首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Roberts  B. 《Solar physics》2000,193(1-2):139-152
It has long been suggested on theoretical grounds that MHD waves must occur in the solar corona, and have important implications for coronal physics. An unequivocal identification of such waves has however proved elusive, though a number of events were consistent with an interpretation in terms of MHD waves. Recent detailed observations of waves in events observed by SOHO and TRACE removes that uncertainty, and raises the importance of MHD waves in the corona to a higher level. Here we review theoretical aspects of how MHD waves and oscillations may occur in a coronal medium. Detailed observations of waves and oscillations in coronal loops, plumes and prominences make feasible the development of coronal seismology, whereby parameters of the coronal plasma (notably the Alfvén speed and through this the magnetic field strength) may be determined from properties of the oscillations. MHD fast waves are refracted by regions of low Alfvén speed and slow waves are closely field-guided, making regions of dense coronal plasma (such as coronal loops and plumes) natural wave guides for MHD waves. There are analogies with sound waves in ocean layers and with elastic waves in the Earth's crust. Recent observations also indicate that coronal oscillations are damped. We consider the various ways this may be brought about, and its implications for coronal heating.  相似文献   

2.
Photospheric models were calculated for 90 stars with effective temperatures between 2500 K and 41600 K for five logg-values ranging from 1 to 5. Molecule formation was taken into account. In order to have an idea about possible instabilities in the different stellar layers some quantities, characteristic for convection and turbulence were calculated, such as the Rayleigh-, Reynolds-, Prandtl- and Péclet-numbers. It turned out that all the investigated stars contain unstable layers, including the hottest. Nevertheless, only stars with effective temperatures of 8300 K or less contain layers where the convective energy transport is important. For all stars the convective velocities were calculated and also the generated mechanical fluxes in the convection zones were tabulated.Under the hypothesis that this mechanical energy flux is responsible for the heating of the corona, coronal models were constructed for the Sun and for some stars with effective temperatures between 5000 K and 8320 K for logg-values of 4 or 5.For Main Sequence stars the largest fluxes are generated in F-stars; stars withT eff=7130 K and logg=4 possess also the hottest and most dense coronas with a computed temperature of 3.7·106 K and logN e =10.5.The solar corona computed in this way, on the basis of a photospheric mechanical flux of 0.14·108 erg cm–2 sec–1, has a temperature of 1.3·106 K and logN e =9.8. This density is apparently too high, but even when including in the computations all theoretical refinements proposed in the last few years by various authors it does not appear possible to obtain a solar coronal model with a smaller density.However, when taking into account the inhomogeneous structure of the chromosphere and by associating the calculated mechanical fluxes to the coarse mottles, and lower fluxes to the undisturbed regions we find a mean coronal temperature of 1.1·106 K and a mean logN e -values of 9. The computed velocity of the solar wind at a distance of 104 km above the photosphere has a value between 7 and 11 km sec–1. These latter values are in fair agreement with the observations.  相似文献   

3.
We investigate the propagation of Alfvén waves in a simple medium consisting of three uniform layers; each layer is characterized by a different value for the Alfvén speed, A. We show how the central layer can act as a resonant cavity under quite general conditions. If the cavity is driven externally, by an incident wave in one of the outer layers, there result resonant transmission peaks, which allow large energy fluxes to enter the cavity from outside. The transmission peaks result from the destructive interference between a wave which leaks out of the cavity, and a directly reflected wave. We show that there are two types of resonances. The first type occurs when the cavity has the largest (or smallest) of the three Alfvén speeds; this situation occurs on coronal loops. The second type occurs when the cavity Alfvén speed is intermediate between the other two values of A; this situation may occur on solar spicules. Significant heating of the cavity can occur if the waves are damped. We show that if the energy lost to heat greatly exceeds the energy lost by leakage out of the cavity, then the cavity heating can be independent of the damping rate. This conclusion is shown to apply to coronal resonances and to the spicule resonances. This conclusion agrees with a point made by Ionson (1982) in connection with the coronal resonances. Except for a numerical factor of order unity, we recover Ionson's expression for the coronal heating rate. However, Ionson's qualities are much too large. For solar parameters, the maximum quality is of the order of 100, but the heating is independent of the damping rate only when dissipation reduces the quality to less than about 10.  相似文献   

