首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 46 毫秒
1.
Voluminous granitic intrusions are distributed in the West Junggar, NW China, and they can be classified as the dioritic rocks, charnockite and alkali-feldspar granite groups. The dioritic rocks (SiO2 = 50.4–63.8 wt.%) are calc-alkaline and Mg enriched (average MgO = 4.54 wt.%, Mg# = 0.39–0.64), with high Sr/Y ratios (average = 21.2), weak negative Eu (average Eu/Eu = 0.80) and pronounced negative Nb–Ta anomalies. Their Sr–Nd and zircon Hf isotopic compositions ((87Sr/86Sr)i = 0.7035–0.7042, εNd(t) = 4.5–7.9, εHf(t) = 14.1–14.5) show a depleted mantle-like signature. These features are compatible with adakites derived from partial melting of subducted oceanic crust that interacted with mantle materials. The charnockites (SiO2 = 60.0–65.3 wt.%) show transitional geochemical characteristics from calc-alkaline to alkaline, with weak negative Eu (average Eu/Eu = 0.75) but pronounced negative Nb–Ta anomalies. Sr–Nd and zircon Hf isotopic compositions ((87Sr/86Sr)i = 0.7037–0.7039, εNd(t) = 5.2–8.0, εHf(t) = 13.9–14.7) also indicate a depleted source, suggesting melts from a hot, juvenile lower crust. Alkali-feldspar granites (SiO2 = 70.0–78.4 wt.%) are alkali and Fe-enriched, and have distinct negative Eu and Nb–Ta anomalies (average Eu/Eu = 0.26), low Sr/Y ratios (average = 2.11), and depleted Sr–Nd and zircon Hf isotopic compositions ((87Sr/86Sr)i = 0.7024–0.7045, εNd(t) = 5.1–8.9, εHf(t) = 13.7–14.2). These characteristics are also comparable with those of rocks derived from juvenile lower crust. Despite of the differences in petrology, geochemistry and possibly different origins, zircon ages indicate that these three groups of rocks were coevally emplaced at ~ 305 Ma.A ridge subduction model can account for the geochemical characteristics of these granitoids and coeval mafic rocks. As the “slab window” opened, upwelling asthenosphere provided enhanced heat flux and triggered voluminous magmatisms: partial melting of the subducting slab formed the dioritic rocks; partial melting of the hot juvenile lower crust produced charnockite and alkali-feldspar granite, and partial melting in the mantle wedge generated mafic rocks in the region. These results suggest that subduction was ongoing in the Late Carboniferous and, thus support that the accretion and collision in the Central Asian Orogenic Belt took place in North Xinjiang after 305 Ma, and possibly in the Permian.  相似文献   

2.
《Gondwana Research》2014,25(3-4):1127-1151
The origin and tectonic settings of metasedimentary sequences in the Central Asian Orogenic Belt have been a matter of debate regarding their contributions with some proposals of being microcontinents or accreted material, largely due to a lack of high resolution geochronological data. This paper reports detrital zircon U–Pb age and Hf isotopic data for the previously mapped Precambrian metasedimentary rocks from the Beishan orogenic collage, southern Altaids. Our data show that Precambrian ages dominate all the analyzed samples, but two samples yield Paleozoic zircons which suggest that they were not deposited in the Precambrian. The late Paleoproterozoic–early Mesoproterozoic group (~ 2000–1300 Ma) is the largest age population among the six samples analyzed. This age population (~ 2000–1300 Ma) corresponds to the assembly and subsequent break-up of the Columbia supercontinent. Only one sample (11SYS01) yields Neoproterozoic ages (with two peaks at 930 and 785 Ma), which shows a possible affinity with the Tarim Craton. Hence, the age spectra presented here are generally different from that of the Tarim Craton and the metasedimentary rocks from the Central Tienshan. Our data show that the Tarim Craton is not the main source area for the metasedimentary rocks from the Beishan orogenic collage, but instead multiple source areas may have contributed to the Beishan collage. Combining our new results with published data, we favor an allochthonous origin for the metasedimentary sequences which may be associated with major thrust tectonics. Therefore, a long-lived arc accretionary model is proposed for the tectonic evolution of the Beishan orogenic collage.  相似文献   

