首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed field-structural mapping of Neoproterozoic basement rocks exposed in the Wadi Yiba area, southern Arabian Shield, Saudi Arabia illustrates an important episode of late Neoproterozoic transpression in the southern part of the Arabian-Nubian Shield (ANS). This area is dominated by five main basement lithologies: gneisses, metavolcanics, Ablah Group (meta-clastic and marble units) and syn- and post-tectonic granitoids. These rocks were affected by three phases of deformation (D1–D3). D1 formed tight to isoclinal and intrafolial folds (F1), penetrative foliation (S1), and mineral lineation (L1), which resulted from early E-W (to ENE-WSW) shortening. D2 deformation overprinted D1 structures and was dominated by transpression and top-to-the-W (?WSW) thrusting as shortening progressed. Stretching lineation trajectories, S-C foliations, asymmetric shear fabrics and related mylonitic foliation, and flat-ramp and duplex geometries further indicate the inferred transport direction. The N- to NNW-orientation of both “in-sequence piggy-back thrusts” and axial planes of minor and major F2 thrust-related overturned folds also indicates the same D2 compressional stress trajectories. The Wadi Yiba Shear Zone (WYSZ) formed during D2 deformation. It is one of several N-S trending brittle-ductile Late Neoproterozoic shear zones in the southern part of the ANS. Shear sense indicators reveal that shearing during D2 regional-scale transpression was dextral and is consistent with the mega-scale sigmoidal patterns recognized on Landsat images. The shearing led to the formation of the WYSZ and consequent F2 shear zone-related folds, as well as other unmappable shear zones in the deformed rocks. Emplacement of the syn-tectonic granitoids is likely to have occurred during D2 transpression and occupied space created during thrust propagation. D1 and D2 structures are locally overprinted by mesoscopic- to macroscopic-scale D3 structures (F3 folds, and L3 crenulation lineations and kink bands). F3 folds are frequently open and have steep to subvertical axial planes and axes that plunge ENE to ESE. This deformation may reflect progressive convergence between East and West Gondwana.  相似文献   

2.
Wadi Qudaid is present about 120 km northeast of Jeddah, Saudi Arabia. The area includes Precambrian Arabian Shield, Tertiary sedimentary rocks, Tertiary basic volcanics (harrat), and finally Quaternary wadi deposits which represent the main aquifer of Wadi Qudaid area. The present study indicates the presence of pronounced geochemical variations in the groundwater characters along the main channel of Wadi Qudaid from the southwestern part (downstream) to the northeastern (upstream) part. The groundwater-bearing horizon is thicker in the downstream part than the upstream part. The study also revealed that the groundwater is of good quality in the upstream (NE) part than the downstream (SW) part. This is related to the addition and depletion of many elements during the groundwater trip from NE to SW and the addition and depletion of some elements. The downstream part is of high hardness and TDS when compared with the upstream part. Also, the downstream part is of high bisnous element (As, Co, Ni) than the upstream part. The groundwater of the southwestern part of Wadi Qudaid are free from the following elements: i.e., Al, Mn, Fe, Ni, Cu, Zn, and Pb.  相似文献   

3.
4.
5.
6.
Wadi Al-Marwah area is located in the northwestern part of the Arabian Shield, Saudi Arabia. It is mainly covered by Precambrian igneous and sedimentary rock units. This area was not subjected to previous detailed lithological or structural mapping. This study aims to apply supervised classification technique of remotely sensed digital satellite data of Landsat 7 for detailed lithological and structural mapping of the area. The fusion between multispectral Enhanced Thematic Mapper (ETM)+ data and high-resolution panchromatic ETM+ band-8 produced a color composite fused image for the study area, scale 1:50,000. The structural lineaments of the study area were extracted and interpreted from the digital imageries data. Little discrepancies or improvements were detected when combining the supervised classification results with the Landsat ratios or principal component analysis. These highlighted the benefits of multispectral classification, especially in terms of lithologic discrimination. The overall results of image processing techniques, applied in this work, were excellent and succeeded in the performance of a more detailed and accurate lithological and structural maps (scale 1:50,000) than the previous published maps for the investigated area.  相似文献   