4.
Tu  C.-Y.  Marsch  E. 《Solar physics》1997,171(2):363-391
A model of the solar corona and wind is developed which includes for the first time the heating and acceleration effects of high-frequency Alfvén waves in the frequency range between 1 Hz and 1 kHz. The waves are assumed to be generated by the small-scale magnetic activity in the chromospheric network. The wave dissipation near the gyro-frequency, which decreases with increasing solar distance, leads to strong coronal heating. The resulting heating function is different from other artificial heating functions used in previous model calculations. The associated thermal pressure-gradient force and wave pressure-gradient force together can accelerate the wind to high velocities, such as those observed by Helios and Ulysses. Classical Coulomb heat conduction is also considered and turns out to play a role in shaping the temperature profiles of the heated protons. The time-dependent two-fluid (electrons and protons) model equations and the time-dependent wave-spectrum equation are numerically integrated versus solar distance out to about 0.3 AU. The solutions finally converge and settle on time-stationary profiles which are discussed in detail. The model computations can be made to fit the observed density profiles of a polar coronal hole and polar plume with the sonic point occurring at 2.4 R and 3.2 R , respectively. The solar wind speeds obtained at 63 R are 740 km s-1 and 540 km s-1; the mass flux is 2.1 and 2.2 × 108 cm-2 s-1 (normalized to 1 AU), respectively. The proton temperature increases from a value of 4 × 105 K at the lower boundary to 2 × 106 K in the corona near 2 R .  相似文献   

5.
A coronal magnetic arcade can be thought of as consisting of an assembly of coronal loops. By solving equations of isobaric thermal equilibrium along each loop and assuming a base temperature of 2 × 104 K, the thermal structure of the arcade can be found. The possible thermal equilibria can be shown to depend on two parameters L * p * and h */p * representing the ratios of cooling (radiation) to condu and heating to cooling, respectively. Arcades can contain four types of loops: hot loops with summits hotter than 400000 K; cool loops at temperatures less than 80000 K along their lengths; hot-cool loops with cool summits and cool footpoints but hotter intermediate portions; and warm loops, cooler than 80000 K along most of their lengths but with summits as hot as 400000 K. Two possibilities for coronal heating are considered, namely a heating that is independent of magnetic field and a heating that is proportional to the square of the local magnetic field. When the arcade is sheared the thermal structure of the arcade may change, leading in some cases to non-equilibrium or in other cases to the formation of a cool core.  相似文献   

6.
Skylab EUV observations of an active region near the solar limb were analyzed. Both cool (T < 106 K) and hot (T > 106 K) loops were observed in this region. For the hot loops the observed intensity variations were small, typically a few percent over a period of 30 min. The cool loops exhibited stronger variations, sometimes appearing and disappearing in 5 to 10 min. Most of the cool material observed in the loops appeared to be caused by the downward flow of coronal rain and by the upward ejection of chromospheric material in surges. The frequent EUV brightenings observed near the loop footpoints appear to have been produced by both in situ transient energy releases (e.g. subflares) and the infall/impact of coronal rain. The physical conditions in the loops (temperatures, densities, radiative and conducting cooling rates, cooling times) were determined. The mean energy required to balance the radiative and conductive cooling of the hot loops is approximately 3 × 10–3 erg cm–3 s–1. One coronal heating mechanism that can account for the observed behavior of the EUV emission from McMath region 12634 is heating by the dissipation of fast mode MHD waves.  相似文献   

7.
T. Takakura 《Solar physics》1987,107(2):283-297
Numerical simulation for the dynamics of a coronal filamentary magnetic loop has been made under the assumption that the field is initially force-free and an electric resistivity suddenly increases at a given moment due to an appearance of ion sound waves, which can be excited due to a high current density if a characteristic radius r 0 of the magnetic loop is about 3 km or less in a magnetic field B 0 of 1000 G. During the resistive decay of the magnetic field a strong field-aligned electric field is created and maintained for a sufficient time to acceleratie both electrons and protons to a high energy, which is proportional to B 0/r 0 and can be 100 MeV if r 0 = 10 km and B 0 = 1000 G. If the coronal magnetic tube is composed of many such filamentary loops, the total number of accelerated electrons is consistent with the observations.  相似文献   

