首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial distribution of forests, meadows, arable land, water bodies and settlements in a catchment influences the spatial and temporal dynamics of evapotranspiration, surface runoff, soil moisture and ground water recharge. Four digital data sets from different sources were available for land cover distribution to be applied in a regional case study in the Ucker catchment with an area of about 2415 km2. The first data set was obtained from the German digital topographic data set “Atkis” and the second one from the federal German biotope mapping procedure “Biotoptypenkartierung”. In addition, Corine land cover data and a land cover obtained from a supervised, multitemporal classification of three Landsat-TM5-scenes from the year 2000 were used in our study. These data sets differ in spatial resolution and in information content and this leads to different areal proportions of the main land cover classes forests, meadows, arable land, water bodies and settlements. This has to be considered as an uncertainty in the land cover data. In our case study, we analyzed how and to which extent this uncertainty influences the outputs of a hydrological catchment model such as evapotranspiration and discharge. For the time period 1996-2001, meteorological time series were obtained from four meteorological stations and five additional precipitation stations. Measured daily discharge rates were available from two gauges located in the catchment. In the different land cover data sets, the proportions of arable land ranged from 52.7% to 61.7% of the catchment area and for forests from 19.5% to 24.6%. These different proportions showed only minor impacts with small differences below ±10 mm y−1 on the simulated annual rates of evapotranspiration and ground water recharge. In contrast, the simulated surface runoff rates showed a strong correlation to the amount of the settlement areas in the catchment. The highest proportion of settlements with 4.9% of the catchment area in comparison to the lowest proportion of 2.9% leads to an increase in the simulated surface runoff of 70%.  相似文献   

2.
Terrestrial vegetation is one of the most important components of the Earth’s land surface. Variations in terrestrial vegetation directly impact the Earth system’s balance of material and energy. This paper describes detected variations in vegetation activity at a national scale for China based on nearly 30 years of remote sensing data derived from NOAA/AVHRR (1982–2006) and MODIS (2001–2009). Vegetation activity is analyzed for four regions covering agriculture, forests, grasslands, and China’s Northwest region with sparse vegetation cover (including regions without vegetation). Relationships between variations in vegetation activity and climate change as well as agricultural production are also explored. The results show that vegetation activity has generally increased across large areas, especially during the most recent decade. The variations in vegetation activity have been driven primarily by human factors, especially in the southern forest region and the Northwest region with sparse vegetation cover. The results further show that the variations in vegetation activity have influenced agricultural production, but with a certain time lag.  相似文献   

3.
The extent to which forests, relative to shorter vegetation, mitigate flood peak discharges remains controversial and relatively poorly researched, with only a few significant field studies. Considering the effect purely of change of vegetation cover, peak flow magnitude comparisons for paired catchments have suggested that forests do not mitigate large floods, whereas flood frequency comparisons have shown that forests mitigate frequencies over all magnitudes of flood. This study investigates the apparent inconsistency using field-based evidence from four contrasting field programmes at scales of 0.34–3.1 km2. Repeated patterns are identified that provide strong evidence of real effects with physical explanations. Magnitude and frequency comparisons are both relevant to the impact of forests on peak discharges but address different questions. Both can show a convergence of response between forested and grassland/logged states at the highest recorded flows but the associated return periods may be quite variable and are subject to estimation uncertainty. For low to moderate events, the forested catchments have a lower peak magnitude for a given frequency than the grassland/logged catchments. Depending on antecedent soil saturation, a given storm may nevertheless generate peak discharges of the same magnitude for both catchment states but these peaks will have different return periods. The effect purely of change in vegetation cover may be modified by additional forestry interventions, such as road networks and drainage ditches which, by effectively increasing the drainage density, may increase peak flows for all event magnitudes. For all the sites, forest cover substantially reduces annual runoff.  相似文献   

