous time.  相似文献   

13.
华北东部晚中生代中基性侵入杂岩体(如山东莱芜地区铁铜沟岩体;山东潍坊地区金岭.湖田岩体;河北邯邢地区符山岩体)中常含有橄榄岩捕虏体。这些橄榄岩的来源和成因问题存在很大争议,主要有堆晶成因或代表古老洋壳蛇绿岩和岩石圈地幔来源两种观点。本文在对山东潍坊地区金岭一湖田岩体中橄榄岩捕虏体的研究成果和总结前人资料的基础上,通过岩石学、矿物学和地球化学研究认为这些橄榄岩捕虏体皆是堆晶成因或代表古老洋壳蛇绿岩,而非岩石圈地幔直接样品。因此,不能用这些橄榄岩捕虏体的组成来反演该地区晚中生代岩石圈地幔特征。  相似文献   

14.
本文对华北克拉通三个不同地区(河北汉诺坝、内蒙古集宁三义堂、河南鹤壁)新发现的含金云母尖晶石二辉橄榄岩和尖晶石橄榄单斜辉石岩捕虏体进行了详细的矿物组成、单斜辉石的微量元素和Sr-Nd同位素研究.通过与相同地区不含金云母尖晶石二辉橄榄岩捕虏体的系统对比发现通常含金云母的地幔橄榄岩比不含金云母的地幔橄榄岩岩富Al2O3、CaO、NaO、K2O、TiO2,但相对贫镁;其单斜辉石的LREE更为富集,但Sr、Nd同位素组成则相对亏损.这说明地幔交代作用不仅能够造成地幔橄榄岩的玄武质组分和稀土元素的富集,而且亦能够造成全岩和橄榄石Mg#的降低和同位素组成的相对亏损.捕虏体的Rb-Sr等时线年龄暗示地幔交代作用发生在中、新生代;其交代熔体来源于软流圈.同时说明华北新生代岩石圈地幔普遍存在的主、微量元素和同位素组成类似于“大洋型”岩石圈地幔的特征很可能是岩石圈地幔橄榄岩与软流圈来源的熔体的大规模反应的结果,而非真正意义上的新增生的岩石圈地幔.  相似文献   

15.
长白山地区位于华北克拉通东北部,广泛出露富含地幔橄榄岩包体的新生代玄武岩,为研究岩石圈地幔的性质和演化提供了优越条件。本文对长白山地区天池和龙岗新生代火山岩群中尖晶石相橄榄岩包体进行了岩石学、全岩主微量元素、矿物主量元素、单斜辉石微量元素和Sr-Nd-Hf同位素分析。研究结果表明,尖晶石相橄榄岩包体由二辉橄榄岩和少量的方辉橄榄岩组成,Mg#值为87.4~91.2,表现出新生饱满的特征,平衡温度为900~1100℃。橄榄石的Mg#值(% Fo)为85.6~91.3。单斜辉石包括四种类型:(1)轻稀土元素严重亏损型;(2)轻稀土元素亏损型;(3)向右微倾型和(4)"勺型"。单斜辉石表现出Sr同位素(87Sr/86Sr=0.702749~0.707276)整体亏损,部分样品富集的特征,单斜辉石的Nd-Hf同位素呈现出亏损特征(143Nd/144Nd=0.512886~0.51333、εHf=+17.7~+49.8)。长白山地区二辉和方辉橄榄岩分别经历了小于10%和略大于10%的部分熔融作用,并受到富水硅酸盐熔体的地幔交代作用。太平洋板块向西俯冲作用使得软流圈上涌并携带大量壳源物质进入地幔深部,与岩石圈地幔发生橄榄岩-熔体反应,形成了长白山地区不均一的岩石圈地幔,以新增生饱满地幔为主,夹有少量古老难熔岩石圈地幔碎片。  相似文献   

