首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On a global scale,from 2005 to 2019,there were 275 high-magnitude,low-frequency disasters that involved 14,172 fatalities and four million affected people.Similar patterns have taken place during longer periods of time in recent decades.This paper aims to analyse the contribution of the international landslide research community to disaster risk reduction and disaster risk management in reference to the use of Unmanned Aerial Vehicles(UAVs)in a literature review.The first section notes the relevance of disaster risk research contributions for the implementation of initiatives and strategies concerning disaster risk management.The second section highlights background information and current applications of drones in the field of hazards and risk.The methodology,which included a systematic peer review of journals in the ISI Web of Science and SCOPUS,was presented in the third section,where the results include analyses of the considered data.This study concludes that most current scholarly efforts remain rooted in hazards and post-disaster evaluation and response.Future landslide disaster risk research should be transdisciplinary in order to strengthen participation of the various relevant stakeholders in contributing to integrated disaster risk management at local,subnational,national,regional and global levels.  相似文献   

2.
滑坡作为水库库区主要地质灾害类型之一,其风险研究一直是近年来的研究热点。水库滑坡涌浪的产生使滑坡灾害的影响范围由滑坡源本身扩散到上下游数千米,极大地扩大了滑坡风险的承灾体类型与数量以及灾害损失程度。因涉及交叉学科领域,滑坡涌浪风险评估是滑坡风险灾害链评价的难点与前沿课题。本文综合了前人近几十年来的研究成果,首先从危险性、易损性以及风险3个方面出发,对国内外的滑坡涌浪风险研究现状和常用的研究方法进行了概述,并对重点代表性研究成果进行了述评分析,针对滑坡涌浪风险研究方面的新进展进行了介绍,包括考虑实际河道地形复杂性的试验研究、聚焦于滑坡-水体相互作用机制的多种数值模拟方法耦合研究,以及基于多种承灾体类型的易损性评价体系等。然后对近年来三峡库区发生过的多起滑坡涌浪风险管控实例的过程与后果进行了详细的阐述。最后基于多年的研究经验提出了滑坡涌浪灾害链风险研究的新方向和新思路,即涌浪风险应与滑坡风险评价体系相互融合,并沿着定量化、规范化、精细化的方向发展。   相似文献   

3.
四川省滑坡灾害严重,特别是2008年之后,灾情显著加剧,如何预防滑坡灾害是保护人民生命财产安全的有效途径。滑坡灾害的预警模型研究是滑坡灾害预防领域的核心课题。本文对四川省滑坡灾害危险性进行了评价,并开展了滑坡灾害气象风险预警模型研究。①以确定性系数的方法量化坡度、地形起伏度、水文地质岩性、植被覆盖度、地震烈度和年均降雨量因子,建立逻辑回归模型,定量地进行四川省滑坡灾害危险性区划,并对结果进行验证。结果表明,四川省滑坡灾害高危险性区域成“Y”字型分布,此外川中、川东北地区滑坡灾害危险性也非常高,这与四川省滑坡灾害的空间分布情况相符。②在前期滑坡灾害与降雨量统计分析、滑坡灾害危险性评价的基础上,以滑坡灾害危险性评价为静态因子,日降雨量数据为动态因子,通过逻辑回归模型的结果,确定以当日降雨量概率化值、滑坡灾害危险性值、前一日降雨概率化值、前两日降雨概率化值、前三日降雨概率化值为临灾模型影响因子,各因子对预警结果影响程度按上述顺序递减,建立了地质-气象耦合的临灾气象预警模型。通过检验区数据对模型的检验表明,该预警模型能成功预警80%以上的滑坡灾害;通过滑坡灾害群发个例检验发现,该预警模型与四川省现用模型相比,预警区域明显减小,空报率和漏报率显著降低。  相似文献   

4.
将地学信息图谱理论运用在浙江省滑坡灾害风险区划中,结合已有的滑坡灾害风险研究,选取DEM、坡度、坡向、断裂、土石工程地质分组、土地利用类型等空间环境因子和不同时间段的降水量等作为评价子系统,实现从不同角度对浙江省滑坡灾害进行综合评价,并得出浙江省滑坡灾害风险区划图谱。一方面,地学信息图谱的运用使得滑坡灾害形成的动因和过程更加易于理解,另一方面,同时显示滑坡灾害的时间和空间差异的滑坡灾害风险区划图谱能够为浙江省的滑坡灾害防治提供更科学的参考依据。  相似文献   