4.
Soil moisture is crucial to vegetation restoration in karst areas, and climate factors and vegetation restoration are key factors affecting changes in soil moisture. However, there is still much controversy over the long-term changes in soil moisture during vegetation restoration. In order to reveal the changes in soil moisture during vegetation restoration, we conducted long-term positioning monitoring of soil moisture at 0–10 and 10–20 cm on secondary forests sample plot (SF, tree land) and shrubs sample plot (SH, shrub land) in karst areas from 2013 to 2020. The results showed that the aboveground biomass of SF and SH increased by 50% and 240%, respectively, and the soil moisture of the SF and SH showed an increasing trend. When shrubs are restored to trees in karst areas, the soil moisture becomes more stable. However, the correlation coefficients (R2) between the annual rainfall and the annual average soil moisture of SF and SH are 0.84 and 0.55, respectively, indicating that soil moistures in tree land are more affected by rainfall. The soil moisture of shrubs and trees are relatively low during the months of alternating rainy and dry seasons. Rainfall has a very significant impact on the soil moisture of tree land, while air temperature and wind speed have a significant impact on the soil moisture of tree land, but the soil moistures of shrub land are very significantly affected by rainfall and relative humidity. Therefore, during the process of vegetation restoration from shrubs to trees, the main meteorological factors that affect soil moisture changes will change. The results are important for understanding the hydrological processes in the ecological restoration process of different vegetation types in karst areas.  相似文献   

5.
Ecological geographic regions, also called eco-regions, can be used to divide a remotely sensed image, which is helpful for reducing the complexity of land cover types within eco-regions and for improving the classification accuracy of land cover. In this case study in China, we improved a method of ecological geographic regionalization that is more suitable for remote sensing mapping of regional land cover, and we obtained new eco-regions. The canonical correspondence analysis (CCA) and k-means clustering were adopted in the ecological geographic regionalization using both seasonal remotely-sensed vegetation information and environmental data including climate, elevation and soil features. Our results show that the combination of seasonal vegetation information and the CCA performed well in the selection of the dominant environmental factor of the biogeographic pattern, and it can be used as regionalization indicators of eco-regions. We found that thermal factors are the most important driving forces of the biogeographic pattern in China, which followed by moisture factors. Two global land cover products (MODIS MCD12C1 and GlobCover) were used to assess our eco-regions. The results show that our eco-regions performed better than that of a previous study regarding the complexity of land cover types, such as in the number of types and the proportional area of the major/secondary type. These results indicate that the method of ecological geographic regionalization, which is based on environmental factors associated with seasonal vegetation features, is effective for reducing the regional complexity of land cover.  相似文献   

6.
The implementation of large-scale vegetation restoration over the Chinese Loess Plateau has achieved clear improvements in vegetation fraction, as evidenced by large areas of slopes and plains being restored to grassland or forest.However, such large-scale vegetation restoration has altered land-atmosphere exchanges of water and energy, as the land surface characteristics have changed. These variations could affect regional climate, especially local precipitation. Quantitatively evaluating this feedback is an important scientific question in hydrometeorology. This study constructs a coupled land-atmosphere model incorporating vegetation dynamics, and analyzes the spatio-temporal changes of different land use types and land surface parameters over the Loess Plateau. By considering the impacts of vegetation restoration on the water-energy cycle and on land-atmosphere interactions, we quantified the feedback effect of vegetation restoration on local precipitation across the Loess Plateau, and discussed the important underlying processes. To achieve a quantitative evaluation, we designed two simulation experiments, comprising a real scenario with vegetation restoration and a hypothetical scenario without vegetation restoration.These enabled a comparison and analysis of the net impact of vegetation restoration on local precipitation. The results show that vegetation restoration had a positive effect on local precipitation over the Loess Plateau. Observations show that precipitation on the Loess Plateau increased significantly, at a rate of 7.84 mm yr~(-2), from 2000 to 2015. The simulations show that the contribution of large-scale vegetation restoration to the precipitation increase was about 37.4%, while external atmospheric circulation changes beyond the Loess Plateau contributed the other 62.6%. The average annual precipitation under the vegetation restoration scenario over the Loess Plateau was 12.4% higher than that under the scenario without vegetation restoration. The above research results have important theoretical and practical significance for the ecological protection and optimal development of the Loess Plateau, as well as the sustainable management of vegetation restoration.  相似文献   