16.
邹东雅  张宏福 《岩石学报》2023,39(1):104-118

地幔橄榄岩捕虏体中石榴石次变边的形成过程对理解地幔的构造演化和转变具有非常重要的意义。兴蒙造山带锡林浩特地区新生代玄武岩携带的石榴石橄榄岩捕虏体中的石榴石普遍发育冠冕状次变边结构。本文通过对石榴石及其次变边进行详细的岩相学和电子探针分析,探讨石榴石次变边的成因及其揭示的岩石圈地幔经历的深部过程。根据次变边矿物组成的不同,将其分为原始的次变边(R1和R2)和交代的次变边(MR1和MR2)。原始的次变边中,新鲜的石榴石由内向外依次被放射状且矿物颗粒较细的R1和粒状且矿物颗粒较粗的R2包围,且R1通常比R2宽。R1主要组成矿物为Opx+Sp+Melt1/Pl±Cpx,R2主要组成矿物为Opx+Sp+Cpx。与R2及橄榄岩捕虏体相比,R1的斜方辉石和单斜辉石具有较高的Al2O3含量和较低Mg#值及SiO2含量。与橄榄岩捕虏体相比,R1和R2中的尖晶石均具有较低的Cr#值和较高的Mg#值。R1的斜长石为钙长石,熔体成分与斜长石相比具有偏高的MgO和FeO含量。计算的R1的全岩成分与新鲜的石榴石一致,是石榴石等化学分解的产物。R2的全岩成分比新鲜的石榴石具有偏高的MgO和偏低的SiO2及Al2O3含量,是石榴石和橄榄石反应的产物。交代的次变边是由原始的次变边受到部分或完全的交代作用形成的。完全交代的次变边仍然保留原始次变边的双圈层结构,而未完全交代的次变边则仅在原始次变边的局部出现。交代的次变边中,矿物颗粒较细的核部(MR1)和矿物颗粒较粗的边部(MR2)主要矿物组成一致,皆为Ol+Cpx+Sp+Melt2。与原始的次变边相比,MR1和MR2中的橄榄石和单斜辉石均具有较高的Mg#值,单斜辉石同时具有较高Ca/Al比值(>8),尖晶石具有较高的Cr#值和较低的Mg#值,熔体较富SiO2、Na2O和K2O含量。这些现象说明交代的次变边可能是碳酸盐熔/流体交代原始的次变边消耗斜方辉石生成橄榄石和单斜辉石形成的,这与岩相学观察到的单斜辉石中包裹斜方辉石残余体一致。此外,同一样品中R1的平衡温度略高于R2的平衡温度,且二者均高于橄榄岩的平衡温度。因此,锡林浩特地区石榴石橄榄岩至少经历了两阶段的退变质作用:第一阶段为橄榄岩自石榴石相抬升至尖晶石相,且受到地幔上涌的加热作用,导致石榴石和橄榄石进行缓慢的反应形成R2;第二阶段是在连续减压且加热的背景下,第一阶段残余的石榴石发生快速等化学分解反应,形成R1。退变质作用之后,石榴石原始的次变边又经历了碳酸盐熔/流体的交代作用形成MR1和MR2,最终被寄主玄武岩携带至地表。所以,石榴石次变边的形成记录了新生代时期兴蒙造山带经历的广泛的地幔上涌和多次的地幔隆升,以及地幔交代作用,为研究深部地幔过程提供了重要证据。华北克拉通晚中生代时期经历了强烈的岩石圈伸展运动并伴随着软流圈的上涌,这些过程同样会造成岩石圈地幔的减压和加热,从而导致石榴石相橄榄岩向尖晶石相转变,这可能也是华北克拉通岩石圈地幔转变的机制之一。

