首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymetallic sulfide ores (Zn, Pb, Fe, Cu, Ag, and Cd) found in the Alanish locality of northern Iraq are hosted by dolostone in the Late Permian Chia Zairi Formation. The Alanish locality is one of several Zn–Pb deposits that are widespread in northern Iraq, situated along the northern passive margin of the Arabian plate. This paper describes the ore deposit classification, mineral chemistry, and paragenetic sequence of the area and proposes an ore formation model. We report the presence of acanthite and greenockite for the first time in Iraq. A brine solution derived from the sedimentary basin formed the primary sulfide ore minerals (sphalerite, galena, acanthite, pyrite, chalcopyrite, greenockite, and marcasite). The pre-tectonic mineralization is characterized by replacement textures including (1) high-Fe, low-Zn, dark-colored, coarse-grained sphalerite; (2) deformed anisotropic coarse-grained galena; and, (3) idiomorphic cubes of crushed pyrite. Conversely, the post-tectonic mineralization is characterized by open-space filling textures, including (1) low-Fe, high-Zn, light-colored, fine aggregated sphalerite; (2) fine-grained galena; and, (3) the existence of acanthite and marcasite. Although galena is an Ag carrier, both mineralization phases contained non-argentiferous galena. Non-sulfides (smithsonite, cerussite, and goethite) have replaced older sulfides in many areas due to supergene process. Gangue minerals present are dolomite, calcite, barite, and siderite. Open spaces and cavity filling of small paleo-karsts, replacement, veins, and veinlets are common features of the ore body. Metals were sourced from brines generated in the sedimentary basin, whereas sulfur was derived from nearby evaporates. Sediment compaction and tectonic activity, probably during Late Cretaceous, were the driving forces that squeezed and moved ore-bearing fluids derived from the sedimentary basin. Multiple stages of ore-bearing fluids were epigenetically intruded into the Late Paleozoic dolostone, forming an epigenetic strata-bound Mississippi Valley-type deposit precipitated under a temperature of 120 °C, as indicated by the cadmium fractionation in sphalerite and galena. Dolomitization and tectonic activity provided the necessary permeability for accumulating ores. The main ore body is directly connected to a fault plane and to adjacent dolostone that is frequently fractured and brecciated.  相似文献   

2.
The Shurab Sb-polymetallic mineralization is a subvolcanic rock-hosted epithermal deposit and located in north Lut Block, eastern Iran. It is one of the most important deposits of the Iranian East Magmatic Assemblage (IEMA) in which numerous Middle-Cenozoic precious and base metals deposits occur. The main lithological units in the area are Paleogene subvolcanic intrusions and minor Jurassic sedimentary rocks. Mineralization occurs as veins in a series of NW-SE and E-W trending faults and fractures in the Eocene-Oligocene dacite and andesite subvolcanic rocks. Mineralization at the Shurab deposit can be subdivided into four stages: pre-ore stage, Cu-Zn-Pb ore stage, Sb-Ag ± As ore stage and post-ore stage. The total sulfide content of the veins in the area is variable, ranging from 1 to 50%, and is dominated by stibnite, chalcopyrite, galena, Fe-poor sphalerite and pyrite with minor chalcostibite, Ag-tetrahedrite and bournonite; gangue minerals are mainly quartz and calcite. Silicic, argillic, propylitic, and sericitic, are the most obvious wall rock alterations. Microthermometric measurements of primary liquid-rich fluid inclusions in quartz and sphalerite indicate that the veins were formed at temperatures between 115 and 290 °C from fluids with salinities between 0.7 and 16.2 wt% NaCl eq., suggesting an epithermal origin. The δ34S values of pyrite, chalcopyrite and galena vary between -2.5 and 0.8‰, and δ18O values of quartz range between 12.5 and 14.8‰. It is inferred that the Shurab mineralization is of epithermal origin, related to an Eocene-Oligocene magmatic geothermal system involving fluids of magmatic and meteoric origin.  相似文献   