3.
The Mongol–Okhotsk Belt, a major structural element of East Asia, is probably the youngest orogenic segment within the Central Asian Orogenic Belt. However, the timing of final closure of the Mongol–Okhotsk Ocean remains unresolved. Here, we present detrital zircon U–Pb–Hf isotopic data and whole-rock geochemical data (major and trace elements and Sm-Nd isotopes) for the metasedimentary rocks from the Un'ya–Bom Terrane, Dzhagdy Terrane, and the eastern part of the Tukuringra Terrane. Our new zircon U-Pb ages suggest that all sedimentary formations along the Dzhagdy Transect are early Mesozoic in age, rather than Paleozoic as previously thought. The detrital zircons from the metasedimentary rocks in the Un'ya–Bom Terrane, the Dzhagdy Terrane, and the eastern part of the Tukuringra Terrane yielded the youngest concordant ages of 194 ± 4, 193 ± 2, and 171 ± 2 Ma, respectively. Moreover, we note that the so-called sedimentary formations of these terranes are not single sedimentary sequences as previously suggested, but a set of an olistostrome or tectonic mélanges composed of rocks of different ages and origins. These sedimentary formations are probably relics of the Mongol–Okhotsk remnant basin that formed in the “gaps” between the southern margin of the North Asian Craton and the Amur Block during their collision. The absence of detrital zircons younger than 171 Ma in the sedimentary rocks of the Mongol–Okhotsk basin implies that the final closure of this basin could have taken place at the boundary of the Early and Middle Jurassic as a result of the collision or the development of the Mongol–Okhotsk orogenic belt in this region. After that, the Mongol–Okhotsk Belt underwent intense deformation related to within-plate strike-slip faulting, which could be attributed to the late Mesozoic rotation of the North Asian Craton relative to the continental massifs of East Asia.  相似文献   

4.
Many Late Paleozoic Cu–Au–Mo deposits occur in the Central Asian Orogenic Belt (CAOB). However, their tectonic settings and associated geodynamic processes have been disputed. This study provides age, petrologic and geochemical data for andesites and granitic porphyries of the Taerbieke gold deposit from the Tulasu Basin, in the northwestern Tianshan Orogenic Belt (western China). LA-ICP-MS zircon U–Pb dating indicates that the granitic porphyries have an Early Carboniferous crystallization age (349 ± 2 Ma) that is broadly contemporaneous with the eruption age (347 ± 2 Ma) of the andesites. The andesites have a restricted range of SiO2 (58.94–63.85 wt.%) contents, but relatively high Al2O3 (15.39–16.65 wt.%) and MgO (2.51–6.59 wt.%) contents, coupled with high Mg# (57–69) values. Geochemically, they are comparable to Cenozoic sanukites in the Setouchi Volcanic Belt, SW Japan. Compared with the andesites, the granitic porphyries have relatively high SiO2 (72.68–75.32 wt.%) contents, but lower Al2O3 (12.94–13.84 wt.%) and MgO (0.10–0.33 wt.%) contents, coupled with lower Mg# (9–21) values. The andesites and granitic porphyries are enriched in both large ion lithophile and light rare earth elements, but depleted in high field strength elements, similar to those of typical arc magmatic rocks. They also have similar Nd–Hf–Pb isotope compositions: εNd(t) (+0.48 to +4.06 and −0.27 to +2.97) and zircons εHf(t) (+3.4 to +8.0 and −1.7 to +8.2) values and high (206Pb/204Pb)i (18.066–18.158 and 17.998–18.055). We suggest that the Taerbieke high-Mg andesitic magmas were generated by the interaction between mantle wedge peridotites and subducted oceanic sediment-derived melts with minor basaltic oceanic crust-derived melts, and that the magmas then fractionated to produce the more felsic members (i.e., the Taerbieke granitic porphyries) during late-stage evolution. Taking into account the Carboniferous magmatic record from the western Tianshan Orogenic Belt, we suggest that the formation of the Early Carboniferous andesites and granitic porphyries in the Taerbieke area were related to the Paleo-Junggar Oceanic plate southward subduction under the Yili–Central Tianshan plate. The close association of the Early Carboniferous magmatic rocks and Au mineralization in the Taerbieke area suggests that the arc magmatic rocks in the Tulasu basin may have a high potential for Au mineralization.  相似文献   

