共查询到20条相似文献,搜索用时 15 毫秒
1.
By compiling wide-angle seismic velocity profiles along the 400-km-long Lofoten–Vesterålen continental margin off Norway, and integrating them with an extensive seismic reflection data set and crustal-scale two-dimensional gravity modelling, we outline the crustal margin structure. The structure is illustrated by across-margin regional transects and by contour maps of depth to Moho, thickness of the crystalline crust, and thickness of the 7+ km/s lower crustal body. The data reveal a normal thickness oceanic crust seaward of anomaly 23 and an increase in thickness towards the continent–ocean boundary associated with breakup magmatism. The southern boundary of the Lofoten–Vesterålen margin, the Bivrost Fracture Zone and its landward prolongation, appears as a major across-margin magmatic and structural crustal feature that governed the evolution of the margin. In particular, a steeply dipping and relatively narrow, 10–40-km-wide, Moho-gradient zone exists within a continent–ocean transition, which decreases in width northward along the Lofoten–Vesterålen margin. To the south, the zone continues along the Vøring margin, however it is offset 70–80 km to the northwest along the Bivrost Fracture Zone/Lineament. Here, the Moho-gradient zone corresponds to a distinct, 25-km-wide, zone of rapid landward increase in crustal thickness that defines the transition between the Lofoten platform and the Vøring Basin. The continental crust on the Lofoten–Vesterålen margin reaches a thickness of 26 km and appears to have experienced only moderate extension, contrasting with the greatly extended crust in the Vøring Basin farther south. There are also distinct differences between the Lofoten and Vesterålen margin segments as revealed by changes in structural style and crustal thickness as well as in the extent of elongate potential-field anomalies. These changes may be related to transfer zones. Gravity modelling shows that the prominent belt of shelf-edge gravity anomalies results from a shallow basement structural relief, while the elongate Lofoten Islands belt requires increased lower crustal densities along the entire area of crustal thinning beneath the islands. Furthermore, gravity modelling offers a robust diagnostic tool for the existence of the lower crustal body. From modelling results and previous studies on- and off-shore mid-Norway, we postulate that the development of a core complex in the middle to lower crust in the Lofoten Islands region, which has been exhumed along detachments during large-scale extension, brought high-grade, lower crustal rocks, possibly including accreted decompressional melts, to shallower levels. 相似文献
2.
François Bétard 《Comptes Rendus Geoscience》2010,342(3):215-222
Like other low-elevation passive margins, the French Atlantic margin is characterized by a gradual topographic transition from the coast to low-altitude interior plains or plateaus. Here we propose a morphostratigraphic analysis to constrain long-term landscape evolution and denudation rates, through the characterization of palaeotopographies and related palaeoweatherings in an area restricted to the southeast Armorican Massif. Two regional-scale palaeosurfaces are recognized: (i) the Infraliassic palaeosurface, the truncated weathering profiles of which are sealed by Liassic marine deposits; (ii) the Eocene palaeosurface, underlain by thick kaolinite- and iron-rich palaeosaprolites and by siliceous duricrusts (silcretes). Quantitative constraints on large-scale tectonic uplift and long-term denudation are obtained from these morphostratigraphic markers. Mean uplift and denudation rates calculated on post-Eocene times range between 0.5 and 2 m.Ma-1. These low values imply high landscape stability of the inland margin over most of the Cenozoic. 相似文献
3.
Thermal and petrologic models of the crust and upper mantle are used for calculating effective viscosities on the basis of constant creep rates. Viscosity—depth models together with pressure—depth models are calculated for continental and oceanic blocks facing each other at continental margins. It is found from these “static models” that the overburden pressure in the lower crust and uppermost mantle causes a stress which is directed from the ocean to the continent. The generally low viscosity of 1020–1023 poise in this region should permit a creep process which could finally lead to a “silent” subduction. In the upper crust static stresses act in the opposite direction, i.e. from the continent to the ocean, favouring tension which could produce normal faulting in the continent. Differences between observations and the results obtained from the static models are attributed to dynamical forces. 相似文献
4.