3.
Abstract: The gold deposit at Ashanti occurs in the Proterozoic Birimian formation of Ghana. Two main ore types mined from the deposit are gold-bearing quartz veins, and gold-sulfide disseminations in metasediments and metavolcanics. The main sulfide minerals in the gold-sulfide disseminated ores are arsenopyrite, pyrite and pyrrhotite, and to a very minor extent, sphalerite and tetrahedrite. Carbonate alteration and sericitization are prominent in the metavolcanics and the metasediments, respectively. In the quartz veins, pyrite and arsenopyrite commonly occur in small amounts, but gold mostly occurs in contact with tetrahedrite, chalcopyrite, galena, aurostibite, and sphalerite. Pyrrhotite is absent in the quartz veins.
Microprobe studies indicate that As content of homogeneous arsenopyrite grains ranges from 27. 0 to 31. 7 atm%, and gives mineralization temperatures from 170 to 430°C, although mostly from 300 to 400°C. Chlorite geothermometry using temperature dependence of substitution of Al for Si in the tetrahedral site gives formation temeratures of 330 to 400°C, comparable to the arsenopyrite temperatures. Applying sphalerite–pyrite–pyrrhotite geobarometry to sphalerite with FeS contents from 13. 6 to 12. 5 mol%, the pressure was estimated to be in a range from 5. 9 to 7. 0 kb at the stage of elevated temperatures.
Mineralogical observations, especially absence of pyrrhotite in the quartz veins, together with microprobe data for gold and associated minerals suggest that the fluids having ascended through fissures in the Ashanti deposit were reduced by the reaction with carbonaceous materials in the metasediments during the declining stage of the regional metamorphism.  相似文献   

4.
Late Variscan vein-type mineralization in the Iberian Pyrite Belt, related to the rejuvenation of pre-existing fractures during late Variscan extensional tectonism, comprises pyrite–chalcopyrite, quartz–galena–sphalerite, quartz–stibnite–arsenopyrite, quartz–pyrite, quartz–cassiterite–scheelite, fluorite–galena–sphalerite–chalcopyrite, and quartz–manganese oxide mineral assemblages. Studies of fluid inclusions in quartz, stibnite, and barite as well as the sulfur isotopic compositions of stibnite, galena, and barite from three occurrences in the central part of the Iberian Pyrite Belt reveal compelling evidence for there having been different sources of sulfur and depositional conditions. Quartz–stibnite mineralization formed at temperatures of about 200 °C from fluids which had undergone two-phase separation during ascent. Antimony and sulfide are most probably derived by alteration of a deeper lying, volcanic-hosted massive sulfide mineralization, as indicated by δ34S signatures from ?1.45 to ?2.74‰. Sub-critical phase separation of the fluid caused extreme fractionation of chlorine isotopes (δ37Cl between ?1.8 and 3.2‰), which correlates with a fractionation of the Cl/Br ratios. The source of another high-salinity fluid trapped in inclusions in late-stage quartz from quartz–stibnite veins remains unclear. By contrast, quartz–galena veins derived sulfide (and metals?) by alteration of a sedimentary source, most likely shale-hosted massive sulfides. The δ34S values in galena from the two study sites vary between ?15.42 and ?19.04‰. Barite which is associated with galena has significantly different δ34S values (?0.2 to 6.44‰) and is assumed to have formed by mixing of the ascending fluids with meteoric water.  相似文献   

5.
The Arapuçandere Pb–Zn–Cu ore body is a typical vein-type lead–zinc deposit of the Biga Peninsula, and is currently being mined for lead and zinc. In the study area, Permian–Triassic metamorphic rocks, Triassic metaclastic and metabasic rocks, Oligocene–Miocene granitoids, Miocene volcanic rocks, and Quaternary terrigenous sediments crop out. The ore deposits developed as Pb–Zn–Cu-bearing veins along faults in Triassic metasandstone and metadiabase. Microscopic studies reveal that the veins contain galena, sphalerite, chalcopyrite, pyrite, marcasite, covellite, and specular hematite as ore minerals, and quartz, calcite, and barite as gangue minerals. Analysed sulphur-isotope compositions (δ34SVCDT) of galena, sphalerite, and chalcopyrite range from ? 5.9 to ? 1.9‰ (average ? 3.4‰), from ? 5.5 to ? 1.7‰ (average ? 4.2 ‰), and from ? 3.5 to ? 0.9‰ (average ? 2.6‰), respectively; that of H2S in the hydrothermal fluid was in the calculated range of ? 5.8 to +0.1‰ (average ? 2.5‰). These isotopic values suggest that magmatic sulphur dominates in sulphides, mixed with minor, isotopically light sulphur. Because no contemporaneous magmatic activity is associated with mineralization, it may be assumed that sulphur was leached from the surrounding Triassic units, mainly from metabasic, partly from metaclastic rocks. Lead-isotope studies indicate a model age of 114–63 Ma for the lead reservoir, in accord with possible sulphur-bearing local source rocks. Thus, the sulphur and lead deposited in the studied ore veins were probably leached from Triassic metabasic and metaclastic rocks some time during the Early Cretaceous to the Palaeocene.  相似文献   

