共查询到20条相似文献,搜索用时 15 毫秒
1.
Yacine Achour Abderrahmane Boumezbeur Riheb Hadji Abdelmadjid Chouabbi Victor Cavaleiro El Amine Bendaoud 《Arabian Journal of Geosciences》2017,10(8):194
This research work deals with the landslide susceptibility assessment using Analytic hierarchy process (AHP) and information value (IV) methods along a highway road section in Constantine region, NE Algeria. The landslide inventory map which has a total of 29 single landslide locations was created based on historical information, aerial photo interpretation, remote sensing images, and extensive field surveys. The different landslide influencing geoenvironmental factors considered for this study are lithology, slope gradient, slope aspect, distance from faults, land use, distance from streams, and geotechnical parameters. A thematic layer map is generated for every geoenvironmental factor using Geographic Information System (GIS); the lithological units and the distance from faults maps were extracted from the geological database of the region. The slope gradient, slope aspect, and distance from streams were calculated from the Digital Elevation Model (DEM). Contemporary land use map was derived from satellite images and field study. Concerning the geotechnical parameters maps, they were determined making use of the geotechnical data from laboratory tests. The analysis of the relationships between the landslide-related factors and the landslide events was then carried out in GIS environment. The AUC plot showed that the susceptibility maps had a success rate of 77 and 66% for IV and AHP models, respectively. For that purpose, the IV model is better in predicting the occurrence of landslides than AHP one. Therefore, the information value method could be used as a landslide susceptibility mapping zonation method along other sections of the A1 highway. 相似文献
2.
Moragues Silvana Lenzano María Gabriela Lanfri Mario Moreiras Stella Lannutti Esteban Lenzano Luis 《Natural Hazards》2021,105(1):915-941
Natural Hazards - In the present study, we achieved the susceptibility mapping to slope instability processes by the implementation of Analytic Hierarchy Process and Weighted Linear Combination... 相似文献
3.
As one of the major problems of geo-engineering, landslides often influence the safety of linear engineering projects that cross mountainous areas. Therefore, when selecting suitable routes for such projects, it is important to assess their susceptibility to landslides. In this paper, we used a natural gas pipeline in the northeast of the Yunnan-Guizhou Plateau of China as a case study to analyze landslide susceptibility. Based on engineering geological analogy, the analytical hierarchy process, and the least-squares method, a regional landslide susceptibility assessment model was developed and was programmed using GIS ArcEngine components under the Visual Studio.NET environment. The landslide susceptibility along the Zhong-Wu natural gas pipeline from Zhongxian County to Wuhan was assessed based on this model and classified into five levels: very safe, safe, moderate, susceptible, and very susceptible. The high accuracy and prediction capability of the model were confirmed by comparing the model results with past landslide data and performing a prediction test. The results indicated that the assessment model used in this study is reliable and can be used for landslide susceptibility assessment and route selection in other areas. 相似文献
4.
5.
Ranjan Kumar Dahal 《Environmental Earth Sciences》2014,71(12):5145-5164
Landslide susceptibility zonation mapping is a fundamental procedure for geo-disaster management in tropical and sub-tropical regions. Recently, various landslide susceptibility zonation models have been introduced in Nepal with diverse approaches of assessment. However, validation is still a problem. Additionally, the role of various predisposing causative parameters for landslide activity is still not well understood in the Nepal Himalaya. To address these issues of susceptibility zonation and landslide activity, about 4,000 km2 area of central Nepal was selected for regional-scale assessment of landslide activity and susceptibility zonation mapping. In total, 655 new landslides and 9,229 old landslides were identified with the study area with the help of satellite images, aerial photographs, field data and available reports. The old landslide inventory was “blind landslide database” and could not explain the particular rainfall event responsible for the particular landslide. But considering size of the landslide, blind landslide inventory was reclassified into two databases: short-duration high-intensity rainfall-induced landslide inventory and long-duration low-intensity rainfall-induced landslide inventory. These landslide inventory maps were considered as proxy maps of multiple rainfall event-based landslide inventories. Similarly, all 9,884 landslides were considered for the activity assessment of predisposing causative parameters. For the Nepal Himalaya, slope, slope aspect, geology and road construction activity (anthropogenic cause) were identified as most affective predisposing causative parameters for landslide activity. For susceptibility zonation, multivariate approach was considered and two proxy rainfall event-based landslide databases were used for the logistic regression modelling, while a relatively recent landslide database was used in validation. Two event-based susceptibility zonation maps were merged and rectified to prepare the final susceptibility zonation map and its prediction rate was found to be more than 82 %. From this work, it is concluded that rectification of susceptibility zonation map is very appropriate and reliable. The results of this research contribute to a significant improvement in landslide inventory preparation procedure, susceptibility zonation mapping approaches as well as role of various predisposing causative parameters for the landslide activity. 相似文献
6.