7.
The East River in South China plays a key role in the socio-economic development in the region and surrounding areas. Adequate understanding of the hydrologic response to land use change is crucial to develop sustainable water resources management strategies in the region. The present study makes an attempt to evaluate the possible impacts of land use change on hydrologic response using a numerical model and corresponding available vegetation datasets. The variable infiltration capacity model is applied to simulate runoff responses to several land use scenarios within the basin (e.g., afforestation, deforestation, and reduction in farmland area) for the period 1952–2000. The results indicate that annual runoff is reduced by 3.5 % (32.3 mm) when 25 % of the current grassland area (including grasslands and wooded grasslands, with 46.8 % of total vegetation cover) is converted to forestland. Afforestation results in reduction in the monthly flow volume, peak flow, and low flow, but with significantly greater reduction in low flow for the basin. The simulated annual runoff increases by about 1.4 % (12.6 mm) in the deforestation scenario by changing forestland (including deciduous broadleaf, evergreen needleleaf, and broadleaf, with 15.6 % of total vegetation cover) to grassland area. Increase in seasonal runoff occurs mainly in autumn for converting cropland to bare soil.  相似文献   

8.
We examined the characteristics of landslides triggered by the 2016 Kumamoto earthquake (Mw = 7.0: focal depth=10.0 km) in forests and grasslands within two affected watersheds (Tokosegawa: 6.9 km2 and Nigorigawa: 6.1 km2) in southwestern Japan. We identified 190 landslides using aerial photographs and analyzed their sizes by geographic information system (GIS). Field investigations were conducted to obtain landslide depth, volume and residual sediment for 38 selected landslides (21 in forests and 17 in grasslands). The minimum area of detected landslides in grasslands (400 m2) was smaller than in forests (1000 m2), probably because of reduced detectability of landslides under tree cover. The ratio of total area occupied by landslides for a given range of slope gradient in the watersheds increased from 3.2% on gentle grassland slopes (10–15°) to 15.5% on steep (>45°) slopes, whereas the maximum landslide-area ratio in forest sites (7.4%) occurred on relatively gentle slopes (25–30°). Estimated landslide volume ranged from 27 to 9622 m3, based on mean depth of each landslide measured around individual landslide scars. Moreover, the volumetric ratio of landslide deposit volume to total landslide volume exceeded 100% for 48% of the landslides within forests and 35% of the landslides within grasslands. Our findings show that land cover had extensive and recognizable effects on the characteristics of landslides and resulting in-channel sediment accumulations. Resetting sediment dynamics after earthquakes associated with different land cover distributions needs to be considered within watersheds. © 2019 John Wiley & Sons, Ltd.  相似文献   

9.
Global cultivated land mapping at 30 m spatial resolution   总被引:2,自引:0,他引:2  
Cultivated land is one of the most important types of land cover in the global mapping of land cover, and its variation influences economic development, food security, and ecological environment protection. Existing products of global cultivated land mapping have a low resolution, and high spatial resolution products are in demand. This study uses global remote sensing image datasets in 2000/2010 with a spatial resolution of 30 m (Landsat TM/ETM+, HJ-1), MODIS 250 m NDVI time-serial data, and many types of reference data. An three-layer extraction method based on pixels, objects, and knowledge (POK) was adopted to ease cultivated land extraction in global-scale 30 m images, i.e., cultivated land classification based on pixel-scale multi-feature optimization, cultivated land automatic identification based on objects, and interactive object processing based on information service and priori knowledge. Global 30 m cultivated land mapping was accomplished for the two reference years (2000 and 2010), and statistical analysis was conducted on the data. Results showed that the total cultivated land area was 1.903 billion ha and 1.960 billion ha, respectively. Accuracy assessments showed that overall accuracy of global cultivated land mapping are higher than 92% for both the two reference years. The global cultivated land products in 2000/2010 developed in this research are superior to their international counterparts in terms of spatial resolution and classification accuracy. They also provide significant basic data on global food security, ecological environment supervision, and global change.  相似文献   