5.
2021年6月10日20时30分左右, 贵州省兴仁彭家洞发生高速滑坡, 滑坡体高速运动沿途铲刮坡面崩塌堆积体, 造成3人遇难, 18栋房屋损毁。通过对滑坡发生前后影像资料遥感解译、灾害发生现场详细的地质调查及室内综合分析等技术手段, 对彭家洞滑坡的特征进行了详细描述, 阐明了滑坡发生的运动特征与形成机理。研究表明: 斜坡地形"上陡-中缓-下陡"与岩土结构"上硬下软"是滑坡形成的内在因素, 人类工程活动、强降雨的饱水加载和下渗软化作用是滑坡形成的外在因素; 滑坡平面形态呈折线形, 根据运动特征和堆积结构将滑坡分为滑源区(Ⅰ)、铲刮-流通区(Ⅱ)、铲刮堆积区(Ⅲ)3个区; 滑坡是由危岩带形成、滑坡孕育及斜坡失稳3个阶段孕育形成的挤压-推移式高速滑坡。研究结果对贵州类似的斜坡地带及岩土结构区域开展防灾减灾工作具有较强的指导作用。   相似文献   

6.
Karanganyar and the surrounding area are situated in a dynamic volcanic arc region, where landslide frequently occurs during the rainy season. The rain-induced landslide disasters have been resulting in 65 fatalities and a substantial socioeconomical loss in last December 2007. Again, in early February 2009, 6 more people died, hundreds of people temporary evacuated and tens of houses damaged due to the rain-induced landslide. Accordingly, inter-disciplinary approach for geological, geotechnical and social investigations were undertaken with the goal for improving community resilience in the landslide vulnerable villages. Landslide hazard mapping and community-based landslide mitigation were conducted to reduce the risk of landslides. The hazard mapping was carried out based on the susceptibility assessment with respect to the conditions of slope inclination, types and engineering properties of lithology/soil as well as the types of landuse. All of those parameters were analyzed by applying weighing and scoring system which were calculated by semi qualitative approach (Analytical Hierarchical Process). It was found that the weathered andesitic-steep slope (steeper than 30o) was identified as the highest susceptible slope for rapid landslide, whilst the gentle colluvial slope with inter-stratification of tuffaceous clay-silt was found to be the susceptible slope for creeping. Finally, a programme for landslide risk reduction and control were developed with special emphasize on community-based landslide mitigation and early warning system. It should be highlighted that the social approach needs to be properly addressed in order to guarantee the effectiveness of landslide risk reduction.  相似文献   

7.
济南长清区地质灾害发育较强烈,包括崩塌、滑坡、泥石流和岩溶塌陷等4种类型。 该文在现状调查的基础上,采用“地质灾害综合危险性指数法”,以地质、地形地貌、气候植被、地质灾害隐患点、地质灾害规模、分布密度、活动频次和险情等因素为评价因子,将长清区地质灾害易发程度划分为中易发区、低易发区及不易发区3个区,并在此基础上进行了防治分区划分 ,为地质灾害的预防和治理提供了科学依据。  相似文献   

8.
编制科学的滑坡易发性分区图,可以有效降低灾害带来的损失。以云南省芒市为研究区,利用确定性系数模型(certainty factor,简称CF)方法计算各个因子的敏感值,作为随机森林(random forests,简称RF)的分类数据,选取合适的训练数据和最优化的模型参数进行模型预测,从而对研究区进行滑坡易发性评价分区。采用频率比方法将连续性因子离散化,从而通过确定性系数计算因子不同区间的滑坡易发性,同时利用CF先验模型,对研究区负样本进行选取。通过计算袋外误差得到最优化的RF参数,随后利用RF模型对研究区模型进行训练及预测。绘制ROC曲线和三维遥感影像对预测模型结果分别进行定量和定性评价,结果表明,所得到的模型精度为91%,优于随机抽样得到的结果。最后,采用平均基尼不纯度减少和平均准确度下降两种计算方法计算、评价了研究区各个因子的重要性。基于以上对研究区进行的滑坡易发性评价结果,可以为该区灾害风险评估和管理提供依据。   相似文献   