6.
The Pojeonri Cu quartz veins occur in the north-western portion of the Hwanggangri Metallogenic Province and consist of two parallel massive quartz veins that fill fractures oriented NW and NE along fault zones in Paleozoic metasedimentary and sedimentary rocks of the Ogcheon and Taebaeg belts. Based on the mineralogy and paragenesis of the veins, only one mineralization episode has been recognized. The ore minerals are mainly chalcopyrite, pyrrhotite, and pyrite with minor arsenopyrite, sphalerite, galena and oxides of those base metal minerals.  相似文献   

7.
新疆尼勒克县加曼特金矿床地质及流体包裹体研究   总被引:1,自引:0,他引:1       下载免费PDF全文
新疆尼勒克县加曼特金矿床产于下石炭统大哈拉军山组的一套中酸性火山岩中,矿体受火山-次火山机构控制,呈脉状、透镜状产出。流体包裹体岩相学、显微测温及激光拉曼显微探针分析表明:流体包裹体为气液两相或纯液相的水溶液,属NaCl-H2O体系;均一温度主要集中在180~260℃,盐度为在(0.2~12.5)wt%NaCl.eqv,密度为0.49~0.97 g/cm3,表现为低温、低盐度、低密度的特点。因此,加曼特金矿的矿床地质和成矿流体特征总体属于中低温热液脉状矿床,可能属于斑岩型与浅成低温热液型之间的过渡型。  相似文献   

8.
Mineral assemblages, chemical compositions of ore minerals, wall rock alteration and fluid inclusions of the Gatsuurt gold deposit in the North Khentei gold belt of Mongolia were investigated to characterize the gold mineralization, and to clarify the genetic processes of the ore minerals. The gold mineralization of the deposit occurs in separate Central and Main zones, and is characterized by three ore types: (i) low‐grade disseminated and stockwork ores; (ii) moderate‐grade quartz vein ores; and (iii) high‐grade silicified ores, with average Au contents of approximately 1, 3 and 5 g t?1 Au, respectively. The Au‐rich quartz vein and silicified ore mineralization is surrounded by, or is included within, the disseminated and stockwork Au‐mineralization region. The main ore minerals are pyrite (pyrite‐I and pyrite‐II) and arsenopyrite (arsenopyrite‐I and arsenopyrite‐II). Moderate amounts of galena, tetrahedrite‐tennantite, sphalerite and chalcopyrite, and minor jamesonite, bournonite, boulangerite, geocronite, scheelite, geerite, native gold and zircon are associated. Abundances and grain sizes of the ore minerals are variable in ores with different host rocks. Small grains of native gold occur as fillings or at grain boundaries of pyrite, arsenopyrite, sphalerite, galena and tetrahedrite in the disseminated and stockwork ores and silicified ores, whereas visible native gold of variable size occurs in the quartz vein ores. The ore mineralization is associated with sericitic and siliceous alteration. The disseminated and stockwork mineralization is composed of four distinct stages characterized by crystallization of (i) pyrite‐I + arsenopyrite‐I, (ii) pyrite‐II + arsenopyrite‐II, (iii) galena + tetrahedrite + sphalerite + chalcopyrite + jamesonite + bournonite + scheelite, and iv) boulangerite + native gold, respectively. In the quartz vein ores, four crystallization stages are also recognized: (i) pyrite‐I, (ii) pyrite‐II + arsenopyrite + galena + Ag‐rich tetrahedrite‐tennantite + sphalerite + chalcopyrite + bournonite, (iii) geocronite + geerite + native gold, and (iv) native gold. Two mineralization stages in the silicified ores are characterized by (i) pyrite + arsenopyrite + tetrahedrite + chalcopyrite, and (ii) galena + sphalerite + native gold. Quartz in the disseminated and stockwork ores of the Main zone contains CO2‐rich, halite‐bearing aqueous fluid inclusions with homogenization temperatures ranging from 194 to 327°C, whereas quartz in the disseminated and stockwork ores of the Central zone contains CO2‐rich and aqueous fluid inclusions with homogenization temperatures ranging from 254 to 355°C. The textures of the ores, the mineral assemblages present, the mineralization sequences and the fluid inclusion data are consistent with orogenic classification for the Gatsuurt deposit.  相似文献   