5.
The Solonker zone in northern Inner Mongolia (China) is considered as the suture between the North China Craton and the South Mongolian microcontinent. Two magmatic belts are recognized along the suture zone: a subduction-related magmatic belt (represented by the Baolidao arc rocks), and a younger, collision-related granite belt (represented by the Halatu granites). We use zircon U–Pb ages, zircon in-situ Hf isotopic analyses and whole-rock Nd–Sr isotopic data of the two magmatic belts and related forearc sediments (the Xilinhot metamorphic complex) to constrain timing of the suturing and to discuss the petrogenesis of the magmatic rocks. A gabbroic diorite (BLD-1) of the Baolidao arc was dated at 310 ± 5 Ma (by SHRIMP). This sample shows an εNd(t) value of +2.5 and ISr of 0.7052. Hf isotopic analyses on 25 zircons from the same sample show εHf(t) = +5.4 to +11.5. Another diorite sample (XH-2) of the same arc from south of Xilinhot displays even more “depleted” isotopic compositions, with εNd(t) = +5.6 and ISr = 0.7037. The main population of zircons from this sample have highly variable and depleted Hf isotopic compositions (εHf(t) = 0–18.3). The large variation in Hf isotopic composition of zircons (with largely the same crystallization age) from a single pluton is explained by a mixing process between depleted mantle-derived magma and continental crust in an active continental arc setting. The Halatu granite (HLT-2) was dated at 234 ± 7 Ma (by SHRIMP). Zircons from the granite also show a large variation of εHf(t) values (+9.1 to ?26), despite most samples having whole-rock εHf(t) > +2. The large variation in εHf(t) values suggests that the granite formed probably by partial melting of two source regions – a dominant juvenile crust and a subordinate old continental crust. Most zircons from the Xilinhot metamorphic complex show ages comparable with those of the Baolidao arc rocks, suggesting that the protolith of the metamorphic complex was probably deposited during or after arc magmatism. Some zircons, however, show Precambrian ages that fall into two groups: one with ages of 780–900 Ma, resembling those from the South Mongolian microcontinent, and the other with ages of 1524–2900 Ma, similar to those of the North China Craton. Thus, the protolith of the metamorphic complex probably formed in a forearc basin during convergence of the two continents, and metamorphosed subsequently during collision in the late Paleozoic. Our zircon age data thus constrain timing of collision between the South Mongolian microcontinent and the North China Craton to have been between 296 and 234 Ma.  相似文献   

6.
Numerous Neoproterozoic magmatic and metamorphic events in the Altun–Qilian–North Qaidam (AQNQ) region record Grenvillian orogenesis and amalgamation of the supercontinent Rodinia. However, the tectonothermal regimes responsible for these Neoproterozoic events and the assumed position of the AQNQ in Rodinia remain controversial. Zircon U–Pb age data show that the orthogneiss and paragneiss/schist of the AQNQ experienced concurrent magmatism and metamorphism at 895–925 Ma. Zircon Lu–Hf isotopic data indicate that the gneisses in the AQNQ have εHf (0.9 Ga) values and tDM2 (Hf) model ages ranging from −5.6 to +3.9 and 1.4 to 1.9 Ga. These data suggest that the early Neoproterozoic magma in the AQNQ was predominately derived from a late Paleoproterozoic–early Mesoproterozoic crustal source between 1.4 and 1.9 Ga, marking an important episode of crustal growth in the AQNQ. The Neoproterozoic magmatism is geochemically characterized by (1) high SiO2, K2O, and low P2O5; (2) A/CNK ratios >1.0, ranging from 1.03 to 1.09; (3) enrichment in Rb, Th and U, and depletion in Ba, Nb, Ta, Sr, Ti, and Eu. Based on the geochemical resemblance to high-K calc-alkaline I-type granite and zircon Lu–Hf isotope signatures, the Neoproterozoic magmatism in the AQNQ was probably derived from ancient mafic-intermediate igneous rocks in an active continental margin. The Neoproterozoic tectono-magmatic–metamorphic history of the AQNQ, directly associated with the South China block (SCB) and the Tarim block (TB), indicates that the AQNQ and the TB coexisted as a single block in the early Neoproterozoic, which was temporarily connected to the SCB to the north or west in Rodinia during the late stages of the Grenvillian orogeny (950–900 Ma).  相似文献   