7.
《Precambrian Research》2005,136(1):27-50
The Wadi Mubarak belt in Egypt strikes west–east (and even northeast–southwest) and crosscuts the principal northwest–southeast trend of the Najd Fault System in the Central Eastern Desert of Egypt. The belt therefore appears to be a structural feature that formed postdate to the Najd Fault System. In contrast, it is shown here that the deformation in the Wadi Mubarak belt can be correlated with the accepted scheme of deformation events in the Eastern Desert of Egypt and that its geometry and apparently cross-cutting orientation is controlled by a large granite complex that intruded prior to the structural evolution. Structural correlation is facilitated by a series of intrusions that intrude the Wadi Mubarak belt and resemble other intrusions in the Eastern Desert. These intrusions include: (1) an older gabbro generation, (2) an older granite, (3) a younger gabbro and (4) a younger granite. The structural evolution is interpreted to be characterized by early northwest directed transport that formed several major thrusts in the belt. This event is correlated with the main deformation event in the Eastern Desert, elsewhere known as D2. During this event the regional fabric of the Wadi Mubarak belt was wrapped around the El Umra granite complex in a west–east orientation. The Wadi Mubarak belt was subsequently affected during D3 by west–east and northwest–southeast trending sinistral conjugate strike–slip shear zones. This event is related to the formation of the Najd Fault System. Detailed resolution of superimposed shear sense indicators suggest that D3 consisted of an older and a younger phase that reflect the change of transpression direction from east-southeast–west-northwest to eastnortheast–westouthwest. The El Umra granite complex is dated here with single zircon ages to consist of intrusion pulses at 654 and 690 my. These ages conform with the interpretation that it intruded prior to D2 and that the structural pattern of the Wadi Mubarak belt was initiated early during D2.  相似文献   

8.
The Jabal Al-Hassir ring complex is located between latitudes 19°21′ and 19°42′ N,  and longitudes 42°55′ and 4312′ E, Southern Arabian Shield. It is an alkaline to highly fractionated calc-alkaline granite complex consisting of an inner core of biotite granite followed outward by porphyritic sodic-calcic amphibole (ferrobarroisite) granite. U–Pb zircon geochronology indicates that the Jabal Al-Hassir ring complex was emplaced at ca. 620 Ma. The granites display highly fractionated geochemical features (i.e., Eu/Eu* = 0.05–0.35; enrichment of K, Rb, Th, U, Zr, Hf, Y and REE; depletion of Ta, Nb, Ba, Sr, P, Eu, and Ti). Jabal Al-Hassir granites are post-collisional plutonic rocks and contain abundant microcline perthite and sodic-calcic amphibole, sharing the petrological and chemical features of A2-type granites. Sri values range from 0.70241 to 0.70424, are similar to those expected for magmas extracted from a Neoproterozoic depleted source and much lower than what would be expected, if there was minor involvement of pre-Neoproterozoic continental crust. The geochemical characteristics indicate that their magma was most plausibly represented by partial melting of juvenile lower crust following the collision between East and West Gondwana at the final stage of the Arabian Shield evolution. The data presented in this study are therefore consistent with an intraplate, post-collisional magmatism formed at the beginning of a transition from convergent to extensional tectonics.  相似文献   

9.
Volcanic formations of the ca 630-620 Ma old Shammar Group in the Tuluhah area in the northern Arabian Shield occupy an oval area some 8×12 km. They overlie sedimentary rift-fill of the Kuara Formation and are interpreted as related to the formation of a caldera, here named the Awad Caldera. The earliest of the volcanic formations, the Dabsah Tuff, is more than 450 m thick in the south and wedges out in the north. It is composed of silicic, medial to proximal pyroclastic flow rocks that record an eruption during which an initial caldera is interpreted to have formed by probably trapdoor-style collapse. The Nijab Basalt, more than 200 m thick and present as flows overlying the Kuara Formation to the north of the caldera, is presumed to have originated outside the study area during an interval between periods of silicic volcanic activity, and to have flowed onto the Dabsah Tuff in the first-stage caldera. The succeeding Mindassa Megabreccia contains large rafts of the older Shammar rocks, mainly Nijab Basalt, in a tuff matrix, and is regarded as probably a caldera collapse and fallback megabreccia formed during a silicic eruption that led to the second stage of caldera development. The megabreccia is overlain by the post-collapse Sutayih Tuff, more than 450 m thick, composed of proximal pyroclastic flow units.  相似文献   