9.
河南洛宁沙沟Ag-Pb-Zn矿床银的赋存状态及成矿机理   总被引:4,自引:0,他引:4  
位于河南洛宁境内的沙沟热液脉型Ag-Pb-Zn矿床是熊耳山地区近年来新发现的大型矿床.野外观察和矿相学研究表明成矿过程包含4个阶段, 分别为石英-菱铁矿阶段(Ⅰ)、石英-闪锌矿阶段(Ⅱ)、石英-银矿物-方铅矿阶段(Ⅲ)和石英-碳酸盐阶段(Ⅳ), 其中Ⅱ、Ⅲ阶段为主成矿阶段.扫描电子显微镜-能谱分析(SEM-EDS)和电子显微探针微区成分分析(EMP)结果显示, 沙沟矿床中的银以不可见银和可见银两种形式存在, 但以可见银为主.不可见银主要以次显微包体(< 1 μm)的形式被包裹在黄铜矿和闪锌矿等硫化物中, 而可见银通常以各种银的独立矿物形式交代方铅矿和黄铜矿等硫化物或充填在硫化物和石英的显微裂隙内.结合本文研究和前人对沙沟矿床流体包裹体的研究认为, 银和铅、锌等金属离子在成矿早期高温阶段以氯络合物的形式搬运, 随着成矿热液温度和氧逸度的降低以及pH值的升高, 氯络合物因稳定性降低而解体, 硫氢络合物成为银、铅、锌的主要迁移形式.随着成矿热液温度的继续降低, 铅、锌等金属硫氢络合物开始分解, 方铅矿、黄铜矿和闪锌矿等硫化物得以沉淀, 此时部分银以显微和次显微包体银的形式被包裹于这些硫化物中.铅锌硫化物的大量沉淀引起成矿热液组成和性质的显著变化, 最终导致银从硫氢络合物中彻底解体, 并与Cu+、Sb3+等离子结合形成大量独立银矿物(如含银黝铜矿、硫锑铜银矿和辉铜银矿等), 而溶液中过饱和的银则以自然银的形式沉淀.   相似文献   

10.
Abstract: Mineral paragenesis of the alteration, ore and gangue minerals of the Lepanto epithermal copper‐gold deposit and the Victoria gold deposit, Mankayan Mineral District, Northern Luzon, Philippines, is discussed. The principal ore minerals of the Lepanto copper‐gold deposit are enargite and luzonite, with significant presence of tennantite‐tetrahedrite, chalcopyrite, sphalerite, galena, native gold/electrum and gold‐silver tellurides. Pervasive alteration zonations are commonly observed from silicification outward to advanced argillic then to propylitic zone. The ore mineralogy of the Lepanto copper‐gold deposit suggests high fS2 in the early stages of mineralization corresponding to the deposition of the enargite‐luzonite‐pyrite assemblage. Subsequent decrease in the fS2 formed the chalcopyrite‐tennantite‐pyrite assemblage. An increase in the fS2 of the fluids with the formation of the covellite‐digenite‐telluride assemblage caused the deposition of native gold/electrum and gold‐silver tellurides. The principal ore minerals of the Victoria gold deposit are sphalerite, galena, chalcopyrite, tetrahedrite and native gold/electrum. The alteration halos are relatively narrow and in an outward sequence from the ore, silica alteration grades to illitic‐argillic alteration, which in turn grades to propylitic alteration. The Victoria gold mineralization has undergone early stages of silica supersaturation leading to quartz deposition. Vigorous boiling increased the pH of the fluids that led to the deposition of sulfides and carbonates. The consequent decrease in H2S precipitated the gold. Gypsum and anhydrite mainly occur as overprints that cut the carbonate‐silica stages. The crosscutting and overprinting relationships of the Victoria quartz‐gold‐base metal veins on the Lepanto copper‐gold veins manifest the late introduction of near neutral pH hydrothermal fluids.  相似文献   