10.
Quantitative relationship between pollen and vegetation in northern China   总被引:14,自引:0,他引:14  
205 surface pollen samples from different communities in Northern China were analyzed to understand the quantitative relationship between pollen and its original vegetation. Pollen analysis and vegetation investigation show that the pollen assemblages differ a lot in different vegetation regions. Arboreal pollen account for more than 30% in temperate broad-deciduous forests region. In temperate steppe regions, herb pollen percentages are more than 90%, where Artemisia and Chenopodiaceae are domi- nant pollen types with Artemisia percentages more than 30%. In temperate desert, Chenopodiaceae pollen percentages are more than Artemisia, where ferns are rare. Cyperaceae pollen percentages are more than 20% in sub-alpine or cold meadows. The relations between pollen percentages and vegeta- tion cover indicate that most arboreal pollen shows a close relationship with parent plant covers, most shrubby pollen types have more or less correlations, but most herbs do not show clear correlations. For arboreal pollen types, Picea pollen shows the closest correlation with spruce trees coverage, then is Quercus and Carpinus. Betula, Larix and Juglans have also high correlation coefficients with their plants coverage, but Betula pollen is of overrepresented pollen type and more than 40% in birch forest, while Larix and Juglans pollen is underrepresented and pollen percentages are more than 10% in Larix or Juglans pure forests. Pinus is of overrepresented pollen type, and pollen percentages have some relations with plants cover. Pine forest might present when Pinus pollen percentages are more than 30%. The relations between Ulmus and Populus pollen percentages and vegetation cover are not close, where they are mixed with other arbors, they cannot be recorded easily, but if their pollen percentages are more than 1%, Ulmus or Populus trees should exist. For shrubby pollen types, the correlation be- tween Vitex pollen percentages and vegetation cover is the highest, then is Corylus, Tamariaceae and Nitraria, and their pollen percentages are less than 1% where original plant are absent. Caragana and Spiraea pollen percentages have some relations with vegetation cover. The relations between pollen percentages and vegetation cover are not clear for Rosaceae and Saxifragaceae. For herb pollen types, Cyperaceae pollen has the closest correlation with vegetation cover, where pollen percentages are more than 20% when Cyperaceae are constructive or dominant species in vegetation, and pollen per- centages are less than 5% where Cyperaceae are not constructive or dominant species (cover less than 30%). Artemisia and Chenopodiaceae pollen percentages mainly have close relations with ecological regions. The relations between pollen percentages and cover are not clear for Gramineae, Legumi- nosae and Compositae.  相似文献   

11.
In the northern Loess Plateau that has been severely affected by wind–water erosion, shifts from arable land to forest or grasslands have been promoted since 1998, using both native and introduced vegetation. However, there is little knowledge of the ecological consequences and effectiveness of the vegetation restoration in the region. Therefore, relationships between watershed‐scale soil physical properties and plant recovery processes were analyzed. The results show that soil physical properties such as bulk density, hydraulic conductivity, mean weight diameter, and the stability of >1 mm macro‐aggregates have been significantly ameliorated in the 0–20 cm soil layer under secondary natural grasslands. In contrast, re‐vegetation with introduced species such as Caragana korshinskii or Medicago sativa had adversely affected the soil physical properties, probably due to the deterioration of soil water conditions and lower organic matter inputs resulting from severe erosion. Reductions in bulk density and increases in saturated hydraulic conductivity could be used as indicators of soil structure amelioration since they are closely related to most other measured properties. Practical considerations for future re‐vegetation projects are suggested, particularly that native species with lower water consumption rates than the introduced species should be used to avoid further soil degradation.  相似文献   