Wang-Ping ChenAuthor Vitae Shu-Huei HungAuthor VitaeTai-Lin TsengAuthor Vitae Michael BrudzinskiAuthor VitaeZhaohui YangAuthor Vitae Robert L. NowackAuthor Vitae 《Gondwana Research》2012,21(1):4-18
While the surface of Tibet is undergoing pervasive pure shear, stable terranes, straddling subsurface sutures, remain in the sub-continental lithospheric mantle (SCLM), attesting to its strength. Furthermore, sub-horizontal, cohesive remnant of Indian SCLM is traced northward from the Himalayan deformation front for about 600 km, exemplifying the longevity of buoyant, strong SCLM of Archean shields. Bimodal distribution of earthquake depths, with peaks concentrating in the upper/middle crust and near the Moho, has been a longstanding evidence for strong SCLM. Recent results from the Himalayas—Tibet and along the East African rift system not only corroborate the bimodal distribution but also firmly established that large earthquakes occur below the Moho. Intriguingly, non-volcanic tremors—newly discovered mode of elastic strain release—also occur near the Moho but well below the seismogenic zone in the upper/middle crust. Considering recent field observations and laboratory experiments of viscosity contrast across the Moho, the SCLM must be strong enough to accumulate elastic strain, a prerequisite for earthquakes, over geological time. Moreover, under laboratory conditions, recent advances that link the termination of frictional instability, an analogue for earthquakes, and the onset of crystal plasticity, provided a physical basis for limiting temperatures of crustal (~ 300-400 °C) and mantle (~ 600-700 °C) earthquakes. While any single rheological model cannot possibly account for all tectonic settings (which also evolve with time), lithological contrast across the Moho is important in shaping the bimodal distribution of strength in the continental lithosphere. 相似文献
5.
6.
Advances in our understanding of the gem corundum deposits of the West Pacific continental margins intraplate basaltic fields 总被引:1,自引:1,他引:1
Ian Graham Lin Sutherland Khin Zaw Victor Nechaev Alexander Khanchuk 《Ore Geology Reviews》2008,34(1-2):200
Recent discoveries over the last decade of new gemfields, exploitation of new and existing deposits, and application of relatively new techniques have greatly increased our knowledge of the basalt-derived gem sapphire–ruby–zircon deposits. In this paper we focus on the Late Mesozoic to Cenozoic intraplate basaltic fields of the West Pacific continental margins. We review advances made in understanding the genesis of these deposits, based on the application of newer techniques. We also critically review existing data on the gem corundum deposits, in order to further refine a model for their origin.In some of the intraplate basaltic fields, corundum-bearing xenoliths have been found showing a range of PT formation conditions from 790 °C at 0.85 GPa to as much as 1100 to 1200 °C at 1.0 to 2.5 GPa. Although most magmatic sapphires contain syngenetic inclusions of columbite-group phases, zircon, spinel and rutile, some contain additional nepheline and K-feldspar, suggesting crystallization from more undersaturated alkaline magma while the Weldborough field of NE Tasmania also contains molybdenite and beryl, suggesting at least some interaction with more fractionated ‘granitic-type’ magmas. There is a large range in PT conditions calculated for the metamorphic rubies (from 780 to 940 °C, through 800 to 1150 °C up to 1000 to 1300 °C). Fluid/melt inclusion studies on magmatic corundums generally suggest that they formed in a CO2-rich environment from a ‘syenitic’ melt under a range of T conditions from 720 to 880 °C up to 1000 to 1200 °C. Oxygen isotope studies reveal that typical magmatic corundums have values of + 4.4 to 6.9‰, whereas metamorphic corundums from the same basaltic host have lower values of + 1.3 to 4.2‰.Geochronological studies have shown that some fields produced a simple eruptive and zircon/corundum crystallization event while others had multiple eruptive events but only one or two zircon crystallization events. For a few fields, some corundums/zircons crystallized in storage regions and then remained relatively inert for periods of 200 to 400 Ma without significant change before transport to the surface in the Cenozoic. Tectonic studies of the Australian region suggest that many of the corundums crystallized from magmas related to episodic basaltic volcanism in a tectonic regime of extension, associated with the opening of the Tasman and Coral Seas. For the Asian region, the magmatic–polygenetic corundums within the basaltic fields largely crystallized in a tectonic regime of distributed E–W extension, whereas the metamorphic-metasomatic corundums crystallised in a transpressional regime associated with the collision of the Indian Plate with the Eurasian Plate (e.g., [Garnier, V., Giuliani, G., Maluski, H., Ohnenstetter, D., Deloule, E., 2003. Ar–Ar and U–Pb ages of marble-hosted ruby deposits from Central and South-east Asia. Geophysical Research Abstracts 5, 03751; Garnier, V., Giuliani, G., Ohnenstetter, D., and Schwarz, D., 2004. Les gisements de corindon: classification et genese. Les placers a corindon gemme. Le Regne Mineral 55, 7-47; Garnier, V., Ohnenstetter, D., Giuliani, G., Maluski, H., Deloule, E., Phan Trong, T., Pham Van, L., Hoang Quang, V., 2005a. Age and significance of ruby-bearing marble from the Red River Shear Zone, Northern Vietnam. Canadian Mineralogist 43, 1315–1329]). 相似文献
7.