11.
以阴沟矿床为例,通过岩相学、岩石学、地球化学研究,指出该类矿床指示矿物(岩石)为重晶石、硅质岩、黄铁矿、黄铜矿、方铅矿、闪锌矿等,指示元素为Cu、Pb、Zn、Ag、Au、As、Sb、Mo、Ba等;并分析这些矿物和元素垂直分带,水平分带规律;确定了找矿标志,为重晶石脉或帽和黄铁矿化带.然后分析了二郎坪群海相火山岩形成海底火山喷流块状硫化物矿床的地质环境和条件,并指出在该区进一步扩大找矿的远景和方向.  相似文献   

12.
Abstract: Polymetallic mineralization at the Nakakoshi deposits, Kamikawa town, central Hokkaido, occur as fracture-filling veins in Cretaceous slate of the Hidaka Supergroup. Ten veins have been recognized in NE-SW and E-W directions. Sericite in altered slate which is the host of the deposits, was dated at 31. 1 Ma, Oligocene in age.
No. 9 vein consists of massive chalcopyrite ore with various kinds of minerals such as pyrite, pyrrhotite, arsenopyrite, sphalerite, tetrahedrite, Ag-minerals and Cu–Zn–Fe–In–Sn–S minerals, quartz and sericite. Chalcopyrite and pyrite contain sphalerite star and sphalerite with chalcopyrite emulsions. Maximum indium contents of sphalerite and the Cu–Zn–Fe–In–Sn–S minerals are 1. 8 and 16. 3 wt%, respectively. The sulfur isotopic ratios, δ34S of ore minerals, range from –12. 9 to –9. 6%. Formation temperatures of the sulfide minerals are estimated as 300–500°C, based on the paragenesis and chemical compositions of the minerals.  相似文献   

13.
河南省洛宁县铁炉坪大型脉状银铅矿床地处华北陆块南缘熊耳山中生代变质核杂岩构造西部,由一组主要的NNE走向陡倾斜矿脉和一组次要的NW走向陡倾斜矿脉有规律地组成.矿脉以条带状、角砾状和晶洞-晶簇-梳状三种主要形式多阶段充填而成,按照主要矿脉的矿物共生序列可以分为四个阶段:铁镁碳酸盐阶段(I)、烟灰色石英-贱金属硫化物-银矿...  相似文献   

14.
Interpretation of various exploration data, in particular geochemical prospecting, offers a powerful and rapid assessment of grass-root projects in a green-field terrain. Here, we present an example of the Collins epithermal prospect in Aceh Province, Indonesia. In this area, the Au+ base-metal-bearing sheeted quartz veins (individually mostly 2–4 cm wide), which are controlled by a 250 m wide by 800 m long NNE-trending structural corridor within Paleogene sandstone and volcanic rocks, are the product of two main stages of deposition. Stage I formed veins with a sliver of cryptocrystalline quartz wall zone followed by an inner zone of comb quartz with interstitial rhombic adularia that terminates in open space. Stage I or main-stage sulfide mineralization consisting of early galena + sphalerite and later chalcopyrite occurs with the quartz + adularia. Small amounts of galena also occur in the wall zone. Stage II mineralization brecciated Stage I veins and overprinted them with silicification characterized by vuggy texture. Mineralization associated with this episode consists of earlier chalcopyrite + sphalerite + tennantite–tetrahedrite and later, vug-filling Au–Ag alloy (Ag0.37–0.41Au0.62–0.59). The above mineralized veins are successively flanked by silicic selvages, an illite + chlorite + pyrite ± kaolinite zone and a chlorite + epidote + carbonate + pyrite zone. Local supergene alteration induced replacement of galena by plumbogummite and anglesite and chalcopyrite by covellite. Data from fluid inclusion microthermometry in quartz indicated that the inner zone of Stage I veins formed from fluids with a 2.3 wt% salinity (0.5–3.3 wt% NaCl equivalent), at 174°C (155–211°C). Combining these physico-chemical parameters with the mineral assemblage, the mineralization occurred under a reduced environment. Rock and soil assays indicate that elevated Au concentrations (up to 16.5 ppm over 1 m) occur along northeast-trending zones and show a strong correlation with Pb, while Cu (up to 2.58% over 1 m), Zn, As, Sb, and Mo anomalies lie mostly at the periphery. The high-grade mineralized veins correlate with moderate to high resistivity and chargeability zones, and the pseudosections of such geophysical signals are interpreted as reflecting coalesced or enlarged veins at depth, or inclined veins in other localities. The intermediate sulfidation affinity for Collins points to potential mineralization at depth as well as preservation of Au-rich and sulfide-poor zones in the less eroded areas.  相似文献   