10.
11.
As Suqah area is a NW–SE trending wadi present in the west central part of the Arabian Shield. It comprises Precambrian–Cambrian basement rocks, Cretaceous–Tertiary sedimentary succession, Tertiary–Quaternary basaltic lava flows, and Quaternary–Recent alluvial deposits. The magnetic anomalies indicated the presence of many recent local buried faults. These affected the distribution of the clastic sedimentary succession and seem to have controlled the deep groundwater aquifers. Groundwater movement is towards the west and northwest, following in general the surface drainage system. Hydraulic gradient varies greatly from one point to another depending on the pumping rates and cross-sectional area of the aquifer in addition to its transmissivity. The detailed results of the resistivity and seismic measurements were integrated with those obtained from test holes drilled in the study area. Groundwater occurs mainly in two water-bearing horizons, the alluvial deposits and within the clastic sedimentary rocks of Haddat Ash Sham and Ash Shumaysi formations. The shallow zone is characterized with a saturated thickness of 3–20 m and water is found under confined to semi-confined conditions. Water levels were encountered at depths varying from 3 to 16 m in the alluvial wadi deposits and from 18 to 62 m in the sedimentary succession. The combinations of vertical electrical sounding, horizontal electrical profiling, and drilling led to the identification of groundwater resources in the study area. Resistivity soundings clearly identified the nature of the lithological depth and proved useful at identifying water-bearing zones. Significantly, the majority of the groundwater was found within the deep confined aquifer gravelly sandstone, rather than in the shallow unconfined aquifer.  相似文献   

12.
A number of gneiss-cored domes and antiforms are exposed along the regional strike-slip Najd fault system in the Arabian Shield and the eastern desert of Egypt. The mode of origin is still controversial, although plausible comparisons with modern metamorphic core complexes were made in some well-studied areas. The Kirsh dome is located within the major Ar Rika shear zone and consists of a core of orthogneiss/migmatite and an envelope of paragneisses with locally abundant kyanite-bearing quartzites. The dome is surrounded by the low-grade metasediments of the Murdama Group and is bound from the south by a low-angle dip-slip fault. Beyond the southern strand of the Ar Rika Fault is the Kibdi Basin which hosts unmetamorphosed sediments belonging to the Jibalah Group; this group occupies scattered pull-apart basins closely associated with releasing bends along the Najd fault system. Little dating has been done on the gneiss domes of the Arabian Shield; however, recent dates from similar structures in the eastern desert and Sinai range from 580 to 620?Ma. A similar, albeit younger 40Ar/39Ar age of 557?±?15?Ma was obtained from a biotite paragneiss south of Jabal Kirsh; this age difference probably represent the time interval it took the Kirsh rocks to cool below the biotite closure temperature and would place a lower age limit for the dome. The Kirsh dome occupies an extensional zone between left-stepping faults; movement within this zone might have caused enough decompression to trigger fluid-absent melting in the middle crust especially as the rocks cross the biotite dehydration solidus. Diapiric ascent aided by strike-slip dilatancy pumping led to the emplacement of the Kirsh rocks in their present position within the Murdama Group metasediments.  相似文献   

13.
A new aeromagnetic map together with new geological and geochronological data has led to a reinterpretation of the geological history of the Arabian Shield.
The magnetic anomalies outline an orogenic complex containing a network of mostly left-lateral strike-slip faults, including the Nabitah Belt and several peripheral mountain ranges. Oblique accretion resulted in obliteration of early volcanic-arc magnetic fabrics, which were almost completely replaced by a NW–SE magnetic fabric in the northern Shield; the southern Shield, however, reveals extensive E–W anomalies related to post-accretion magmatic intrusions. This complex web of orogenic zones is intimately associated with synchronous molasse basins that formed 680–610 Ma.
The distribution and chronology of orogenic zones, related to the closing of East and West Gondwana, brings into question several earlier assumptions, such as high continental growth rates, palaeogeodynamic reconstructions, the definitions of the Nabitah and Najd faults, and the significance of molasse basins.  相似文献   