8.
Walsh  R. W.  Bell  G. E.  Hood  A. W. 《Solar physics》1996,169(1):33-45
Many coronal heating mechanisms have been suggested to balance the losses from this tenuous medium by radiation, conduction, and plasma mass flows. A previous paper (Walsh, Bell, and Hood, 1995) considered a time-dependent heating supply where the plasma evolved isobarically along the loop length. The validity of this assumption is investigated by including the inertial terms in the fluid equations making it necessary to track the sound waves propagating in a coronal loop structure due to changes in the heating rate with time. It is found that the temperature changes along the loop are mainly governed by the variations in the heating so that the thermal evolution can be approximated to a high degree by the simple isobaric case. A typical isobaric evolution of the plasma properties is reproduced when the acoustic time scale is short enough. However, the cooling of a hot temperature equilibrium to a cool one creates supersonic flows which are not allowed for in this model.  相似文献   

9.
We study a nonlinear mechanism for the excitation of kinetic Alfvén waves (KAWs) by fast magneto-acoustic waves (FWs) in the solar atmosphere. Our focus is on the excitation of KAWs that have very small wavelengths in the direction perpendicular to the background magnetic field. Because of their small perpendicular length scales, these waves are very efficient in the energy exchange with plasmas and other waves. We show that the nonlinear coupling of the energy of the finite-amplitude FWs to the small-scale KAWs can be much faster than other dissipation mechanisms for fast wave, such as electron viscous damping, Landau damping, and modulational instability. The nonlinear damping of the FWs due to decay FW = KAW + KAW places a limit on the amplitude of the magnetic field in the fast waves in the solar corona and solar-wind at the level B/B 0∼10−2. In turn, the nonlinearly excited small-scale KAWs undergo strong dissipation due to resistive or Landau damping and can provide coronal and solar-wind heating. The transient coronal heating observed by Yohkoh and SOHO may be produced by the kinetic Alfvén waves that are excited by parametric decay of fast waves propagating from the reconnection sites.  相似文献   

10.
Lenz  Dawn D.  DeLuca  Edward E.  Golub  Leon  Rosner  Robert  Bookbinder  Jay A.  Litwin  Christof  Reale  Fabio  Peres  Giovanni 《Solar physics》1999,190(1-2):131-138
An initial study of long-lived loops observed with TRACE (Lenz et al., 1999) shows that they have no significant temperature stratification and that they are denser than the classic loop model predicts. Models that agree better with the observations include a loop consisting of a bundle of filaments at different temperatures and a loop with momentum input by MHD waves. Some implications for coronal heating models and mechanisms are discussed.  相似文献   

11.
The numerical integration of hydrodynamics equations with an allowance for thermal conductivity was made using the temperature distribution in the corona situated above the active regions obtained from the damping time of solar radio bursts of Types III and V. It is essential that for the integration path serve the magnetic field lines along which exciters of bursts are moving and accelerated coronal plasma can move freely too.The main result is the discovery of such regions, where the high temperature gradient precludes the possibility of a continuous flow of coronal plasma. These regions, where intense heating and rapid acceleration of the coronal plasma take place, were situated at distances of about 2 R from the Sun's center. They probably possess the character of weak detonation waves. The waves of cooling can also be present in these regions of discontinuity of the flow. The observations of bursts of Type V at distances up to 6.3 R gives some evidence that discontinuities of flow of the solar wind of the same nature can possibly arise also in the more remote parts of the solar corona.It is important that the similar jumps of velocity and other parameters of coronal plasma were also discovered earlier in a quite independent way as a result of the interpretation of the solar radio echo data. It can be anticipated that the nonthermal heating of coronal plasma, which was postulated to remove discrepancies between the existing models and observations of solar wind, was localized mainly in these regions thus playing an important role in the formation of the fundamental properties of the interplanetary medium.The obtained results are of preliminary character since there are no reliable and homogeneous data on bursts of Types III and V especially at 20-10 MHz, where the work is difficult due to the man-made interference and also at still lower frequencies, observed by the cosmic probes. We can hope that the filling of this gap allows us to construct a realistic model of outflow of coronal plasma from active regions, which can be successfully compared with the results of direct measurement of parameters of solar wind.  相似文献   

12.
I. Ballai 《Solar physics》2007,246(1):177-185
Following the observation and analysis of large-scale coronal-wave-like disturbances, we discuss the theoretical progress made in the field of global coronal seismology. Using simple mathematical techniques we determine average values for the magnetic field together with a magnetic map of the quiet Sun. The interaction between global coronal waves and coronal loops allows us to study loop oscillations in a much wider context, i.e. we connect global and local coronal oscillations.  相似文献   