N. Kukowski R. von Huene J. Malavieille S. E. Lallemand 《International Journal of Earth Sciences》1994,83(4):822-831
Reflection seismic data from the Peruvian continental margin at 12° S clearly reveal an accretionary wedge and buttress. Sandbox experiments applying the physical concept of the Coulomb theory allow the systematic investigation of the growth and deformation of such an accretionary structure. The style of deformation of the buttress and the internal structure of the wedge is observed in the sandbox models. The possibility of underplating material beneath the buttress and the amount of tectonic erosion depend on the physical properties of the materials, mainly internal friction, cohesion and basal friction. Boundary conditions such as the height of the subduction gate and the thickness of incoming sand also constrain the style of growth of the model accretionary structure.The configurations of two experiments were closely scaled to reflection seismic depth sections across the Peruvian margin. A deformable buttress constructed of compacted rock powder is introduced to replicate the basement rock which allows deformation similar to that in the seismic data. With the sandbox models it is possible to verify a proposed accretionary history derived from seismic and borehole data. The models also help in understanding the mechanisms which control the amount of accretion, subduction and underplating as a function of physical properties, boundary conditions and the duration of convergence. 相似文献
8.
Magmatism at continental passive margins inferred from Ambient‐Noise Phase‐velocity in the Gulf of Aden 下载免费PDF全文
Félicie Korostelev Sylvie Leroy Derek Keir Cornelis Weemstra Lapo Boschi Irene Molinari Abdulhakim Ahmed Graham W. Stuart Frédérique Rolandone Khaled Khanbari Ali Al‐Lazki 《地学学报》2016,28(1):19-26
Non‐volcanic continental passive margins have traditionally been considered to be tectonically and magmatically inactive once continental breakup has occurred and seafloor spreading has commenced. We use ambient‐noise tomography to constrain Rayleigh‐wave phase‐velocity maps beneath the eastern Gulf of Aden (eastern Yemen and southern Oman). In the crust, we image low velocities beneath the Jiza‐Qamar (Yemen) and Ashawq‐Salalah (Oman) basins, likely caused by the presence of partial melt associated with magmatic plumbing systems beneath the rifted margin. Our results provide strong evidence that magma intrusion persists after breakup, modifying the composition and thermal structure of the continental margin. The coincidence between zones of crustal intrusion and steep gradients in lithospheric thinning, as well as with transform faults, suggests that magmatism post‐breakup may be driven by small‐scale convection and enhanced by edge‐driven flow at the juxtaposition of lithosphere of varying thickness and thermal age. 相似文献
9.