15.
Abstract. The Pongkor Gold‐Silver Mine, Bogor district, West Java, is approximately 80 km southwest of Jakarta. The gold and silver mineralization in the area is present in a deposit consisting of an epithermal vein‐system named individually as the Pasir Jawa, Gudang Handak, Ciguha, Pamoyanan, Kubang Cicau, and Ciurug veins. In the area studied, rocks of basaltic‐andesitic composition are dominated by volcanic breccia and lapilli tuff, with andesite lava and siltstone present locally. The hydrothermal alteration minerals in the Ciurug area are typical of those formed from acid to near‐neutral pH thermal waters, where the acid alteration is distributed from the surface to shallow depth, while the near‐neutral pH alteration becomes dominant at depths. The Ciurug vein shows four main mineralization stages where each discrete stage is characterized by a specific facies; these are, from early to late: carbonate‐quartz, manganese carbonate‐quartz, banded‐massive quartz and gray sulfide‐quartz facies. The major metallic minerals are pyrite, sphalerite, chalcopyrite and galena; they occur in almost each mineralization stage. Bornite was observed only in the southern part of the Ciurug vein at a depth of 515 m, and the occurrence of this mineral is reported here for the first time. Electrum and silver sulfides (mostly acanthite) are minor, whereas silver sulfosalts, stromeyerite and mckinstryite, and covellite are in trace amounts. The silver sulfosalts have compositional ranges of pearceite, antimon‐pearceite and polybasite. Most of the electrum occurs coexisting with other sulfide minerals, as inclusions in pyrite grains, with very little as inclusions in chalcopyrite or sphalerite. Gold grades within the Ciurug vein vary from 1.2 to hundreds of ppm, where the highest gold grade occurs in the latest mineralization stage in a thin sulfide band in vein quartz. Fluid inclusion microthermometry of calcite and quartz indicates deposition throughout the mineralized veins in the range from 170 to 230d?C and from low salinity fluids (predominantly lower than 0.2 wt% NaCl equiv.). Fluid inclusions occur with features of boiling.  相似文献   