  相似文献   

17.
Temperature estimates and chemical composition of mantle xenoliths from the Cretaceous rift system of NW Argentina (26°S) constrain the rift evolution and chemical and physical properties of the lithospheric mantle at the eastern edge of the Cenozoic Andean plateau. The xenolith suite comprises mainly spinel lherzolite and subordinate pyroxenite and carbonatized lherzolite. The spinel lherzolite xenoliths equilibrated at high-T (most samples >1000 °C) and P below garnet-in. The Sm–Nd systematics of compositionally unzoned clino- and orthopyroxene indicate a Cretaceous minimum age for the high-T regime, i.e., the asthenosphere/lithosphere thermal boundary was at ca. 70 km depth in the Cretaceous rift. Major elements and Cr, Ni, Co and V contents of the xenoliths range between values of primitive and depleted mantle. Calculated densities based on the bulk composition of the xenoliths are <3280 kg/m3 for the estimated PT conditions and indicate a buoyant, stable upper mantle lithosphere. The well-equilibrated metamorphic fabric and mineral paragenesis with the general lack of high-T hydrous phases did not preserve traces of metasomatism in the mantle xenoliths. Late Mesozoic metasomatism, however, is obvious in the gradual enrichment of Sr, U, Th and light to medium REE and changes in the radiogenic isotope composition of an originally depleted mantle. These changes are independent of the degree of depletion evidenced by major element composition. 143Nd/144Ndi ratios of clinopyroxene from the main group of xenoliths decrease with increasing Nd content from >0.5130 (depleted samples) to ca. 0.5127 (enriched samples). 87Sr/86Sri ratios (0.7127–0.7131, depleted samples; 0.7130–0.7134, enriched samples) show no variation with variable Sr contents. Pbi isotope ratios of the enriched samples are rather radiogenic (206Pb/204Pbi 18.8–20.6, 207Pb/204Pbi 15.6–15.7, 208Pb/204Pbi 38.6–47) compared with the Pb isotope signature of the depleted samples. The large scatter and high values of 208Pb/204Pbi ratios of many xenoliths indicates at least two Pb sources that are characterized by similar U/Pb but by different Th/Pb ratios. The dominant mantle type in the investigated system is depleted mantle according to its Sr and Nd isotopic composition with relatively radiogenic Pb isotope ratios. This mantle is different from the Pacific MORB source and old subcontinental mantle from the adjacent Brazilian Shield. Its composition probably reflects material influx into the mantle wedge during various episodes of subduction that commenced in early Paleozoic or even earlier. Old subcontinental mantle was already replaced in the Paleozoic, but some inheritance from old mantle lithosphere is represented by rare xenoliths with isotope signatures indicating a Proterozoic origin.  相似文献   

18.
Iron isotopes, together with mineral elemental compositions of spinel peridotite xenoliths and clinopyroxenites from Hannuoba and Hebi Cenozoic alkaline basalts, were analyzed to investigate iron isotopic features of the lithospheric mantle beneath the North China Craton. The results show that the Hannuoba spinel peridotite xenoliths have small but distinguishable Fe isotopic variations. Overall variations in δ57Fe are in a range of ?0.25 to 0.14‰ for olivine, ?0.17 to 0.17‰ for orthopyroxene, ?0.21 to 0.27‰ for clinopyroxene, and ?0.16 to 0.26‰ for spinel, respectively. Clinopyroxene has the heaviest iron isotopic ratio and olivine the lightest within individual sample. No clear linear relationships between the mineral pairs on “δ-δ” plot suggest that iron isotopes of mineral separates analyzed have been affected largely by some open system processes. The broadly negative correlations between mineral iron isotopes and metasomatic indexes such as spinel Cr#, (La/Yb)N ratios of clinopyroxenes suggest that iron isotopic variations in different minerals and peridotites were probably produced by mantle metasomatism. The Hebi phlogopite-bearing lherzolite, which is significantly modified by metasomatic events, appears to be much heavier isotopically than clinopyroxene-poor lherzolite. This study further confirms previous conclusions that the lithospheric mantle has distinguishable and heterogeneous iron isotopic variations at the xenoliths scale. Mantle metasomatism is the most likely cause for the iron isotope variations in mantle peridotites.  相似文献   