14.
15.
The district of Mahawiyah in the Proterozoic shield of Arabia contains a group of Zn-Cu-Au-Ag-Ba mineral prospects in folded meta-sedimentary, volcanoclastic and volcanic rocks, ranging in composition from basalt to rhyolite. The mineralization occurs in veins and as strata-bound, disseminated orebodies associated with intense argillic alteration of adjacent rocks. An intrusive rhyolite dome or laccolith is situated at the centre of an eight square kilometre area of slight but pervasive alteration whose outline can be traced from aerial photographs and within which many of the ore mineral occurrences lie. A model is proposed to explain the pattern of alteration in the volcano-sedimentary pile and formation of the volcanogenic mineralization, based on a concept of the dome acting as a heat source to drive a geothermal "cell". Circulating connate-hydrothermal fluids could have caused alteration and redistribution of trace metals within the volcanics and sediments which mantle the sub-volcanic, rhyolite intrusion. The ore genetic model implies that clusters of veins, disseminated strata-bound and stratiform massive sulphide orebodies occur in distinct areas of the shield, marked by tracts of pervasive alteration which can be identified in aerial photographs and satellite images.  相似文献   

16.
17.
Influenced by mining activities in adjacent coal seams, stresses on rocks surrounding roadway were redistributed, and the roadways in lower coal seam were subjected to the asymmetrical roof falling and roof sagging. Considering stresses effect on the plastic zone around the roadway, numerical models were carried out by FLAC to investigate plastic zone with respect to stress ratio and direction of stresses. The relationship between the properties of surrounding rock and plastic zone boundary was also investigated by another numerical model and analytical study, whereby the tailgate stability of panel 30,501 in Tashan coal mine was implemented. It is shown that the rocks surrounding a roadway in the lower coal seam were subjected to unequal stresses, and the principal stress direction was deflected from the original direction. High stresses and big stress ratio can produce butterfly-shaped or X-shaped plastic zone. The direction of stresses was deflected, causing the plastic zone around the roadway to be transferred from the shoulder to the roof of the roadway. Consequently, asymmetrical stresses produce asymmetrical plastic zone. On this basis, the tailgate should be assigned conditions of the stresses and stress ratio at a low level. In this way, the tailgate was arranged at the position where the horizontal distance from the roadway in the lower seam to the centre line of the coal pillar in the upper seam (x) is 52.5 m, and was stable relatively.  相似文献   