Natural Hazards - The timely and accurate assessment of casualties is the key for and basis of emergency rescue work after an earthquake. In this paper, through exponential fitting of historical... 相似文献
7.
8.
Landslide is considered as one of the most severe threats to human life and property in the hilly areas of the world. The number of landslides and the level of damage across the globe has been increasing over time. Therefore, landslide management is essential to maintain the natural and socio-economic dynamics of the hilly region. Rorachu river basin is one of the most landslide-prone areas of the Sikkim selected for the present study. The prime goal of the study is to prepare landslide susceptibility maps(LSMs) using computer-based advanced machine learning techniques and compare the performance of the models.To properly understand the existing spatial relation with the landslide, twenty factors, including triggering and causative factors, were selected. A deep learning algorithm viz. convolutional neural network model(CNN) and three popular machine learning techniques, i.e., random forest model(RF), artificial neural network model(ANN), and bagging model, were employed to prepare the LSMs. Two separate datasets including training and validation were designed by randomly taken landslide and nonlandslide points. A ratio of 70:30 was considered for the selection of both training and validation points.Multicollinearity was assessed by tolerance and variance inflation factor, and the role of individual conditioning factors was estimated using information gain ratio. The result reveals that there is no severe multicollinearity among the landslide conditioning factors, and the triggering factor rainfall appeared as the leading cause of the landslide. Based on the final prediction values of each model, LSM was constructed and successfully portioned into five distinct classes, like very low, low, moderate, high, and very high susceptibility. The susceptibility class-wise distribution of landslides shows that more than 90% of the landslide area falls under higher landslide susceptibility grades. The precision of models was examined using the area under the curve(AUC) of the receiver operating characteristics(ROC) curve and statistical methods like root mean square error(RMSE) and mean absolute error(MAE). In both datasets(training and validation), the CNN model achieved the maximum AUC value of 0.903 and 0.939, respectively. The lowest value of RMSE and MAE also reveals the better performance of the CNN model. So, it can be concluded that all the models have performed well, but the CNN model has outperformed the other models in terms of precision. 相似文献
9.
Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran 总被引:33,自引:8,他引:33
The main goal of this study is to produce landslide susceptibility maps of a landslide-prone area (Haraz) in Iran by using both fuzzy logic and analytical hierarchy process (AHP) models. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 78 landslides were mapped from various sources. Then, the landslide inventory was randomly split into a training dataset 70?% (55 landslides) for training the models and the remaining 30?% (23 landslides) was used for validation purpose. Twelve data layers, as the landslide conditioning factors, are exploited to detect the most susceptible areas. These factors are slope degree, aspect, plan curvature, altitude, lithology, land use, distance from rivers, distance from roads, distance from faults, stream power index, slope length, and topographic wetness index. Subsequently, landslide susceptibility maps were produced using fuzzy logic and AHP models. For verification, receiver operating characteristics curve and area under the curve approaches were used. The verification results showed that the fuzzy logic model (89.7?%) performed better than AHP (81.1?%) model for the study area. The produced susceptibility maps can be used for general land use planning and hazard mitigation purpose. 相似文献
10.