12.
Understanding how land cover change will impact water resources in snow-dominated regions is of critical importance as these locations produce disproportionate runoff relative to their land area. We coupled a land cover evolution model with a spatially explicit, physics-based, watershed process model to simulate land cover change and its impact on the water balance in a 5.0 km2 headwater catchment spanning the alpine–subalpine transition on the Colorado Front Range. We simulated two potential futures both with greater air temperature (+4°C/century) and more precipitation (+15%/century, MP) or less precipitation (−15%/century, LP) from 2000 to 2100. Forest cover in the catchment increased from 72% in 2000 to 84% and 83% in 2050 and to 95% and 92% in 2100 for MP and LP, respectively. Surprisingly, increases in forest cover led to mean increases in annual streamflow production of 12 mm (6%) and 2 mm (1%) for MP and LP in 2050 with an annual control streamflow of 208 mm. In 2100, mean streamflow production increased by 91 mm (44%) and 61 mm (29%) for MP and LP. This result counters previous work as runoff production increased with forested area due to decreases in snow wind-scour and increases in drifting leeward of vegetation, highlighting the need to better understand the impacts of forest expansion on the spatial pattern of snow scour, deposition and catchment effective precipitation. Identifying the hydrologic response of mountainous areas to climate warming induced land cover change is critically important due to the potential water resources impacts on downstream regions.  相似文献   

13.
Land water, one of the important components of land cover, is the indispensable and important basic information for climate change studies, ecological environment assessment, macro-control analysis, etc. This article describes the overall study on land water in the program of global land cover remote sensing mapping. Through collection and processing of Landsat TM/ETM+, China’s HJ-1 satellite image, etc., the program achieves an effective overlay of global multi-spectral image of 30 m resolution for two base years, namely, 2000 and 2010, with the image rectification accuracy meeting the requirements of 1:200000 mapping and the error in registration of images for the two periods being controlled within 1 pixel. The indexes were designed and selected reasonably based on spectral features and geometric shapes of water on the scale of 30 m resolution, the water information was extracted in an elaborate way by combining a simple and easy operation through pixel-based classification method with a comprehensive utilization of various rules and knowledge through the object-oriented classification method, and finally the classification results were further optimized and improved by the human-computer interaction, thus realizing high-resolution remote sensing mapping of global water. The completed global land water data results, including Global Land 30-water 2000 and Global Land 30-water 2010, are the classification results featuring the highest resolution on a global scale, and the overall accuracy of self-assessment is 96%. These data are the important basic data for developing relevant studies, such as analyzing spatial distribution pattern of global land water, revealing regional difference, studying space-time fluctuation law, and diagnosing health of ecological environment.  相似文献   

14.
Controlling desertification is an important ecological target for the Qinghai-Tibet Plateau of China, where studies on impacts of vegetation restoration measures on sandy soil improvement are still lacking. The Mugetan Desert in Guinan County, Qinghai Province, northeastern Qinghai-Tibet Plateau is a repre-sentative ecological restoration area. The impacts of artificial vegetation on the ecological restoration and its properties are studied by using field investigation and sample testing including contents of the surface layer and the vegetation composition of movable, semi-fixed, and fixed sand dunes. Results demonstrate that the moss crust has formed on the surface of a sand dune which has become fixed after 30 years under the impact of artificial vegetation (i.e. Cathay poplar). Meanwhile, the clay minerals, organic matter, and other soil available nutrients have markedly increased. A correlation has been found between these materials, i.e., clay minerals and organic matter content increasing with silt and clay increases with reduction in sand content. In addition, soil nutrient were positively correlated with the increase of plant diversity.Under the current meteorological conditions, the artificial vegetation is helpful for the stabili-zation of sand dune and the ecological restoration in the Mugetan Desert.  相似文献   