9.
The Wulipo landslide, triggered by heavy rainfall on July 10, 2013, transformed into debris flow,resulted in the destruction of 12 houses, 44 deaths, and 117 missing. Our systematic investigation has led to the following results and to a new understanding about the formation and evolution process of this hazard. The fundamental factors of the formation of the landslide are a high-steep free surface at the front of the slide mass and the sandstone-mudstone mixed stratum structure of the slope. The inducing factor of the landslide is hydrostatic and hydrodynamic pressure change caused by heavy continuous rainfall. The geological mechanical model of the landslide can be summarized as "instability-translational slide-tension fracture-collapse" and the formation mechanism as "translational landslide induced by heavy rainfall". The total volume of the landslide is 124.6×104 m3, and 16.3% of the sliding mass was dropped down from the cliff and transformed into debris flow during the sliding process, which enlarged 46.7% of the original sliding deposit area. The final accumulation area is found to be 9.2×104 m2. The hazard is a typical example of a disaster chain involving landslide and its induced debris flow. The concealment and disaster chain effect is the main reason for the heavy damage. In future risk assessment, it is suggested to enhance the research onpotential landslide identification for weakly intercalated slopes. By considering the influence of the behaviors of landslide-induced debris flow, the disaster area could be determined more reasonably.  相似文献   

10.
Rudraprayag in Garhwal Himalayan division is one of the most vulnerable districts to landslides in India. Heavy rainfall, steep slope and developmental activities are important factors for the occurrence of landslides in the district. Therefore, specific assessment of landslide susceptibility and its accuracy at regional level is essential for disaster management and proper land use planning. The article evaluates effectiveness of frequency ratio, fuzzy logic and logistic regression models for assessing landslide susceptibility in Rudraprayag district of Uttarakhand state, India. A landslide inventory map was prepared and verified by field data. Fourteen landslide parameters and generated inventory map were utilized to prepare landslide susceptibility maps through frequency ratio, fuzzy logic and logistic regression models. Landslide susceptibility maps generated through these models were classified into very high, high, medium, low and very low categories using natural breaks classification. Receiver operating characteristics (ROC) curve, spatially agreed area approach and seed cell area index (SCAI) method were used to validate the landslide models. Validation results revealed that fuzzy logic model was found to be more effective in assessing landslide susceptibility in the study area. The landslide susceptibility map generated through fuzzy logic model can be best utilized for landslide disaster management and effective land use planning.  相似文献   

11.
泰安市地处鲁中山区,地形地质条件较复杂,是山东省崩塌、滑坡、泥石流地质灾害的多发区,在强降雨条件下,地质灾害频繁发生,制约了当地社会经济的发展.本文通过对研究区崩塌、滑坡、泥石流发育现状、地质灾害特征进行统计分析,从地貌特征、岩土体特征、地质构造、降水、植被、人类工程活动等方面,深入阐述了崩塌、滑坡、泥石流与地质环境条...  相似文献   

12.
黄土区滑坡研究中地形因子的选取与适宜性分析   总被引:1,自引:0,他引:1  
黄土高原是中国生态较为脆弱的地区,也是滑坡发育的地层之一。黄土滑坡发育是孕灾环境、致灾因子和承灾体等多种因素联合作用的结果,其中作为重要孕灾环境因素的地形因子的选取是黄土滑坡风险研究的基础。本文选取黄土滑坡灾害多发的甘谷县作为研究区,综合利用敏感性指数、确定性系数和相关系数方法进行地形因子在滑坡灾害研究中的适宜性分析,得出以下结论:基于确定性系数法、敏感性分析模型和相关系数法,最终筛选出适宜于本区域滑坡灾害评价的地形因子为:坡度、坡度变率、坡形和地表粗糙度;确定性系数法、敏感性分析模型都基于分析单一因子与滑坡之间的关系进行致灾因子选取,忽视地形因子之间的相关性。实验结果表明,研究区稳定性较差的区域与已发生滑坡灾害分布数量具有较好的对应关系,并深入分析了滑坡与地形因子分级范围的关系,发现地形因子分级范围对地质灾害风险研究具有重要的影响,是导致部分区域的差异性主要原因之一。实地调查发现,河网切割密度及人类工程活动也对研究区危险性具有重要的控制作用,是重要的地形因素。  相似文献   