Soft computing and GIS for landslide susceptibility assessment in Tawaghat area, Kumaon Himalaya, India 总被引:2,自引:4,他引:2
D. Ramakrishnan T. N. Singh A. K. Verma Akshay Gulati K. C. Tiwari 《Natural Hazards》2013,65(1):315-330
This paper mainly presents a case study of landslide vulnerability zonation along Tawaghat-Mangti route corridor in Kumaon Himalaya, India. An attempt is made to predict landslide susceptibility using back-propagation neural network (BPNN) and propose a suitable model for that zone, which can be successfully implemented for the prevention of slides. Various landslide affecting parameters such as lithology, slope, aspect, structure, geotechnical properties, land use, landslide inventory, and distance from recorded epicenter are used to model the landslide susceptibility. The database on the above parameters derived from satellite imageries, topographic maps, and field work are integrated in the GIS to generate an information layer. Database of this information layer is used to train, test, and validate the BPNN model. A three-layered BPNN with an input layer, two hidden layers, and one output layer is found to be optimal. The developed model demonstrates a promising result, and the prediction accuracy has been found to be 80?% in the field. 相似文献
11.
Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview 总被引:30,自引:0,他引:30
The aim of this paper is to discuss a number of issues related to the use of spatial information for landslide susceptibility, hazard, and vulnerability assessment. The paper centers around the types of spatial data needed for each of these components, and the methods for obtaining them. A number of concepts are illustrated using an extensive spatial data set for the city of Tegucigalpa in Honduras. The paper intends to supplement the information given in the “Guidelines for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning” by the Joint ISSMGE, ISRM and IAEG Technical Committee on Landslides and Engineered Slopes (JTC-1). The last few decades have shown a very fast development in the application of digital tools such as Geographic Information Systems, Digital Image Processing, Digital Photogrammetry and Global Positioning Systems. Landslide inventory databases are becoming available to more countries and several are now also available through the internet. A comprehensive landslide inventory is a must in order to be able to quantify both landslide hazard and risk. With respect to the environmental factors used in landslide hazard assessment, there is a tendency to utilize those data layers that are easily obtainable from Digital Elevation Models and satellite imagery, whereas less emphasis is on those data layers that require detailed field investigations. A review is given of the trends in collecting spatial information on environmental factors with a focus on Digital Elevation Models, geology and soils, geomorphology, land use and elements at risk. 相似文献
12.
Predictive landslide susceptibility mapping using spatial information in the Pechabun area of Thailand 总被引:2,自引:0,他引:2
Hyun-Joo Oh Saro Lee Wisut Chotikasathien Chang Hwan Kim Ju Hyoung Kwon 《Environmental Geology》2009,57(3):641-651
For predictive landslide susceptibility mapping, this study applied and verified probability model, the frequency ratio and
statistical model, logistic regression at Pechabun, Thailand, using a geographic information system (GIS) and remote sensing.
Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and maps
of the topography, geology and land cover were constructed to spatial database. The factors that influence landslide occurrence,
such as slope gradient, slope aspect and curvature of topography and distance from drainage were calculated from the topographic
database. Lithology and distance from fault were extracted and calculated from the geology database. Land cover was classified
from Landsat TM satellite image. The frequency ratio and logistic regression coefficient were overlaid for landslide susceptibility
mapping as each factor’s ratings. Then the landslide susceptibility map was verified and compared using the existing landslide
location. As the verification results, the frequency ratio model showed 76.39% and logistic regression model showed 70.42%
in prediction accuracy. The method can be used to reduce hazards associated with landslides and to plan land cover. 相似文献
13.
Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances 总被引:14,自引:1,他引:14
The current research presents a detailed landslide susceptibility mapping study by binary logistic regression, analytical hierarchy process, and statistical index models and an assessment of their performances. The study area covers the north of Tehran metropolitan, Iran. When conducting the study, in the first stage, a landslide inventory map with a total of 528 landslide locations was compiled from various sources such as aerial photographs, satellite images, and field surveys. Then, the landslide inventory was randomly split into a testing dataset 70 % (370 landslide locations) for training the models, and the remaining 30 % (158 landslides locations) was used for validation purpose. Twelve landslide conditioning factors such as slope degree, slope aspect, altitude, plan curvature, normalized difference vegetation index, land use, lithology, distance from rivers, distance from roads, distance from faults, stream power index, and slope-length were considered during the present study. Subsequently, landslide susceptibility maps were produced using binary logistic regression (BLR), analytical hierarchy process (AHP), and statistical index (SI) models in ArcGIS. The validation dataset, which was not used in the modeling process, was considered to validate the landslide susceptibility maps using the receiver operating characteristic curves and frequency ratio plot. The validation results showed that the area under the curve (AUC) for three mentioned models vary from 0.7570 to 0.8520 $ ({\text{AUC}}_{\text{AHP}} = 75.70\;\% ,\;{\text{AUC}}_{\text{SI}} = 80.37\;\% ,\;{\text{and}}\;{\text{AUC}}_{\text{BLR}} = 85.20\;\% ) $ ( AUC AHP = 75.70 % , AUC SI = 80.37 % , and AUC BLR = 85.20 % ) . Also, plot of the frequency ratio for the four landslide susceptibility classes of the three landslide susceptibility models was validated our results. Hence, it is concluded that the binary logistic regression model employed in this study showed reasonably good accuracy in predicting the landslide susceptibility of study area. Meanwhile, the results obtained in this study also showed that the statistical index model can be used as a simple tool in the assessment of landslide susceptibility when a sufficient number of data are obtained. 相似文献
14.
15.
Behera Rashmisikha Kar Abhipsa Das Manas Ranjan Panda Prachi Prava 《Natural Hazards》2019,96(2):731-751
Natural Hazards - The 485-km-long coastline of Odisha, a state in the northeastern part of the Indian peninsula, is potentially vulnerable to several disaster events that take place frequently. In... 相似文献
16.
17.
S. Reis A. Yalcin M. Atasoy R. Nisanci T. Bayrak M. Erduran C. Sancar S. Ekercin 《Environmental Earth Sciences》2012,66(7):2063-2073
The northeast part of Turkey is prone to landslides because of the climatic conditions, as well as geologic and geomorphologic
characteristics of the region. Especially, frequent landslides in the Rize province often result in significant damage to
people and property. Therefore, in order to mitigate the damage from landslides and help the planners in selecting suitable
locations for implementing development projects, especially in large areas, it is necessary to scientifically assess susceptible
areas. In this study, the frequency ratio method and the analytical hierarchy process (AHP) were used to produce susceptibility
maps. Especially, AHP gives best results because of allowing better structuring of various components, including both objective
and subjective aspects and comparing them by a logical and thorough method, which involves a matrix-based pairwise comparison
of the contribution of different factors for landslide. For this purpose, lithology, slope angle, slope aspect, land cover,
distance to stream, drainage density, and distance to road were considered as landslide causal factors for the study area.
The processing of multi-geodata sets was carried out in a raster GIS environment. Lithology was derived from the geological
database and additional field studies; slope angle, slope aspect, distance to stream, distance to road and drainage density
were invented from digital elevation models; land cover was produced from remote sensing imagery. In the end of study, the
results of the analysis were verified using actual landslide location data. The validation results showed satisfactory agreement
between the susceptibility map and the existing data on landslide locations. 相似文献
18.