7.
Located between the Turpan-Hami, Junggar and Tarim blocks, the Central Tianshan zone is an important component of the Central Asian Orogenic Belt (CAOB) and crucial linkage between the Siberian, Kazakhstan, Junggar, Turpan-Hami and Tarim blocks. The Hongliujing granite associated with Nb–Ta mineralization in the Central Tianshan zone, dated at ca. 740 Ma using zircon LA-ICP-MS dating, is the first reported Neoproterozoic intrusion with a reliable and precise age in the Chinese Central Tianshan. The Hongliujing granite shares all the characteristics of A-type granites. It contains predominant alkali feldspar, and is characterized by high contents of SiO2, Na2O + K2O, K2O and high field strength elements (such as Nb, Ta, Zr, Ga and Y), and low contents of CaO, MgO, Ba and Sr, with high FeOt/(FeOt + MgO) and Ga/Al ratios typical of A-type granites. Based on the geochemistry and zircon Hf isotope data, we propose that the Hongliujing granite was most likely produced by partial melting of basic rocks in the lower crust which may have been derived from mantle magmas. The Hongliujing granite belongs to A1-type granites, which indicate a rifting formation environment, suggesting that like the Tarim Block, the Central Tianshan zone recorded Neoproterozoic rift-related igneous events related to the breakup of the Rodinia supercontinent. Our study verifies that not only the Tarim Block is related to the breakup of the Rodinia supercontinent, but also it is true for some key blocks in CAOB such as the Central Tianshan. Our new geochemical and geochronologic data also support and strengthen the notion that the Central Tianshan zone may be a part of the Tarim Block.  相似文献   

8.
In order to constrain the timing and petrogenesis of both the hosting rocks and the inner mafic microgranular enclaves (MMEs) of the Liangnong pluton, SE China, we have performed a series of bulk-rock geochemistry, zircon U–Pb, and Hf isotopic analysis, respectively. Zircon laser ablation–inductively coupled plasma–mass spectrometry U–Pb isotopic analysis yielded ages of 106.3 ± 1.1 Ma for the granodiorite and 103.9 ± 1.6 to 105 ± 1.8 Ma for monzogranite phases within the hosting pluton, as well as an age of 104.7 ± 0.8 Ma for the associated MMEs. The host rocks are metaluminous, have A/CNK values of 0.91–1.09, contain relatively high concentrations of SiO2 and K2O, are enriched in Rb, Th, Ba, Zr, and Hf, are depleted of Sr, P, Ti, Nd, and Ta, contain high concentrations of the rare earth elements (REE) and the light REE, and have moderately negative Eu anomalies (Eu*/Eu = 0.6–0.8). In comparison, the MMEs contain high concentrations of Al2O3, FeO, MgO, and TiO2, are relatively enriched in Ba, U, and Sr, and are depleted in Th, Nd, and Zr. They have lower total REE concentrations and higher Eu*/Eu values than the hosting granites. The zircons within the hosting granites have Hf crustal model ages (TDMC) that show a peak at 1.29–1.85 Ga. Zircons within the MMEs have different εHf(t) values (–3.7 to +4.9) than the zircons within the hosting granites (–10.8 to –1.9). The results indicate that the MMEs and the hosting granites crystallized from magmas with different sources, thereby showing that the Early Cretaceous magmatism in the coastal areas of SE China was generated by the widespread injection of mantle-derived magmas caused by rollback of the subducting palaeo-Pacific Plate.  相似文献   