The Central India Tectonic Zone (CITZ) is a prominent divide and a major suture zone between the North Indian and South Indian crustal blocks. The resistive upper crust as modeled in the magnetotelluric data from CITZ suggests a dominant tonalite–trdondhjemite–granodiorite composition associated with an accretionary complex characterized by mainly felsic rock components. The highly conductive bodies in this zone might represent mafic/ultramafic-layered intrusives derived from a deeper reservoir of underplated basaltic magma related to the formation of the Cretaceous Deccan flood basalts. The uniformly thick mafic lower crust below the cratons on both sides of the suture is interpreted as the accreted remnants of Archaean and Paleoproterozoic subducted slabs. We redefine the nature of deep faults traversing the CITZ, which were described as steep and penetrating the Moho by previous workers, and classify them as listric faults with gentle dips at depth.Seismic reflection data from the eastern side of the suture suggest a northwestward subduction of the Bhandara Craton. Reflection data from the central part of the CITZ show northerly dip in the southern part suggesting northward subduction of the Dharwar Craton. However, an opposite trend is observed in the northern part of the suture with a southward dip of the Bundelkhand craton. Based on these features, and in conjunction with existing magnetotelluric models, we propose a double-sided subduction history along the CITZ. This would be similar to the ongoing subduction–accretion process in the western Pacific region, which possibly led to the development of paired collision-type and Pacific-type orogens. One important feature is the domal structure along the central part of the suture with a thick felsic crust occurring between mafic and intermediate crust. The high resistivity felsic domain suggests underplated sediments/felsic crust that would have caused the doming. Our model also accounts for the extrusion of regional metamorphic belts at the orogenic core, and the occurrence of high pressure–ultrahigh-temperature paired metamorphic belts within the suture. 相似文献
10.
Low-angle detachment faults are key to our understanding of the tectonic evolution of magma-poor rifted continental margins. In seismic images of present-day rifted margins the identification and interpretation of such features is, however, notoriously difficult and ambiguous. We address this problem by studying the structure and seismic response of such faults through a synoptic interpretation of petrophysical data and geological evidence from the distal segments of the present-day West Iberian and the ancient Tethyan margins. On the basis of the geologically well-constrained remnants of the Tethyan margins, which are spectacularly preserved and exposed in the Alps of Eastern Switzerland, vertical profiles at four key geological settings of a typical magma-poor rifted margin are constructed and their synthetic seismic responses are compared to the observed seismic data from corresponding locations in the present-day Iberian margin. The seismic structure of these profiles is considered as the sum of deterministic large-scale and the stochastic small-scale components. Both components are analyzed for all pertinent lithologies. The large-scale structures are derived from laboratory measurements on samples from both, the West Iberian and Tethyan margins, whereas the small-scale fluctuations are constrained predominantly on the basis of well-log data from the Iberian margin. Different realizations of the simulated stochastic small-scale velocity fluctuations illustrate the potential variability of impedance contrasts and its impact on the seismic response from lithological interfaces and fault structures. Our results indicate that the nature of the seismic response from low-angle detachment faults is largely determined through the fracture-healing behavior of the surrounding rocks. Geological evidence from the exposed fragments of the Tethyan margins indicate that fracture-healing is generally well developed in crustal lithologies, but largely absent in mantle lithologies. It is for this reason that low-angle, intra-crustal detachment faults tend to be seismically undetectable. Conversely, crust–mantle detachments have a complex and variable seismic response, depending on the nature of the damaged zone and on the frequency content of the seismic data. These model-based inferences are consistent with the available evidence from the present-day Iberian passive margin and thus open new perspectives for the interpretation of the corresponding seismic images. 相似文献
11.
北美东部被动大陆边缘是世界上最古老的完整被动大陆边缘之一,是研究被动大陆边缘发育演化的天然实验室。本文在大量国外研究成果的基础上,应用盆地构造解析方法,深入研究了北美东部被动大陆边缘盆地群的地质结构和构造演化特征,并揭示了盆地群的油气地质规律。研究认为,北美东部盆地群沉积充填和不整合面发育具有明显的分段性和差异性。以区域不整合面为界,不同段盆地可划分为不同的构造层:南段盆地可划分为两套构造层;中段南部盆地可划分为3套构造层;中段北部盆地可划分为4套构造层;而北段盆地可划分为5套构造层。盆地群整体经历了陆内裂谷—陆间裂谷—被动大陆边缘的演化过程,但不同段盆地的构造演化具有明显的分段性和迁移性:晚三叠世沉降中心位于南段盆地;早侏罗世初期迁移至中段盆地,南段大陆开始裂解;中侏罗世逐渐迁移至北段盆地,中段大陆开始裂解;早白垩世晚期,北段大陆开始裂解。受持续的抬升剥蚀及大西洋岩浆活动省的联合作用,南段盆地和中段大多数盆地缺乏油气保存条件;斯科舍盆地和大浅滩盆地是主要的含油气盆地,以上侏罗统烃源岩为主,主要发育断层—背斜圈闭和盐体刺穿圈闭,整体表现为“自生自储”和“下生上储”的特征。 相似文献
12.