13.
Mackay  D.H.  Galsgaard  K.  Priest  E.R.  Foley  C.R. 《Solar physics》2000,193(1-2):93-116
In recent papers by Priest et al., the nature of the coronal heating mechanism in the large-scale solar corona was considered. The authors compared observations of the temperature profile along large coronal loops with simple theoretical models and found that uniform heating along the loop gave the best fit to the observed data. This then led them to speculate that turbulent reconnection is a likely method to heat the large-scale solar corona. Here we reconsider their data and their suggestion about the nature of the coronal heating mechanism. Two distinct models are compared with the observations of temperature profiles. This is done to determine the most likely form of heating under different theoretical constraints. From this, more accurate judgments on the nature of the coronal heating mechanism are made. It is found that, due to the size of the error estimates in the observed temperatures, it is extremely difficult to distinguish between some of the different heat forms. In the initial comparison the limited range of observed temperatures (T>1.5 MK) in the data sets suggests that heat deposited in the upper portions of the loop, fits the data more accurately than heat deposited in the lower portions. However if a fuller model temperature range (T<1.0 MK) is used results in contridiction to this are found. In light of this several improvements are required from the observations in order to produce theoretically meaningful results. This gives serious bounds on the accuracy of the observations of the large-scale solar corona in future satellite missions such a Solar-B or Stereo.  相似文献   

14.
T. Takakura 《Solar physics》1991,136(2):303-316
Numerical simulation is made of the transient heat conduction during local heating in a model coronal magnetic loop with an axial electric current. It is assumed that a segment near the top of the normal coronal loop is heated to above 107 K by a sufficiently small heat input as compared with the total flare energy. A hump appears in the velocity distribution of electrons moving down the temperature gradient with speeds slightly below the thermal one. Consequently, electron plasma waves are excited. The high intensity of the waves persists in the upper region of the loop for more than a second until the termination of the simulation. The energy density of the plasma waves normalized with respect to thermal density is 10–3.5 at maximum. A theoretical estimate gives an anomalous resistivity 5 orders of magnitude greater than an initial value. Based on the above result, we propose a model for impulsive loop flares.  相似文献   

15.
We present the first 3-dimensional self-consistent calculations of the response of Saturn's global thermosphere to different sources of external heating, giving local time and latitudinal changes of temperatures, winds and composition at equinox and solstice. Our calculations confirm the well-known finding that solar EUV heating alone is insufficient to produce Saturn's observed low latitude thermospheric temperatures of 420 K. We therefore carry out a sensitivity study to investigate the thermosphere's response to two additional external sources of energy, (1) auroral Joule heating and (2) empirical wave heating in the lower thermosphere. Solar EUV heating alone produces horizontal temperature variations of below 20 K, which drive horizontal winds of less than 20 m/s and negligible horizontal changes in composition. In contrast, Joule heating produces a strong dynamical response with westward winds comparable to the sound speed on Saturn. Joule heating alone, at a total rate of 9.8 TW, raises polar temperatures to around 1200 K, but values equatorward of 30° latitude, where observations were made, remain below 200 K due to inefficient meridional energy transport in a fast rotating atmosphere. The primarily zonal wind flow driven by strong Coriolis forces implies that energy from high latitudes is transported equatorward mainly by vertical winds through adiabatic processes, and an additional 0.29-0.44 mW/m2 thermal energy are needed at low latitudes to obtain the observed temperature values. Strong upwelling increases the H2 abundances at high latitudes, which in turn affects the H+3 densities. Downwelling at low latitudes helps increase atomic hydrogen abundances there.  相似文献   

16.
The energy balance of open-field regions of the corona and solar wind and the influence of the flow geometry in the corona upon the density and temperature, are analyzed. It is found that the energy flux arriving at the corona is constant for the corona's open regions with different flow geometries. For the waves heating the corona and solar wind, the dependence of the absorption coefficient on the corona's plasma density is found to be within the range of distances r=1.05–1.5R . It is shown that the wave absorption is more dependent on electron density than the coronal emission. It is this difference that causes lower-density coronal holes to be colder than quiet regions. It is found that the additional energy flux necessary for providing energy balance of the corona and for producing solar wind is a flux of Alfvén waves, which can provide the energy needed for producing quasi-stationary high-speed solar wind streams. Theoretical models of coronal holes and the question of why the high-speed solar wind streams are precisely flowing out of coronal holes, are discussed.  相似文献   