13.
Stability analysis of the dam is important for disaster prevention and reduction. The dam's geometry plays an important role in understanding its stability. This study develops a rapid landslide dam geometry assessment method for both earthquake-induced and rainfall-induced landslide dams based on nine real cases collected in Chinese Taipei and 214 cases collected worldwide. For simplification purposes, a landslide dam is classified into triangular or trapezoidal. The rapid landslide dam geometry assessment method in this paper uses only satellite maps and the topographic maps to get landslide area, and then analyze the dam geometry. These maps are used to evaluate the area of the landslide and the slope of the river bed. Based on the evaluation information, the proposed method can calculate dam height, the length of the dam, and the angles of the dam in both upstream and downstream directions. These geometry parameters of a landslide dam provide important information for further dam stability analysis. The proposed methodology is applied to a real landslide dam case at Hsiaolin Village. The result shows that the proposed method can be used to assess the landslide dam geometry.  相似文献   

14.
A catastrophic landslide occurred at Xinmo village in Maoxian County, Sichuan Province,China, on June 24, 2017. A 2.87×106 m3 rock mass collapsed and entrained the surface soil layer along the landslide path. Eighty-three people were killed or went missing and more than 103 houses were destroyed. In this paper, the geological conditions of the landslide are analyzed via field investigation and high-resolution imagery. The dynamic process and runout characteristics of the landslide are numerically analyzed using a depth-integrated continuum method and Mac Cormack-TVD finite difference algorithm.Computational results show that the evaluated area of the danger zone matchs well with the results of field investigation. It is worth noting that soil sprayed by the high-speed blast needs to be taken into account for such kind of large high-locality landslide. The maximum velocity is about 55 m/s, which is consistent with most cases. In addition, the potential danger zone of an unstable block is evaluated. The potential risk area evaluated by the efficient depthintegrated continuum method could play a significant role in disaster prevention and secondary hazard avoidance during rescue operations.  相似文献   

15.
滑坡灾害应急处置能力是地质灾害减灾防灾的重要方面。目前,基于滑坡灾害预测和预警分级成果,系统性的应急措施分类研究还鲜有展开,因此,以三峡库区白水河滑坡为例,运用时间序列加法模型将滑坡累计位移分解为趋势项位移与周期项位移,并分别应用多项式拟合及自回归(AR)模型对2个分量进行预测,在此结果上采用聚类分析方法将滑坡变形分为匀速变形与加速变形阶段,综合判断滑坡灾害预警等级,开展了针对滑坡预警分级的应急措施研究。结果表明:白水河滑坡预警等级主要为蓝色和黄色2种类型,对处于不同的预警等级下的滑坡,可根据滑坡变形特征快速决策,基于滑坡灾害预测和预警分级结果能更有效地指导滑坡应急处置。   相似文献   

16.
中国的贫困地区主要分布在山区,山地灾害的多发,易发在某种程度上成为制约贫困地区经济发展的因素之一.目前,山地灾害的研究集中于动力学研究,缺乏风险尤其是灾害致使贫困风险的研究.本文对山地灾害特有灾害与一般地质灾害的概念进行了区分;根据贫困的内涵与可量测性,定义了山地灾害的贫困脆弱性及山地灾害致贫风险;以贫困脆弱性分布和灾害危险性分布,构建区域山地灾害致贫风险评价模型,并基于此模型对少数民族特困地区--湖北省恩施土家族苗族自治州(简称恩施州)进行应用研究.在示例分析中,首先利用确定性系数模型和频率比例法对山地灾害的危险性进行了评价;然后,从暴露性和应对能力2个方面选取了经济,社会及自然指标,以进行脆弱性评价;最后,利用通用灾害风险评价公式对研究区由于山地灾害导致的贫困风险在空间的分布进行评价,得到了研究区的山地灾害致贫风险分布与分级图.  相似文献   