19.
P. Armienti  S. Tarquini 《Lithos》2002,65(3-4):273-285
Olivine crystal size distributions (CSDs) have been measured in three suites of spinel- and garnet-bearing harzburgites and lherzolites found as xenoliths in alkaline basalts from Canary Islands, Africa; Victoria Land, Antarctica; and Pali Aike, South America. The xenoliths derive from lithospheric mantle, from depths ranging from 80 to 20 km. Their textures vary from coarse to porphyroclastic and mosaic–porphyroclastic up to cataclastic. Data have been collected by processing digital images acquired optically from standard petrographic thin sections. The acquisition method is based on a high-resolution colour scanner that allows image capturing of a whole thin section. Image processing was performed using the VISILOG 5.2 package, resolving crystals larger than about 150 μm and applying stereological corrections based on the Schwartz–Saltykov algorithm. Taking account of truncation effects due to resolution limits and thin section size, all samples show scale invariance of crystal size distributions over almost three orders of magnitude (0.2–25 mm). Power law relations show fractal dimensions varying between 2.4 and 3.8, a range of values observed for distributions of fragment sizes in a variety of other geological contexts.

A fragmentation model can reproduce the fractal dimensions around 2.6, which correspond to well-equilibrated granoblastic textures. Fractal dimensions >3 are typical of porphyroclastic and cataclastic samples. Slight bends in some linear arrays suggest selective tectonic crushing of crystals with size larger than 1 mm. The scale invariance shown by lithospheric mantle xenoliths in a variety of tectonic settings forms distant geographic regions, which indicate that this is a common characteristic of the upper mantle and should be taken into account in rheological models and evaluation of metasomatic models.  相似文献   


20.
Mantle xenoliths from Paleogene basanites of East Serbia were studied using EMP and LA-ICP-MS techniques in order to better understand mantle characteristics in this region. Five different mantle lithologies have been distinguished: a dunite/harzburgite/lherzolite (D/HZ/L) group, clinopyroxene-rich lherzolites (Cpx-L), clinopyroxene megacrysts (Cpx-M), spinel-rich olivine websterites (OWB1) and spinel-poor olivine websterites (OWB2). D/HZ/L xenoliths are the most common and represent normal mantle composed of typical anhydrous spinel peridotites with well equilibrated, unzoned silicates characterized by high Mg# s. Negative correlations between Mg# and TiO2, Al2O3 and CaO wt% in clinopyroxenes (cpx) and orthopyroxenes (opx) and the Cr–Al trend in spinel (sp) suggest depletion via extraction of basaltic melts. The modal composition of D/HZ/L xenoliths and unusual low-Al opx suggest that the lithospheric mantle underneath East Serbia is more depleted than normal European lithosphere. D/HZ/L xenoliths contain numerous pockets and veins filled by Cr-rich cpx, Ti-rich spinel, altered glass, apatite and rare ilmenite and phlogopite. Petrographic observations, supported by major element contents in sp and cpx, and modelling using trace element contents in cpx, indicate that the pockets and veins formed from infiltration of alkaline melts and reaction with peridotite wall-rock causing opx and spinel replacement. The same alkaline melt-related metasomatism gave rise to the Cpx-L and OWB1 mantle xenoliths and Cpx-M xenocrysts. Trace element contents of cpx in these xenoliths show a distinctively concave downwards REE pattern with a HFSE depletion, very similar to cpx megacrysts from the Pannonian Basin and to vein cpx from Eifel. In contrast, the OWB2 xenoliths show evidence of precipitation from subduction-related mafic to ultramafic melts, as inferred from their opx-rich lithology and unusual Cr-rich spinels. They are probably related to subduction magmatism during the Late Cretaceous.Milivoje Jovanovi: deceased in April 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号