Together, recent gravity and high-resolution aeromagnetic datasets are used to qualitatively investigate the upper- and middle-crustal geometry of the Middle Paleozoic Gaspé belt in the northern Appalachians. Long-wavelength potential field anomalies define two sub-basins that are divided by northeast trending gravity highs. For each sub-basins, gravity lows correlate with the youngest rock units.Maps that highlight anomalies associated with near surface features, at the expense of those related to deeper sources, provide an important supplement to the spatially discrete observations derived from bedrock mapping. Analysis of such maps indicates that the sub-basins are characterized by different structural patterns and that faults trending obliquely compared to the main structural grain have been previously underestimated.The geometry of the Gaspé belt as revealed by this integrated geophysical and geological study bears similarities with orogens exhibiting lateral extrusion. This geometry is interpreted as the result of a heterogeneous strain regime in front of an indenter corresponding to the Early Paleozoic Gander/Dunnage crustal block. The indentation tectonic model is supported by: 1) the various strike and kinematic of faults that suggest a strongly heterogeneous strain regime; 2) the greater geological complexity and the occurrence of faults with a significant thrust component in front of the indenter; 3) the predominance of dextral strike-slip faults in the eastern Gaspé Peninsula that result in lateral material transport away from the indenter; 4) the location of abundant Devonian magmatic dykes, sills and stocks in a fault-bounded zone that experienced local extension; 5) the occurrence of block rotation. 相似文献
13.
被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示 总被引:2,自引:0,他引:2
作为伸展陆壳和正常洋壳之间重要的过渡和衔接,洋陆转换带(ocean-continent transition,简写为OCT)蕴含有丰富的地壳岩石圈伸展破裂过程的信息。文中通过系统的资料调研,在总结OCT研究历史、现状和发展趋势的基础上,阐明了OCT的现代概念、类型及其识别标志;详细介绍了以OCT为基础而建立的被动陆缘地壳岩石圈结构构造单元划分方案、表层沉积盆地构造地层格架及重要的构造变革界面特征;分析了大型拆离断层在地壳岩石圈薄化、地幔剥露过程中的控制作用;揭示了陆缘变形集中、迁移和叠合的规律,建立了被动陆缘岩石圈伸展、薄化、剥露和裂解模式。最后,论文对比了国际非岩浆型被动大陆边缘与我国南海OCT的研究,介绍了南海OCT和陆缘深水超深水盆地研究的新发现,提出深入研究南海OCT将为南海陆缘构造演化、洋盆扩张过程和深水超深水盆地的成因机制研究提供新的启示。 相似文献
14.
The fact that several half-grabens and normal faults developed in the Lower—Middle Cambrian of Tazhong(central Tarim Basin) and Bachu areas in Tarim Basin,northwest China,indicates that Tarim Basin was under extensional tectonic setting at this time.The half-grabens occur within a linear zone and the normal faults are arranged in en echelon patterns with gradually increasing displacement eastward.Extensional tectonics resulted in the formation of a passive continental margin in the southwest and a cratonic margin depression in the east,and most importantly,influenced the development of a three-pronged rift in the northeast margin of the Tarim Basin.The fault system controlled the development of platform-slope-bathyal facies sedimentation of mainly limestone-dolomite-gypsum rock-saline rock-red beds in the half-grabens.The NW-SE trending half-grabens reflect the distribution of buried basement faults. 相似文献
15.