17.
An emission measure analysis is performed for the Prominence-Corona Transition Region (PCTR) under the assumption that the cool matter of quiescent filaments is contained in long, thin magnetic flux loops imbedded in hot coronal cavity gas. Consequently, there is a transition region around each thread.Comparison of the model and observations implies that the temperature gradient is perpendicular to the magnetic lines of force in the lower part of the PCTR (T < 105 K). It is shown that in this layer the heating given by the divergence of the transverse conduction fails to account for the observed UV and EUV emission by several orders of magnitude. It is, therefore, suggested that the heating of these layers could be due to dissipation of Alfvén waves.In the high-temperature layers (T 105 K), where the plasma 1, the temperature gradient is governed by radiative cooling balancing conductive heating from the surrounding hot coronal gas. Also in these outer layers the presence of magnetic fields reduces notably the thermal conduction relative to the ideal field-free case. Numerical modelling gives good agreement with observed DEM; the inferred value of the flux carried by Alfvén waves, as well as that of the damping length, greatly support the suggested form of heating. The model assumes that about 1/3 of the volume is occupied by threads and the rest by hot coronal cavity matter.The brightness of the EUV emission will depend on the angle between the thread structure and the line of sight, which may lead to a difference in brightness from observations at the limb and on the disk.  相似文献   

18.
The heating of coronal loops by resonant absorption of Alfvén waves is studied in compressible, resistive magnetohydrodynamics. The loops are approximated by straight cylindrical, axisymmetric plasma columns and the incident waves which excite the coronal loops are modelled by a periodic external driver. The stationary state of this system is determined with a numerical code based on the finite element method. Since the power spectrum of the incident waves is not well known, the intrinsic dissipation is computed. The intrinsic dissipation spectrum is independent of the external driver and reflects the intrinsic ability of the coronal loops to extract energy from incident waves by the mechanism of resonant absorption.The numerical results show that resonant absorption is very efficient for typical parameter values occurring in the loops of the solar corona. A considerable part of the energy supplied by the external driver, is actually dissipated Ohmically and converted into heat. The heating of the plasma is localized in a narrow resonant layer with a width proportional to 1/3. The energy dissipation rate is almost independent of the resistivity for the relevant values of this parameter. The efficiency of the heating mechanism and the localization of the heating strongly depend on the frequency of the external driver. Resonant absorption is extremely efficient when the plasma is excited with a frequency near the frequency of a so-called collective mode.  相似文献   

19.
This paper presents the study of a nonlinear process in the solar corona where dispersive Alfvén waves (DAWs) may lead to coronal heating. We present the model equations governing the nonlinear excitation of the fast waves (FWs) by DAWs in low-β plasmas (βm e/m i as applicable to the solar corona). By properly considering the ponderomotive nonlinearity, we have derived the equations for the decay waves, namely the FWs and other DAWs. The expressions for the coupling coefficients of the three-wave interaction have been derived. The growth rate of the instability is also calculated; we have found that the value of the decay growth time turns out to be of the order of milliseconds at the pump DAW amplitude B 0y /B 0=10−3. This time scale is much shorter than the observed time scales (a minute or less) for coronal heating, as inferred from images obtained by instruments on board Yohkoh and the Solar and Heliospheric Observatory (SOHO).  相似文献   

20.
T. N. La Rosa 《Solar physics》1990,126(1):153-175
The thermal interpretation of solar flare impulsive phase hard X-ray emission requires rapid heating of a substantial coronal volume to very high temperatures. In this study we investigate the possibility of producing such heating by current dissipation, driven by a tearing instability associated with a single uni-directional current system. Earlier research is synthesized by coupling the energy equation, including loss terms previously neglected, with an equation describing the evolution of the growing electric field. The resistivity due to the excitation of ion-cyclotron and ion-acoustic waves is computed by assuming marginal stability.It is found, for the fast tearing mode, that for initial growth rates f 0.3 s-1 (corresponding to a current channel width l 3 × 105 cm), the electron heating is offset by convective losses, resulting in a very slow temperature rise. Furthermore, hard X-ray emitting temperatures (2 × 108 K) are never realized. For the larger growth rates corresponding to smaller current channel widths, heating from 107 to 108 K can be achieved in a few seconds. However, in this regime the maximum volume that can be heated is only of order 1020 cm3, some three to five orders of magnitude less than the volume of heated material that is inferred from hard X-ray emission measures. These results suggest that in the case of the fast tearing mode a more complicated geometry involving multiple small-scale, oppositely-directed, current channels may be necessary to achieve the required heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号