9.
The Hongshi gold deposit is located in the southwestern margin of the Kanggur–Huangshan ductile shear zone in Eastern Tianshan, Northwest China. The gold ore bodies are predominantly hosted in the volcanogenic metasedimentary rocks of the Lower Carboniferous Gandun Formation and the Carboniferous syenogranite and alkali-feldspar granite. The syenogranite and the alkali-feldspar granite yield SHRIMP zircon U–Pb ages of 337.6 ± 4.5 Ma (2σ, MSWD = 1.3) and 334.0 ± 3.7 Ma (2σ, MSWD = 1.1), respectively, indicating that the Hongshi gold deposit is younger than 334 Ma. The granitoids belong to shoshonitic series and are relatively enriched in large ion lithophile elements (Rb, K, Ba, and Pb) and depleted in high field-strength elements (Nb, Ta, P, and Ti). Moreover, these granitoids have high SiO2, Al2O3, and K2O contents, low Na2O, MgO, and TiO2 contents, low Nb/Ta ratios, and slightly positive Eu anomalies. The εHf(t) values of the zircons from a syenogranite sample vary from + 1.5 to + 8.8 with an average of + 5.6; the εHf(t) values of the zircons from an alkali-feldspar granite sample vary from + 5.0 and + 10.1 with an average of + 7.9. The δ34S values of 10 sulfide samples ranged from − 11.5‰ to + 4.2‰, with peaks in the range of + 1‰ to + 4‰. The above-mentioned data suggest that the Hongshi granitoids were derived from the melting of juvenile lower crust mixed with mantle components formed by the southward subduction of the paleo-Tianshan ocean plate beneath the Aqishan–Yamansu island arc during the Early Carboniferous. The Hongshi gold deposit was formed by post-collisional tectonism during the Permian. The granitoids most likely acted as impermeable barriers that prevented the leakage and runoff of ore-bearing fluids. Thus, the granitoids probably played an important role in controlling gold mineralization.  相似文献   

10.
The tectonic evolution of the Chinese Tianshan Belt which is located in the southern margin of the Central Asian Orogenic Belt remains controversial. In order to reveal the evolutionary history of this belt, we investigate metasedimentary rocks from the Tianshanmiao of Harlik domain and Xingxingxia area of central Tianshan domain in this study. The Permian siltstones from Xingxingxia contain six zircon populations with ages peak at 280, 815 and 910, 1590, 1855 and 2340 Ma, suggesting a diverse provenance. The 2544–2294 Ma ages correlate with the generation of continental nuclei in Tarim. The tectonothermal events during 1855, 1590, 910 and 815 Ma may correspond to the assembly and breakup of the Columbia and Rodinia supercontinents, respectively. Similar Precambrian age spectra and “event signature” curves suggest that the central Tianshan was most likely a part of the Tarim block in the Proterozoic. The detrital zircon U–Pb ages of Ordovician meta-greywackes from the Tianshanmiao sequence reveal six zircon populations with peaks at 460, 933, 1382, 1850, 2000 and 2462 Ma, among which the zircons with dominant age peaks (460 Ma and 930 Ma, more than 70%) are euhedral, low sphericity and exhibit clear oscillatory zoning, suggesting local derivation from the proximal Ordovician and Neoproterozoic granitoids. The range of εHf(t) values (−5.4 to +21) of zircon grains from Ordovician rocks suggests that these were derived from depleted mantle or through partial melting of juvenile crust, similar to the case for the Early Paleozoic magmatism in Chinese Altai. Our detrital zircon data suggest that the provenance of the Harlik was neither the Tarim nor the Junggar, and instead, we propose a connection with the Chinese Altai-Tuva–Mongol Arc along the southern margin of the Siberia craton at ∼500 Ma. The Harlik domain drifted southward and then collided with the central Tianshan in the Carboniferous-Permian as a result of the closure of Paleo-Tianshan Ocean.  相似文献   