15.
土地利用/覆被变化对明晰气候变化和人类活动对湖泊水环境的影响有重要作用.以北方典型农牧交错的岱海流域为研究对象,基于遥感解译技术、马尔可夫转移矩阵、综合污染指数法等方法,对2000-2018年岱海流域土地利用/覆被和湖泊水质的变化进行分析,并结合冗余分析法和计量分析模型探究长时间序列尺度下土地利用/覆被变化对湖泊水质的影响.结果表明:近20年来,岱海流域的土地利用/覆被类型以耕地和草地为主,其变化特征主要是草地和林地转化为耕地,水域转化为季节性河流,岱海转化为内陆滩涂、沼泽草地和灌丛沼泽;岱海湖泊水质因子高锰酸盐指数、五日生化需氧量、总磷和总氮浓度存在不同程度的超标现象;岱海、湿地、林地对水质具有积极的改善作用,耕地、草地、建设用地是加剧水质污染的主要原因.该研究为岱海湖泊流域土地资源合理利用、湖泊水质改善和生态保护提供了一定的科学理论依据.  相似文献   

16.
白洋淀位于雄安新区腹地,是雄安新区重要的生态屏障与后花园,生态补水与植被恢复是白洋淀生态修复的重要内容.本文运用遥感影像资料,对比分析了雄安新区设立以来(2017年和2020年)白洋淀挺水植被、沉水植被、陆生植被、开阔水域、建设用地和裸地6种土地利用类型的变化趋势,深入剖析了挺水植被、沉水植被和陆生植被的时空分布格局、生长期内逐月生物量变化及其演替规律,探讨了水位变化对挺水植被和沉水植被生物量的影响,分析了雄安新区设立以来生态补水对淀区植被恢复的整体效果.结果表明:白洋淀水生植被主要分布在淀区北部、西北、西南和沿岸水深较浅的区域,相比2017年雄安新区设立之初,生态补水作用下,2020年淀区水位平均上涨0.63 m,沉水植被、陆生植被分布面积分别扩大了7.5%和21.4%,挺水植被和裸地面积则缩减了19%;挺水植被在8月生物量达到最大值,其分布面积和生物量随水位的增加整体呈减小趋势,同时受季节演替影响,温度升高则会显著促进挺水植被生长;与之相反,沉水植被随季节演替,其年内生物量最大出现在5、9和10月,但分布面积未有明显变化,且其生物量变化受水位影响不明显.总体而言,雄安新区设立以来,白洋淀年内植被生物量明显增加,为淀区水环境质量和水生态安全提供保障.  相似文献   

17.
1 INTRODUCTION Soil erosion is serious in Western China. With the implementation of a development strategy for western China, soil and water conservation and ecological restoration in western China earn more attention because economic development requires parallel efforts on ecological restoration. To protect the ecology of the upper reaches of the Yangtze River, integrated management of sediment and ecological restoration are being conducted in Sichuan Province. The Yufeng Watershed…  相似文献   

18.
Spatiotemporal variations of Chinese Loess Plateau vegetation cover during 1981-2006 have been investigated using GIMMS and SPOT VGT NDVI data and the cause of vegetation cover changes has been analyzed, considering the climate changes and human activities. Vegetation cover changes on the Loess Plateau have experienced four stages as follows: (1) vegetation cover showed a continued increasing phase during 1981―1989; (2) vegetation cover changes came into a relative steady phase with small fluctuations during 1990―1998; (3) vegetation cover declined rapidly during 1999―2001; and (4) vegetation cover increased rapidly during 2002―2006. The vegetation cover changes of the Loess Plateau show a notable spatial difference. The vegetation cover has obviously increased in the Inner Mongolia and Ningxia plain along the Yellow River and the ecological rehabilitated region of Ordos Plateau, however the vegetation cover evidently decreased in the hilly and gully areas of Loess Plateau, Liupan Mountains region and the northern hillside of Qinling Mountains. The response of NDVI to climate changes varied with different vegetation types. NDVI of sandy land vegetation, grassland and cultivated land show a significant increasing trend, but forest shows a decreasing trend. The results obtained in this study show that the spatiotemporal variations of vegetation cover are the outcome of climate changes and human activities. Temperature is a control factor of the seasonal change of vegetation growth. The increased temperature makes soil drier and unfavors vegetation growth in summer, but it favors vegetation growth in spring and autumn because of a longer growing period. There is a significant correlation between vegetation cover and precipitation and thus, the change in precipitation is an important factor for vegetation variation. The improved agricultural production has resulted in an increase of NDVI in the farmland, and the implementation of large-scale vegetation construction has led to some beneficial effect in ecology.  相似文献   