17.
金沙江结合带结构破碎,软弱岩层发育,流域性特大高位地质灾害频繁发生.针对该区域开展大范围滑坡调查与监测研究,对减灾防灾具有重要意义.以金沙江结合带巴塘段为试验区,采用堆叠InSAR技术分别利用升轨、降轨Sentinel-1 A卫星数据对该区域滑坡隐患开展了调查研究.在此基础上,以中心绒乡滑坡群为重点研究区,利用多维小基...  相似文献   

18.
由于具有类似的工程地质和水文地质条件, 在高度相关的降雨作用下, 同一个区域中的降雨诱发浅层斜坡失稳灾害常成群出现。在区域尺度预测浅层斜坡失稳灾害对滑坡灾害的防灾减灾工作具有重要的意义。为此, 提出了一种基于力学原理的降雨诱发浅层斜坡失稳灾害预测新模型RARIL。该模型采用修正Green-Ampt模型进行降雨入渗分析, 采用无限体边坡模型进行安全系数计算, 利用可靠度原理考虑区域斜坡稳定性分析中的参数不确定性。该模型具有可考虑降雨诱发浅层斜坡的失稳力学机理、可考虑区域内斜坡土体参数不确定性, 以及计算效率高、易于在GIS平台上实现等优点。案例分析表明, RARIL模型较为准确地预测了2010年8月12日11∶00至2010年8月14日9∶00期间强降雨在四川省汶川县映秀镇附近的303省道K0-K20段沿线区域引发的滑坡灾害, 研究结果证明RARIL模型在预测降雨诱发区域斜坡失稳灾害方面有很好的应用前景。   相似文献   

19.
Defining a basin under a critical state(or a self-organized criticality) that has the potential to initiate landslides,debris flows,and subsequent sediment disasters,is a key issue for disaster prevention.The Lushan Hot Spring area in Nantou County,Taiwan,suffered serious sediment disasters after typhoons Sinlaku and Jangmi in 2008,and following Typhoon Morakot in 2009.The basin’s internal slope instability after the typhoons brought rain was examined using the landslide frequency-area distribution.The critical state indices attributed to landslide frequency-area distribution are discussed and the marginally unstable characteristics of the study area indicated.The landslides were interpreted from Spot 5 images before and after disastrous events.The results of the analysis show that the power-law landslide frequency-area curves in the basin for different rainfall-induced events tend to coincide with a single line.The temporal trend of the rainfallinduced landslide frequency-area distribution shows 1/f noise and scale invariance.A trend exists for landslide frequency-area distribution in log-log space for larger landslides controlled by the historical maximum accumulated rainfall brought by typhoons.The unstable state of the basin,including landslides,breached dams,and debris flows,are parts of the basin’s self-organizing processes.The critical state of landslide frequency-area distribution could be estimated by a critical exponent of 1.0.The distribution could be used for future estimation of the potential landslide magnitude for disaster mitigation and to identify the current state of a basin for management.  相似文献   

20.
《山地科学学报》2020,17(2):358-372
The earthquake that occurred on May 12, 2008, in Wenchuan County aroused a great deal of research on co-seismic landslide susceptibility assessment, but there is still a lack of an evaluation method that considers the activity state of the landslide itself. Therefore, this paper establishes a new susceptibility evaluation model that superimposes the active landslide state based on previous susceptibility evaluation models. Based on a multi-phase landslide database, the probabilistic approach was used to evaluate landslide susceptibility in the Miansi town over many years. We chose the elevation, slope, aspect, and distance from the channel as trigger factors and then used the probability comprehensive discrimination method to calculate the probability of landslide occurrence. Then, the susceptibility results of each period were calculated by superposition with the activity rate. The results show that between 2008 and 2014, the proportion of areas with low landslide susceptibility in the study area was the largest, and the proportionof areas with the highest susceptibility was minimal. The landslide area with highest susceptibility gradually decreased from 2014 to 2017. However, in 2017, 15.06% of the area was still with high susceptibility, and relevant disaster prevention and reduction measures should be taken in these areas. The larger area under the receiver operating characteristic curve(AUC) indicates that the results of the landslide susceptibility assessment in this study are more objective and reliable than those of previous models. The difference in the AUC values over many years shows that the accuracy of the evaluation results of this model is not constant, and a greater number of landslides or higher landslide activity corresponds to a higher accuracy of the evaluation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号