Mesozoic–Tertiary exhumation history of the Altai Mountains, northern Xinjiang, China: New constraints from apatite fission track data 总被引:2,自引:1,他引:2
Wanming Yuan Andy Carter Jinquan Dong Zengkuan Bao Yinchang An Zhaojie Guo 《Tectonophysics》2006,412(3-4):183-193
This study uses apatite fission track (FT) analysis to constrain the exhumation history of bedrock samples collected from the Altai Mountains in northern Xinjiang, China. Samples were collected as transects across the main structures related to Palaeozoic crustal accretion events. FT results and modeling identify three stages in sample cooling history spanning the Mesozoic and Tertiary. Stage one records rapid cooling to the low temperature part of the fission track partial annealing zone circa 70 ± 10 °C. Stage two, records a period of relative stability with little if any cooling taking place between 75 and 25–20 Ma suggesting the Altai region had been reduced to an area of low relief. Support for this can be found in the adjacent Junngar Basin that received little if any sediment during this interval. Final stage cooling took place in the Miocene at an accelerated rate bringing the sampled rocks to the Earth's surface. This last stage, linked to the far field effects of the Himalayan collision, most likely generated the surface uplift and relief that define the present-day Altai Mountains. 相似文献
16.
Field study of the Hadahid Block (the eastern margin of the central half-graben of the Suez rift) indicates two listric normal faults at its eastern and western boundaries, the rift-bounding fault and the Hadahid Fault, respectively. These faults were affected by two episodes of movement. The earlier movement (at the initial, Neogene rift opening) led to equal displacements on the two faults whereas the later movement (at the mid-Clysmic event, l7 Ma ago) caused the Hadahid Fault to bound the deep part of the central half-graben. A similar conclusion is also reached for the western margin of the southern half-graben of the rift (Esh El Mellaha and Zeit Blocks). The two listric faults bounding the margin blocks in these two oppositely tilted half-grabens (Hadahid and Esh El Mellaha Blocks) join at depth into a ramp-flat detachment. This geometry of the rift-bounding faults represents an intermediate stage in the evolution of rift basins. It is preceded by the early rifting stage where extension is less and oppositely tilted half-grabens are formed (e.g. the ancestral Red Sea-Gulf of Suez rift). Increased extension at later stages leads to the prevailance of one system of detachment instead of oppositely dipping detachments of adjacent half-grabens. The central and southern Red Sea have perhaps had this geometry before the onset of seafloor spreading. 相似文献
17.
Rates of generation and growth of the continental crust 总被引:3,自引:1,他引:3
Models for when and how the continental crust was formed are constrained by estimates in the rates o crustal growth. The record of events preserved in the continental crust is heterogeneous in time with distinctive peaks and troughs of ages for igneous crystallisation, metamorphism, continental margin and mineralisation. For the most part these are global signatures, and the peaks of ages tend to b associated with periods of increased reworking of pre-existing crust, reflected in the Hf isotope ratios o zircons and their elevated oxygen isotope ratios. Increased crustal reworking is attributed to periods o crustal thickening associated with compressional tectonics and the development of supercontinents Magma types similar to those from recent within-plate and subduction related settings appear to hav been generated in different areas at broadly similar times before ~3.0 Ga. It can be difficult to put th results of such detailed case studies into a more global context, but one approach is to consider when plate tectonics became the dominant mechanism involved in the generation of juvenile continental crust The development of crustal growth models for the continental crust are discussed, and a number o models based on different data sets indicate that 65%-70% of the present volume of the continental crus was generated by 3 Ga. Such estimates may represent minimum values, but since ~3 Ga there has been reduction in the rates of growth of the continental crust. This reduction is linked to an increase in th rates at which continental crust is recycled back into the mantle, and not to a reduction in the rates a which continental crust was generated. Plate tectonics results in both the generation of new crust and it destruction along destructive plate margins. Thus, the reduction in the rate of continental crustal growth at ~3 Ga is taken to reflect the period in which plate tectonics became the dominant mechanism b which new continental crust was generated. 相似文献
18.