11.
Zircon formation and modification during magmatic crystallization and high-grade metamorphism are explored using TIMS and LA-ICP-MS U–Pb geochronology, Lu–Hf isotope chemistry, trace element analysis and textural clues on zircons from the Koraput alkaline intrusion, Eastern Ghats Belt (EGB), India. The zircon host-rock is a granulite-facies nepheline syenite gneiss with an exceptionally low Zr concentration, prohibiting early magmatic Zr saturation. With zircon formation occurring at a late stage of advanced magmatic cooling, significant amounts of Zr were incorporated into biotite, nearly the only other Zr-bearing phase in the nepheline syenite gneisses. Investigated zircons experienced a multi-stage history of magmatic and metamorphic zircon growth with repeated solid-state recrystallization and partial dissolution–precipitation. These processes are recorded by complex patterns of internal zircon structures and a wide range of apparently concordant U–Pb ages between 869 ± 7 Ma and 690 ± 1 Ma. The oldest ages are interpreted to represent the timing of the emplacement of the Koraput alkaline complex, which significantly postdates the intrusion ages of most of the alkaline intrusion in the western EGB. However, Hf model ages of TDM = 1.5 to 1.0 Ga suggest an earlier separation of the nepheline syenite magma from its depleted mantle source, overlapping with the widespread Mesoproterozoic, rift-related alkaline magmatism in the EGB. Zircons yielding ages younger than 860 Ma have most probably experienced partial resetting of their U–Pb ages during repeated and variable recrystallization events. Consistent youngest LA-ICP-MS and CA-TIMS U–Pb ages of 700–690 Ma reflect a final pulse of high-grade metamorphism in the Koraput area and underline the recurrence of considerable orogenic activity in the western EGB during the Neoproterozoic. Within the nepheline syenite gneisses this final high-grade metamorphic event caused biotite breakdown, releasing sufficient Zr for local saturation and new subsolidus zircon growth along the biotite grain boundaries.  相似文献   

12.
《Gondwana Research》2014,25(2):775-796
The Damara Orogeny is a late Neoproterozoic to Cambrian (ca. 570–480 Ma) intracratonic event that affected the Kaoko Belt, the inland branch of the Damara orogen and the Gariep Belt in Namibia and South Africa. This study focuses on the Pan-African evolution of part of the Kaoko Belt between the Puros shear zone and the Village mylonite zone which consists of Mesoproterozoic migmatitic para- and orthogneisses with minor granulite and amphibolite. Pseudosection modeling combined with thermobarometric calculations indicate that the para- and orthogneisses equilibrated at about 670–800 °C and ca. 0.6–0.8 GPa. Some garnets display a pronounced bell-shaped Ca, HREE, Y and Sr zoning, flat zoning profiles of Mn and Fe and concave upward concentration profiles of Sm and Nd. Pressure–temperature estimates obtained on these garnets reveal similar temperatures of 700–750 °C but slightly higher pressures of ca. 0.9 GPa. The preservation of distinct major and trace element zoning in garnet and the existence of broadly similar (near prograde) Sm–Nd and Lu–Hf garnet–whole rock ages of ca. 525 Ma obtained on the same sample indicate an extremely fast cooling path. Retrograde conditions persisted until ca. 490 Ma indicating a slow, late stage near isobaric cooling path. The resulting clockwise P–T–t path is consistent with crustal thickening through continent–continent collision followed by post-collisional extension and suggests that the upper amphibolite to granulite facies terrain of the central Kaoko Belt formed initially in a metamorphic field gradient of ca. 25–35 °C km 1 at moderately high pressures.  相似文献   