19.
在集水区尺度利用景观生态学的原理进行分析和管理是现代生态学与地理科学的一个重要课题.在人口增长和经济发展的压力下,集水区的格局和过程己受到人类活动越来越强烈地干扰.赛勒支盆地是一个典型的美国太平洋西北部沿海地区的集水区,本文以此为例,研宄了美国俄勒冈州中部集水区尺度的景观格局和过程在人类活动干扰下的时空动态.通过卫星遥感影像的应用,我们对1977年到2000年间赛勒支盆地土地覆盖的变化进行了检测.我们用陆地资源卫星1977年的多光谱影像(MSS), 1988年的专题影像(TM)' 2000年的增强专题影像(ETM+)高精度地定量分析了森林演替系列(如,演替后期的老针叶林和成熟针叶林,演替前期的年轻针叶林,以及更新的幼林)和其它土地覆盖类型的变化.景观的空间格局通过多种格局指数,例如,缀块指数、缀块形状复杂性指数、以及连接指数等进行了分析.同时,基于美国太平洋西北部主要森林类型和其它土地覆盖类型碳通量和碳贮量的空间数据库和文献资料,我们对 1977-2000年赛勒支盆地中的碳库及其在人类活动干扰下的变化作了测定.研宄结果揭示出,因为森林皆伐,老针叶林和成熟针叶林在1977-2000年间显著地减少,分别由占整个盆地土地覆盖面积的23%和12%, 减少为12%和7%;与此相反,年轻针叶林和无林地则分别从24%和5%增加为43%和14%.同时,因为采伐等干扰,留存的老针叶林和成熟针叶林空间分布格局的破碎度也迅速增加.集水区的碳收支在 1977-2000期间发生了巨大的变化.在收获干扰的压力下,在1977-2000年间,整个集水区的生态系统碳贮量从 17640797t 减少到 13405720t;净生态系统生产力(Net Ecosystem Production, NEP)由每年 100462tC 减少为每年76800tC.  相似文献   

20.
The intensity of soil loss and sediment delivery, representing hydrologic and geomorphic processes within a catchment, accelerates with rapid changes in land cover and rainfall events. An underlying component of sustainable management of water resources is an understanding of spatial and temporal variability and the adverse influences of regional parameters involved in generating sediment following widespread changes in land cover. A calibrated algorithm of soil loss coupled with a sediment delivery ratio (SDR) was applied in raster data layers to improve the capability of a combined model to estimate annual variability in sediment yields related to changes in vegetation cover identified by analyses of SPOT imagery. Four catchments in Kangaroo River State forest were assessed for annual changes in sediment yields. Two catchments were selectively logged in 2007, while the two other sites remained undisturbed. Results of SDR estimates indicated that only a small proportion of total eroded sediment from hillslopes is transported to catchment outlets. Larger SDR values were estimated in regions close to catchment outlets, and the SDR reduced sharply on hillslopes further than 200–300 m from these areas. Estimated sediment yield increased by up to 30% two years after land cover change (logging) in 2009 when more storm events were recorded, despite the moderate density of vegetation cover in 2009 having almost recovered to its initial pre‐logging (2005) condition. Rainfall had the most significant influence on streamflow and sediment delivery in all catchments, with steeply sloping areas contributing large amounts of sediment during moderate and high rainfall years in 2007 and 2009. It is concluded that the current scenario of single‐tree selection logging utilized in the study area is an acceptable and environmentally sound land management strategy for preservation of soil and water resources. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号