16.
The Cu-Sb-Pb polymetallic vein deposit is hosted by metavolcanics rocks of the Gawuch Formation at the Kaldom Gol area of the northwest Kohistan arc terrain in northern Pakistan. The mineralization is closely associated with the dioritic to granodioritic rocks of the Lowari pluton, which was intruded into the Gawuch metavolcanics. Details of ore characterization and processes of ore genesis of this evidently hydrothermal mineralization are not well documented. Integrating petrographic, mineral-chemical and isotopic investigations, this study aims to comprehend the source of hydrothermal fluids, geochemical evolution, mineral inclusions and physicochemical conditions of the Cu-Sb-Pb polymetallic vein deposit in Gawuch metavolcanics in the Kohistan arc terrain in northern Pakistan. The mineralization is distinguished into three types of ore-gangue associations: Type Ia, Type Ib, and Type II. The textural study revealed two pyrite generations: (i) Py1 displaying euhedral to subhedral habits and containing scarce inclusions, and (ii) Py2 occurring as anhedral grains hosting abundant inclusions. Type Ia is characterized by Py1 associated with abundant quartz (Qz) showing comb texture, sericite (Ser), and minor chlorite (Chl). Type Ib comprises Qz + Ser + Chl and Py2, chalcopyrite (Ccp), and magnetite (Mag). Type II is represented by mosaic quartz, rhombic adularia, and bladed calcite, and the ore minerals fahlore and galena. Alteration zones composed of Qz-Ser ± Chl and Qz-Ser-Chl, surround Type I (a, b) and Type II veins, respectively. Fahlore and galena mostly replace pyrite of Type Ia and chalcopyrite of Type Ib. In addition, malachite, azurite, hematite and covellite occur as secondary (supergene) minerals. The Co/Ni ratios (>1) of Kaldom Gol pyrites suggest that the ore-forming fluids were hydrothermal in origin and Py1 and Py2 solidified at 221–304 °C and 225–261 °C, respectively. The LA-ICP-MS time-resolved depth profiles confirm the existence of sphalerite, and chalcopyrite inclusions in pyrite (Py1 and Py2) and millerite, bravoite, vaesite, Au-tellurides, native Au and galena inclusions in chalcopyrite and fahlore. Sulfur isotope compositions of pyrites (δ34S = Py1, −0.58 to +2 ‰; δ34S = Py2, −0.24 to +2.04 ‰) indicate that the ore-forming fluids were derived from magmatic source (s). The mineral assemblage, hydrothermal alterations, textures, temperature and δ34S of pyrites suggest that the Cu-Sb-Pb polymetallic mineralization at Kaldom Gol represents an intermediate-sulfidation type of epithermal deposit.  相似文献   

17.
The vein system in the Arinem area is a gold‐silver‐base metal deposit of Late Miocene (8.8–9.4 Ma) age located in the southwestern part of Java Island, Indonesia. The mineralization in the area is represented by the Arinem vein with a total length of about 5900 m, with a vertical extent up to 575 m, with other associated veins such as Bantarhuni and Halimun. The Arinem vein is hosted by andesitic tuff, breccia, and lava of the Oligocene–Middle Miocene Jampang Formation (23–11.6 Ma) and overlain unconformably by Pliocene–Pleistocene volcanic rocks composed of andesitic‐basaltic tuff, tuff breccia and lavas. The inferred reserve is approximately 2 million tons at 5.7 g t?1 gold and 41.5 g t?1 silver at a cut‐off of 4 g t?1 Au, which equates to approximately 12.5t of Au and 91.4t of Ag. The ore mineral assemblage of the Arinem vein consists of sphalerite, galena, chalcopyrite, pyrite, marcasite, and arsenopyrite with small amounts of pyrrhotite, argentite, electrum, bornite, hessite, tetradymite, altaite, petzite, stutzite, hematite, enargite, tennantite, chalcocite, and covellite. These ore minerals occur in quartz with colloform, crustiform, comb, vuggy, massive, brecciated, bladed and calcedonic textures and sulfide veins. A pervasive quartz–illite–pyrite alteration zone encloses the quartz and sulfide veins and is associated with veinlets of quartz–calcite–pyrite. This alteration zone is enveloped by smectite–illite–kaolinite–quartz–pyrite alteration, which grades into a chlorite–smectite–kaolinite–calcite–pyrite zone. Early stage mineralization (stage I) of vuggy–massive–banded crystalline quartz‐sulfide was followed by middle stage (stage II) of banded–brecciated–massive sulfide‐quartz and then by last stage (stage III) of massive‐crystalline barren quartz. The temperature of the mineralization, estimated from fluid inclusion microthermometry in quartz ranges from 157 to 325°C, whereas the temperatures indicated by fluid inclusions from sphalerite and calcite range from 153 to 218 and 140 to 217°C, respectively. The mineralizing fluid is dilute, with a salinity <4.3 wt% NaCl equiv. The ore‐mineral assemblage and paragenesis of the Arinem vein is characteristically of a low sulfidation epithermal system with indication of high sulfidation overprinted at stage II. Boiling is probably the main control for the gold solubility and precipitation of gold occurred during cooling in stage I mineralization.  相似文献   