18.
Paleogeographic evidence shows that the series of broad E-W anticlines and synclines on the Arabian Shield (Southern Hadramawt Arch, Wadi Hadramawt Syncline, Northern Hadramawt Arch, Rub Al Khali Syncline, Tuwaiq Homocline, Nafud Basin) are not old, inherited structures, but were formed in late Eocene and Oligocene times, as indicated by the warping of Middle Eocene sediments. The fold axes of these structures trend parallel to the Gulf of Aden, and their separation increases from S to N, i. e., with increasing distance from the Gulf of Aden. The most pronounced orogenic phase of the Toros mountain belt and the folding of the foreland belt (Lebanon, Antilebanon, Palmyra Arch, Jebel Sinjar, etc.) took place simultaneously with the warping of the shield. Furthermore, the early Tertiary Trap Volcanism occurs only in the neighborhood of the Gulf of Aden (Yemen, W-Aden Protectorate, Eritrea, Ethiopia, Somaliland). Geophysical-oceanographic research in the Gulf of Aden suggests that emplacement of basic magmatic material forms a quasi-oceanic crust (sea-floor spreading) in that rift trough. This apparently causes the displacement of the continental blocks. The close connections in time as well as in directional trends of epirogenic, orogenic and volcanic activities on the Arabian Shield to the sea-floor spreading in the Gulf of Aden indicates tectonic interrelations.This impression is still emphasized, if one considers the younger tectonic development on the shield. The young Tertiary Aden-Volcanics Belt (Miocene-Recent) extends from the East African Rift system over the West Arabian Shield all the way up to Turkey, that is to say its trend is more or less parallel to the Red Sea. Warping effects (Ras en Naqb Uplift, Jafr Depression, Bayir Uplift, Wadi Sirhan Depression, Rutba Dome and the Mesopotanian Basin) on the northern part of the Arabian Shield, where the earlier developed (Aden Gulf-related) structures die out, can be related in time and direction to the rifting in the Red Sea. Faulting along the Aqaba-Dead Sea System is of the same age and cuts the foreland belt. Finally the folding of the Zagros mountain belt is of Miocene age too.The Arabian Shield, bounded by still-active rifting structures of different direction and age, provides a classical example of the effect of sea-floor spreading on a shield area itself, and on its surrounding instable belt. The correct interpretation of these tectonic connections eventually may allow far reaching, basic conclusions.
Zusammenfassung Die känozoische tektonische und vulkanologische Entwicklung auf und um den Arabischen Schild ist relativ jung und im Vergleich zu anderen Gegenden in ihrer Gesamtheit noch verhältnismäßig gut überschaubar. Sie bietet daher ein Beispiel, dessen Verständnis möglicherweise von grundlegender Bedeutung für die Interpretation gebirgsbildender Vorgänge werden kann.Der Arabische Schild ist im Süden und Südwesten umrahmt von den Rift-Systemen des Golfes von Aden und Roten Meeres, deren zentrale Teile durch quasi-ozeanische Kruste gekennzeichnet sind. Die Einschübe basischen magmatischen Materials (sea-floor spreading) in die Rifttröge verursachten offenbar eine Verdrängung der kontinentalen Blöcke (Bewegungssinn senkrecht zum Streichen der Zonen des aktiven sea-floor spreading). Jedenfalls läßt sich ein solcher Beanspruchungsplan von den verschiedenen tektonischen Teilvorgängen auf dem Arabischen Schild ableiten.Die Entwicklung des Golfes von Aden ist älter als die des Roten Meeres, und das gilt dementsprechend für die Eo- bis Oligozänen vulkanischen, epirogenen und orogenen Vorgänge, die räumlich und zeitlich Beziehungen zum Geschehen im Golf von Aden aufweisen (Trap-Vulkanismus, Verbiegungen des Süd- und Zentral-Arabischen Schildes und Auffaltung des Taurusgebirges und Palmyra-bogens). Alle Ereignisse, die räumliche Beziehungen zur Rotcn-Meer-Streichrichtung zeigen (Aden-Vulkanismus, epirogene Verbiegung des Nord-Arabischen Schildes und Auffaltung des Zagrosgebirges) sind jünger, d. h. seit dem Miozän besonders aktiv.

Résumé L'évidence paléogéographique montre que, comme l'indique le gauchissement des sédiments de l'Eocéne Moyen, les séries des grands géanticlinaux et synclinaux, orientés est-ouest, sur le craton arabique (S. Hadramawt Arc, Wadi Hadramawt syncline, N. Hadramawt géanticline, Rub Al Khali syncline, Tuwaiq homocline, Nafud bassin) ne sont pas des vieilles structures antérieures, mais ont été formés durant l'Eocéne et l'Oligocène. Les axes de plissement de ces structures ont tendance à être parallèles au Golfe d'Aden. Leur séparation augmente du sud vers le nord, c'est à dire de la même manière que leur distance du Golfe d'Aden augmente. La phase orogénique la plus prononcée de la ceinture montagneuse de Toros et les prémontagnes de l'Arabie septentrionale (Lebanon, Antilebanon, Palmyra Arc, Jebel Sinjar) eurent lieu au même moment que le gauchissement du craton arabique. Bien plus, le «Trap»-volcanisme du Tertiaire Inférieur n'a lieu que dans le voisinage du Golfe d'Aden (Yemen, W-Aden Protectorat, Éritrea, Ethiopia, Somali). Des recherches géophysiques et océanographiques dans le Golfe d'Aden et la Mer Rouge suggèrent que des emplacements de matériaux d'origine magmatique forment une croûte quasi-océanique («Sea-floor Spreading») dans le fossé d'effondrement. Ceci est apparement la cause du déplacement des blocs continentaux. Les proches coïncidences aussi bien en époque qu'en direction des activités épirogéniques, orogéniques et volcaniques entre le craton arabique et le «Sea-floor Spreading» du Golfe d'Aden indiquent des correspendances tectoniques.Cette impression est encore plus renforcée, si l'on considère les développements plus récents du craton arabique. La jeune ceinture Tertiaire d'«Aden»-Volcanisme (Miocène-Recent) s'étend depuid le rift d'Afrique de l'est jusqu'en Turquie au travers du craton arabique de l'ouest. Elle se trouve de ce fait être plus ou moins parallèle à la Mer Rouge. Les gauchissements (Ras En Naqb, Jafr dépression, Bayir hautes plaines, Wadi Sirhan bassin, Rutba dome, Bassin Mésopotanien) de la partie septentrionale du craton arabique, où disparaissent des structures (identiques à celles du Golfe d'Aden) dévelopées au paravent, peuvent être associées en temps et direction au « rifting » de la Mer Rouge. Les failles le long du système Aquaba-Mer Morte sont du même âge et coupent les prémontagnes de l'Arabie septentrionale. Finalement le plissement de la ceinture montagneuse de Zagros appartient aussi au Miocène.Le craton arabique délimité par des structures d'âge et de directions différentes et toujours en cours de séparation, est un example classique de l'effet de la «Sea-floor Spreading» sur un craton et sur sa ceinture instable environnante. L'interprétation correcte de ces effets tectoniques resultera, le cas échéant, en des conclusions fondamentales très importantes.