Gökhan Demir Mustafa Aytekin Aykut Akgün Sabriye Banu İkizler Orhan Tatar 《Natural Hazards》2013,65(3):1481-1506
The North Anatolian Fault is known as one of the most active and destructive fault zones which produced many earthquakes with high magnitudes both in historical and instrumental periods. Along this fault zone, the morphology and the lithological features are prone to landslides. Kuzulu landslide, which is located near the North Anatolian Fault Zone, was triggered by snow melting without any precursor, occurred on March 17, 2005. The landslide resulted in 15 deaths and the destruction of about 30 houses at Kuzulu village. There is still a great danger of further landslides in the region. Therefore, it is vitally important to present its environmental impacts and prepare a landslide susceptibility map of the region. In this study, we used likelihood-frequency ratio model and analytical hierarchy process (AHP) to produce landslide susceptibility maps. For this purpose, a detailed landslide inventory map was prepared and the factors chosen that influence landslide occurrence were: lithology, slope gradient, slope aspect, topographical elevation, distance to stream, distance to roads, distance to faults, drainage density and fault density. The ArcGIS package was used to evaluate and analyze all the collected data. At the end of the susceptibility assessment, the area was divided into five susceptibility regions, such as very low, low, moderate, high and very high. The results of the analyses were then verified using the landslide location data and compared with the probability model. For this purpose, an area under curvature (AUC) and the seed cell area index assessments were applied. An AUC value for the likelihood-frequency ratio-based model 0.78 was obtained, whereas the AUC value for the AHP-based model was 0.64. The landslide susceptibility map will help decision makers in site selection and the site-planning process. The map may also be accepted as a basis for landslide risk-management studies to be applied in the study area. 相似文献
19.
Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region,Uttarakhand 总被引:1,自引:0,他引:1
A comprehensive use of analytical hierarchy process (AHP) method in landslide susceptibility mapping (LSM) has been presented for rim region of Tehri reservoir. Using remote sensing data, various landslide causative factors responsible for inducing instability in the area were derived. Ancillary data such as geological map, soil map, and topographic map were also considered along with remote sensing data. Exhaustive field checks were performed to define the credibility of the random landslide conditioning factors considered in this study. Apart from universally acceptable inherent causative factors used in the susceptibility mapping, others such as impact of reservoir impoundment on terrain, topographic wetness index and stream power index were found to be important causative factors in rim region of the Tehri reservoir. The AHP method was used to acquire weights of factors and their classes respectively. Weights achieved from AHP method matched with the existing field conditions. Acceptable consistency ratio (CR) value was achieved for each AHP matrix. Weights of each factor were integrated with weighted sum technique and a landslide susceptibility index map was generated. Jenk’s natural break classifier was used to classify LSI map into very low, low, moderate, high and very high landslide susceptible classes. Validation of the susceptibility map was performed using cumulative percentage/success rate curve technique. Area under curve value of the success rate curve was converted to percentage validation accuracy and a reasonable 78.7% validation accuracy was achieved. 相似文献
20.
Assessment and inventory of landslide susceptibility are essential for the formulation of successful disaster mitigation plans. The objective of this study was to assess landslide susceptibility in relation to geo-diversity and its hydrological response in the Lesser Himalaya with a case study using Geographic Information System (GIS) technology. The Dabka watershed, which constitutes a part of the Kosi Basin in the Lesser Himalaya, India, in the district of Nainital, has been selected for the case illustration. The study constitutes three GIS modules: geo-diversity informatics, hydro informatics and landslide informatics. Through the integration and superimposing of spatial data and attribute data of all three GIS modules, Landslide Susceptibility Index (LSI) has been prepared to identify the level of susceptibility for landslide hazards. This resonance study, carried out over a period of five years (2007–2011), found that areas of most stressed geo-diversity (comprising very steep slopes above 30°, geology of Lower Krol and Lariakanta formation, geomorphology of moist areas and debris sites, land use of barren land with a very high drainage frequency and spring density) have a high landslide susceptibility because of high rate of average runoff (33 l/s/km2), flood magnitude (307.28 l/s/km2), erosion (398 tons/km2) and landslide density (5–10 landslides/km2). The areas of least stressed geo-diversity (comprising gentle slopes below 10°, geology of Kailakhan and Siwalik formation, geomorphology of depositional terraces, land use of dense forest with low drainage frequency and spring density) have the lowest landslide susceptibility because of the low rate of average runoff (6.27 l/s/km2), flood magnitude (20.49 l/s/km2), erosion (65.80 tons/km2) and landslide density (1–2 landslides/km2). 相似文献