13.
The newly discovered Fuxing porphyry Cu deposit is located in the Dananhu–Tousuquan arc, adjacent to the Tuwu–Yandong Cu deposits of Eastern Tianshan, in the southern Central Asian Orogenic Belt. The Fuxing deposit is hosted by volcanic rocks (basalt and dacite) in the Early Carboniferous Qi'eshan Group and Carboniferous felsic intrusions (plagiogranite porphyry, monzogranite, and quartz diorite). New SIMS zircon U–Pb dating indicates that the plagiogranite porphyry and monzogranite emplaced at 332.1 ± 2.2 Ma and 328.4 ± 3.4 Ma, respectively. The basalts are characterized by low SiO2 contents (47.47–54.90 wt.%), a lack of Eu anomalies, strong depletion of Na, Ta, and Ti elements but positive Sr, U, and Pb anomalies, high Y (20.8–28.2 ppm) and HREE concentrations (Yb = 2.23–3.06 ppm), and relatively low (La/Yb)N (2.20–3.92) values; the dacite samples have high SiO2 contents (66.13–76.93 wt.%), clearly negative Eu anomalies, high Mg# values (36–51), and high Y (41.8–54.9 ppm) and Yb (5.76–8.98 ppm) concentrations. The basalts and dacites exhibit similar signatures as normal arc rocks, and were considered to be derived from partial melting of mantle-wedge peridotite that was previously metasomatized by slab melts. In contrast, the plagiogranite porphyry, monzogranite, and quartz diorite show the same geochemical affinity with modern adakites, which are characterized by high SiO2 contents (67.55–79.00 wt.%), minor negative to positive Eu anomalies, strong depletion of heavy rare earth elements (Yb = 0.17–1.19 ppm) and Y (1.86–10.1 ppm), positive K, Rb, Sr, and Ba but negative Nb, Ta, Th, and Ti anomalies, and high (La/Yb)N ratios and Mg# values. Moreover, these adakitic felsic intrusions display relatively high positive zircon εHf(t) values (+ 11.4 to + 18.3), low 87Sr/86Sr (0.706080–0.711239), high 143Nd/144Nd (0.512692–0.512922) ratios, and consistent zircon δ18O values (4.41‰–5.48‰), suggesting that their parental magma were most likely derived from partial melting of the subducted oceanic crust followed by mantle peridotite interaction. Based on the whole-rock geochemical and Sr–Nd–Hf–O isotopic data, as well as detailed petrographic analyses, we further suggest that the Fuxing igneous rocks and associated porphyry Cu mineralization were generated by the northward subduction of the paleo-Tianshan oceanic plate beneath the Dananhu–Tousuquan island arc during the Early Carboniferous.  相似文献   

14.
From the Archean to the end of the Neoproterozoic the Borborema Province, northeast Brazil went through a complex polycyclic geologic evolution, ending, between 660 and 570 Ma, with the Brasiliano/Pan-African orogeny that led to West Gondwana amalgamation. Evolution of the metasedimentary covers of the Province, from the beginning of their deposition up to their involvement in the Brasiliano/Pan-African collision, is a key element in understanding formation of Gondwana and in attempts in pre-drift correlation between South America and West Africa. One of these covers, the Ceará Group, is exposed in the Ceará Central domain. Aiming to unravel the history of the Ceará Group, we carried out a geochronologic study of representative samples, combining Sm–Nd isotopic data, conventional U–Pb TIMS dating of zircon and U–Pb SHRIMP age determination of detrital zircon grains. Our results show that sedimentation of the Ceará Group started around 750 Ma, following rifting of the Archean/Paleoproterozoic basement, associated with bimodal volcanism. The interlayered basic volcanic rocks, re-crystallized into garnet amphibolites, show a concordant age of 749 ± 5 Ma interpreted as the age of crystallization. About 90% of calculated Sm–Nd TDM model ages of metasedimentary rocks are Paleoproterozoic and more than 50% of the analyzed samples have TDM between 1.95 and 2.4 Ma, with strongly negative ɛNd, consistent with provenance mainly from the Paleoproterozoic basement. Strong contrast between Paleoproterozoic TDM with negative ɛNd and young TDM (Mesoproterozoic) with slightly positive ɛNd is interpreted as a consequence of changes in detritus provenance induced by geomorphologic alterations resulting from tectonic activity during rifting. Ages of detrital zircon grains obtained by SHRIMP U–Pb analyses show three main groups: about 1800 Ma, 1000–1100 Ma and ca. 800 Ma which corresponds to the bimodal magmatism associated, respectively to the Orós-Jaguaribe domain, Cariris Velhos event and Independência Group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号