. . , , w . — - , - . , -, (seafloor-spreading) , . — , , ( , ). , , ( , ) ; .


Formerly Southwest Center for Advanced Studied P. O. Box 30 365 Dallas Texas 75 230(Contribution No.81).  相似文献   

19.
A lead isotope study of mineralization in the Saudi Arabian Shield   总被引:1,自引:0,他引:1  
New lead isotope data are presented for some late Precambrian and early Paleozoic vein and massive sulfide deposits in the Arabian Shield. Using the Stacey Kramers (1975) model for lead isotope evolution, isochron model ages range between 720 m.y. and 420 m.y. Most of the massive sulfide deposits in the region formed before 680 m.y. ago, during evolution of the shield. Vein type mineralization of higher lead content occurred during the Pan African event about 550 m.y. ago and continued through the Najd period of extensive faulting in the shield that ended about 530 m.y. ago. Late post-tectonic metamorphism may have been responsible for vein deposits that have model ages less than 500 m.y. Alternatively some of these younger model ages may be too low due to the mineralizing fluids acquiring radiogenic lead from appreciably older local crustal rocks at the time of ore formation.The low207Pb/204Pb ratios found for the deposits in the main part of the shield and for those in north-eastern Egypt, indicate that the Arabian craton was formed in an oceanic crustal environment during the late Precambrian. Involvement of older, upper-crustal material in the formation of the ore deposits in this part of the shield is precluded by their low207Pb/204Pb and208Pb/204Pb characteristics.In the eastern part of the shield, east of longitude 44°20E towards the Al Amar-Idsas fault region, lead data are quite different. They exhibit a linear207Pb/204Pb-206Pb/204Pb relationship together with distinctly higher208Pb/204Pb characteristics. These data imply the existence of lower crustal rocks of early Proterozoic age that apparently have underthrust the shield rocks from the east. If most of the samples we have analyzed from this easterly region were mineralized 530 m.y. ago, then the age of the older continental rocks is 2,100±300 m.y. (2).The presence of upper crustal rocks, possibly also of early Proterozoic age, is indicated by galena data from Hailan in South Yemen and also from near Muscat in Oman. These data are the first to indicate such old continental material in these regions.  相似文献   

20.
Ophiolite belts and the collision of island arcs in the Arabian Shield   总被引:1,自引:0,他引:1  
The Arabian Shield is divided into several segments by ophiolite zones. The segments display features of island arcs with respect to their magmatic evolution as well as their mineralization.The northern part of the “Hulayfah—Hamdah ophiolite belt” which cuts the Arabian Shield in a north—southerly direction, has been sampled and described. Serpentinized ultramafics, gabbros, doleritic dike rocks and basalts are the most important members. The ophiolite belt is marked by magnetic anomalies with amplitudes of 200–500 gammas.In conclusion, the Arabian Shield is considered to be built up of several generations of juxtaposed volcanic arcs of Late Proterozoic age. The arcs have been closely swept together squeezing out the trench-fill sediments in the case of the Hulayfah—Hamdah belt. Cratonization was completed by the end of the Precambrian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号