18.
甘肃北山拾金坡金矿床地质特征及成因分析   总被引:2,自引:1,他引:1  
安国堡 《矿床地质》2006,25(4):483-490
拾金坡金矿是甘肃北山南带较为典型的含金硫化物石英脉型金矿床,矿化富集与加里东晚期—海西早期拾金坡复式岩体密切相关。矿体产于岩体的内接触带,产出部位明显受近EW向断裂破碎带的控制。矿体主要为大脉状、脉状、透镜状。矿床中发育一套典型的中温热液成因的矿物组合,矿石以强烈的绢云母化、碳酸盐化、硅化和黄铁矿化为特征,矿石的金属矿物组合为自然金_银金矿_黄铁矿_方铅矿_闪锌矿_黄铜矿,矿化属中温热液成因。硫和铅同位素显示成矿金属物质主要来自围岩,即斑状花岗岩;氢和氧同位素组成表明成矿流体来自花岗岩浆水。成矿时代属早—中海西期。因此可推断,拾金坡金矿床属于与构造_岩浆活动有关的中温岩浆热液成因矿床。  相似文献   

19.
The Lengshuikeng ore district in east-central China has an ore reserve of ~43 Mt with an average grade of 204.53 g/t Ag and 4.63 % Pb?+?Zn. Based on contrasting geological characteristics, the mineralization in the Lengshuikeng ore district can be divided into porphyry-hosted and stratabound types. The porphyry-hosted mineralization is distributed in and around the Lengshuikeng granite porphyry and shows a distinct alteration zoning including minor chloritization and sericitization in the proximal zone; sericitization, silicification, and carbonatization in the peripheral zone; and sericitization and carbonatization in the distal zone. The stratabound mineralization occurs in volcano-sedimentary rocks at ~100–400 m depth without obvious zoning of alterations and ore minerals. Porphyry-hosted and stratabound mineralization are both characterized by early-stage pyrite–chalcopyrite–sphalerite, middle-stage acanthite–native silver–galena–sphalerite, and late-stage pyrite–quartz–calcite. The δ34S values of pyrite, sphalerite, and galena in the ores range from ?3.8 to +6.9‰ with an average of +2.0‰. The C–O isotope values of siderite, calcite, and dolomite range from ?7.2 to ?1.5‰ with an average of ?4.4‰ (V-PDB) and from +10.9 to +19.5‰ with an average of +14.8‰ (V-SMOW), respectively. Hydrogen, oxygen, and carbon isotopes indicate that the hydrothermal fluids were derived mainly from meteoric water, with addition of minor amounts of magmatic water. Geochronology employing LA–ICP–MS analyses of zircons from a quartz syenite porphyry yielded a weighted mean 206Pb/238U age of 136.3?±?0.8 Ma considered as the emplacement age of the porphyry. Rb–Sr dating of sphalerite from the main ore stage yielded an age of 126.9?±?7.1 Ma, marking the time of mineralization. The Lengshuikeng mineralization classifies as an epithermal Ag–Pb–Zn deposit.  相似文献   

20.
Gold deposits at El Sid are confined to hydrothermal quartz veins which contain pyrite, arsenopyrite, sphalerite and galena. These veins occur at the contact between granite and serpentinite and extend into the serpentinite through a thick zone of graphite schist. Gold occurs in the mineralized zone either as free gold in quartz gangue or dissolved in the sulfide minerals. Ore-microscopic study revealed that Au-bearing sulfides were deposited in two successive stages with early pyrite and arsenopyrite followed by sphalerite and galena. Gold was deposited during both stages, largely intergrown with sphalerite and filling microfractures in pyrite and arsenopyrite.Spectrochemical analyses of separated pyrite, arsenopyrite, sphalerite and galena showed that these sulfides have similar average Au contents. Pyrite is relatively depleted in Ag and Te. This suggests that native gold was deposited in the early stage of mineralization. Arsenopyrite and galena show relatively high concentrations of Te. They are also respectively rich in Au and Ag. Tellurides are, thus, expected to be deposited together with arsenopyrite and galena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号