The subduction of spreading ridges creates a special geodynamic setting distinguished by the interference of convergent and
divergent boundaries between lithospheric plates and their long-term interaction accompanied by the formation of characteristic
geological complexes and structures. The available data on subduction of the contemporary Chile Ridge make it possible to
reconstruct such settings in the geological past. The subduction of the spreading ridge leads to uplift of the continental
margin, cut off the accretionary wedge by means of tectonic erosion, emplacement of a fold-thrust structure and longitudinal
strike-slip faults, and creates settings favorable for obduction of the young oceanic lithosphere. A lithospheric window expressed
in geological and geophysical features opens beneath the continental margin at the continuation of the ridge axis. The subduction-related
volcanic activity ceases above this window, giving way to specific proximal magmatism close to the boundary with the ocean and distal magmatism at a distance from this boundary. The proximal bimodal magmatism was related to the sources of tholeiitic basalts
characteristic of the ridge involved in subduction and to the partial melting of its oceanic crust and sediments. The distal
basaltic magmatism is a product of melting of the fertile oceanic asthenosphere ascending through the lithospheric window
with subsequent transformation of magma in the mantle wedge and the continental crust. The use of the Chilean tectonotype
for paleoreconstructions is limited by the diverse settings of ridge subduction. The Paleogene magmatism at the Pacific margin
of Alaska, where the kinematics of subduction was close to the Chilean subduction, is similar to the proximal igneous rocks
of Chile in composition and zoning, retaining some geological differences. Another aspect of the paleoreconstruction is discussed
on the basis of Jurassic and Cretaceous granitoids of the Ekonai Terrane of the Anadyr-Koryak System and terranes of southern
Alaska. These localities are known for a special, accretionary type of granitoids in the forearc region related to anatectic
magma formation without participation of the plunging ridge. Proceeding from comparison with the Chilean tectonotype, the
criteria for the identification of granitoids varying in their origin are considered. The effect of subducting ridges on continental
margins changed over geologic time and was subject to the rhythm of supercontinental cycles. 相似文献
19.
The Alleppey Platform is an important morphological feature located in the Kerala-Konkan basin off the southwest coast of India. In the present study, seismic reflection data available in the basin were used to understand the sedimentation history and also to carry out integrated gravity interpretation. Detailed seismic reflection data in the basin reveals that:(1) the Alleppey Platform is associated with a basement high in the west of its present-day geometry(as observed in the time-structure map of the Trap Top(K/T boundary)),(2) the platform subsequently started developing during the Eocene period and attained the present geometry by the Miocene and,(3) both the Alleppey platform and the Vishnu fracture zone have had significant impact on the sedimentation patterns(as shown by the time-structure and the isochron maps of the major sedimentary horizons in the region). The 3-D sediment gravity effect computed from the sedimentary layer geometry was used to construct the crustal Bouguer anomaly map of the region.The 3-D gravity inversion of crustal Bouguer anomaly exhibits a Moho depression below the western border of the platform and a minor rise towards the east which then deepens again below the Indian shield. The 2-D gravity modelling across the Alleppey platform reveals the geometry of crustal extension,in which there are patches of thin and thick crust. The Vishnu Fracture Zone appears as a crustal-scale feature at the western boundary of the Alleppey platform. Based on the gravity model and the seismic reflection data, we suggest that the basement high to the west of the present day Alleppey platform remained as a piece of continental block very close to the mainland with the intervening depression filling up with sediments during the rifting. In order to place the Alleppey platform in the overall perspective of tectonic evolution of the Kerala-Konkan basin, we propose its candidature as a continental fragment. 相似文献
20.
Africa’s landscape is dominated by a manifold of second-order epeirogenic structures superimposed on a first-order bimodal topography. Bivariate regression analysis of Africa’s surface topography shows that this is a complexly folded surface with regionally elevated areas in southern and eastern Africa, and a topographically low northern and western Africa. The apparent spatial relationships between these features are analysed using anomaly correlation between surface topography and free-air gravity anomalies. Occurrences of positively correlated features between gravity and topography in Africa are found to be limited to second-order epeirogenic features. Geophysical modelling and geologic evidence indicate that Africa’s bimodal topography is genetically distinct from these second-order features, and linked to sources as deep as the sublithospheric mantle. The age, measured and modelled elevation of the bimodal topography require that topographic uplift of south-central Africa be episodic. We infer from our findings together with relative sea-level changes, that the near-bimodality of Africa’s topography is an ancient feature inherited at least from upper Paleozoic times. Our reconstructed paleotopography suggests that Africa was largely a low-lying continent dominated by its cratons, and that basement distribution disregards the present-day uplift patterns of Africa. 相似文献